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1. Introduction

Consider the following system of differential inclusions subject to the Dirichlet bound-
ary condition:{

(−∆p1 u1 + µ1∆q1 u1,−∆p2 u2 + µ2∆q2 u2) ∈ ∂F(u1, u2) in Ω

u1 = u2 = 0 on ∂Ω
(1)

on a bounded domain Ω ⊂ RN for N ≥ 2 with a Lipschitz boundary ∂Ω. For a later
use, |Ω| denotes the Lebesgue measure of Ω. In (1) we have, for 1 < q1 < p1 < +∞ and
1 < q2 < p2 < +∞, the p1-Laplacian ∆p1 : W1,p1

0 (Ω) → W−1,p′1(Ω), q1-Laplacian ∆q1 :

W1,q1
0 (Ω) → W−1,q′1(Ω), p2-Laplacian ∆p2 : W1,p2

0 (Ω) → W−1,p′2(Ω), and q2-Laplacian

∆q2 : W1,q2
0 (Ω) → W−1,q′2(Ω). Throughout the paper, corresponding to any real number

r > 1 we denote r′ = r
r−1 (the Hölder conjugate of r). Furthermore, λ1,p1 and λ1,p2 denote

the first eigenvalues of −∆p1 and −∆p2 , respectively (see Section 2 for a brief review).
The multivalued term in the inclusion (1) is expressed as the generalized gradient

∂F of a locally Lipschitz function F : R2 → R, so pointwise ∂F(u1(x), u2(x)) is a subset
of R2. We reference [1] for the subdifferentiation of locally Lipschitz functionals. Some
basic elements are presented in Section 2. Any ζ ∈ ∂F(t, s) is a point of R2; thus, it has two
components, i.e., ζ = (ζ1, ζ2) ∈ R2. Hence, (1) is a system of two differential inclusions
that we call hemivariational inclusions because they involve generalized gradients. The
inclusion problem (1) incorporates systems of equations with discontinuous nonlinearities.
Differential equations with discontinuous nonlinearities via the generalized gradients were
first studied in [2].

According to the definition of generalized gradient, it is apparent that each solution to
system (1) solves the inequality problem.

⟨−∆p1 u1, v1⟩+ µ1⟨∆q1 u1, v1⟩+ ⟨−∆p2 u2, v2⟩+ µ2⟨∆q2 u2, v2⟩

≤
∫

Ω
F0(u1(x), u2(x); v1(x), v2(x))dx for all (v1, v2) ∈ W1,p1

0 (Ω)× W1,p2
0 (Ω), (2)
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where the notation F0 stands for the generalized directional derivative of the locally Lips-
chitz function F on R2. Problem (2) is a hemivariational inequality in the product space
W1,p1

0 (Ω)× W1,p2
0 (Ω). The interest in hemivariational inequalities is that they allow non-

convex potentials. For the study of hemivariational inequalities, we refer to [3–7].
For the locally Lipschitz function F : R2 → R, we assume the following condition:

(H) There are positive constants c0, c1, c2, d0, d1, d2, r1, r2, with c1 < λ1,p1 d2 < λ1,p2 ,
1 < r1 < p1, and 1 < r2 < p2 such that

|ζ1| ≤ c0 + c1|t|p1−1 + c2|s|
p2
r′1

and

|ζ2| ≤ d0 + d1|t|
p1
r′2 + d2|s|p2−1

for all (t, s) ∈ R2 and (ζ1, ζ2) ∈ ∂F(t, s).
In the statement of (1), there are two parameters µ1 ∈ R and µ2 ∈ R. The leading

operators are −∆p1 + µ1∆q1 and −∆p2 + µ2∆q2 , for which the ellipticity condition fails
when µ1 > 0 and µ2 > 0, which is the main point of our work (note that µ1 and µ2 are
arbitrary real numbers). In this case, they become the so-called competing operators that
were introduced in [8]. Precisely, a competing operator was defined in reference [8] as
−∆p + ∆q versus −∆p − ∆q ((p, q)-Laplacian) for 1 < q < p < +∞. The essential feature of

such an operator is that the ellipticity property is lost. For any u ∈ W1,p
0 (Ω) and any scalar

λ > 0, the following expression does not have a constant sign when λ varies:

⟨−∆p(λu), λu⟩+ ⟨∆q(λu), λu⟩ = λp⟨−∆pu, u⟩+ λq⟨∆qu, u⟩.

Systems of differential equations with competing operators were investigated in [9].
Due to the possible loss of ellipticity for system (1), we introduce a new type of solution

called a generalized solution. It is said that (u1, u2) ∈ W1,p1
0 (Ω)×W1,p2

0 (Ω) is a generalized
solution to problem (1) if there exists a sequence {(u1n, u2n)} ⊂ W1,p1

0 (Ω)×W1,p2
0 (Ω) such that

(i) uin ⇀ ui in W1,pi
0 (Ω) as n → ∞ for i = 1, 2;

(ii) −∆pi uin + µi∆qi uin − zin ⇀ 0 in W−1,p′i (Ω) as n → ∞, with zin ∈ Lp′i (Ω) for i = 1, 2,
and (z1n(x), z2n(x)) ∈ ∂F(u1n(x), u2n(x)) a.e. on Ω;

(iii) limn→∞⟨−∆p1 u1n + µ1∆q1 u1n, u1n − u1⟩ = 0 and limn→∞⟨−∆p2 u2n + µ2∆q2 u2n, u2n −
u2⟩ = 0.

The notion of a generalized solution was proposed in [10] for differential equations
driven by competing operators and in [9] for systems of differential equations with compet-
ing operators. The notion of a generalized solution for hemivariational inequalities with
competing operators was recently introduced in [7]. Here, for the first time, we define
the generalized solution for a system of hemivariational inclusions exhibiting competing
operators.

We also introduce the notion of a weak solution to system (1). By a weak solution
to system (1), we understand any pair (u1, u2) ∈ W1,p1

0 (Ω) × W1,p2
0 (Ω) for which the

following holds:

⟨−∆p1 u1, v1⟩+ µ1⟨∆q1 u1, v1⟩+ ⟨−∆p2 u2, v2⟩+ µ2⟨∆q1 u2, v2⟩

=
∫

Ω
(z1(x)v1(x) + z2(x)v2(x))dx for all (v1, v2) ∈ W1,p1

0 (Ω)× W1,p2
0 (Ω), (3)

with (z1, z2) ∈ Lp′1(Ω)× Lp′2(Ω) satisfying (z1, z2) ∈ ∂F(u1, u2) a.e. on Ω. Equivalently, (3)
can be written in the system form as follows:

−∆p1 u1 + µ1∆q1 u1 + z1 = 0,

−∆p2 u2 + µ2∆q2 u2 + z2 = 0,
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with (z1, z2) as in (3), where the equalities hold in dual spaces W−1,p′1(Ω) and W−1,p′2(Ω).
Notice that any weak solution to system (1) is a generalized solution. Indeed, if (u1, u2) ∈
W1,p1

0 (Ω)× W1,p2
0 (Ω) is a weak solution, it is sufficient to take (u1n, u2n) = (u1, u2) and

(z1n, z2n) = (z1, z2) in the definition of a generalized solution.
Our main results read as follows.

Theorem 1. Assume that condition (H) holds. Then, there exists a generalized solution to system (1)
for every (µ1, µ2) ∈ R2.

Theorem 2. Assume that condition (H) holds. If µ1 ≤ 0 and µ2 ≤ 0, then each generalized
solution to system (1) is a weak solution. In particular, if µ1 ≤ 0 and µ2 ≤ 0, system (1) possesses
a weak solution.

In the proof of Theorem 1, we make use of approximation through finite dimensional
subspaces via a Galerkin basis combined with minimization and nonsmooth analysis. We
obtain a priori estimates, which are of independent interest in the context of competing
operators. The proof of Theorem 2 relies on properties of the underlying spaces and of
operators of the p-Laplacian type. We end the paper with an example illustrating the
applicability of our results.

The rest of the paper is organized as follows. Section 2 is devoted to the related math-
ematical background. Section 3 contains the needed minimization results and estimates.
Section 4 sets forth the finite dimensional approximation approach. Section 4 presents the
proofs of Theorems 1 and 2, as well as an example.

2. Mathematical Background

Given a Banach space X with the norm ∥ · ∥, X∗ denotes the dual space of X, and
⟨·, ·⟩ denotes the duality pairing between X and X∗. The norm convergence in X and X∗ is
denoted by →, and the weak convergence is denoted by ⇀.

We outline basic elements of nonsmooth analysis. For a detailed treatment, we refer
to [1]. A function G : X −→ R on a Banach space X is called locally Lipschitz if, for every
point u ∈ X, there are an open neighborhood U of u and a constant C > 0 such that

|G(v)− G(w)| ≤ C∥v − w∥ for all v, w ∈ U.

The generalized directional derivative of a locally Lipschitz function G : X −→ R at
point u ∈ X in direction v ∈ X is defined by

G◦(u; v) := lim sup
w→u
t↓0

G(w + tv)− G(w)

t
,

and the generalized gradient of G at u ∈ X is the following set

∂G(u) := {η ∈ X∗ : G◦(u; v) ≥ ⟨η, v⟩ for every v ∈ X}.

The following relation links the two notions:

G◦(u; v) = max
η∈∂G(u)

⟨η, v⟩ for all u, v ∈ V.

We illustrate these definitions in two significant situations. For a continuous and
convex function G : X → R, the generalized gradient ∂G coincides with the subdifferential
of G in the sense of convex analysis. If the function G : X → R is continuously differentiable,
the generalized gradient of G is just the differential of G.

We also mention a few things regarding the driving operators in system (1) (or hemi-
variational inequality (2)). Given any number 1 < r < +∞, the Sobolev space W1,r

0 (Ω) is
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endowed with the norm ∥∇u∥r, where ∥ · ∥r denotes the Lr norm. The dual space of W1,r
0 (Ω)

is W−1,r′(Ω). As usual, r∗ denotes the Sobolev critical exponent, that is, r∗ = Nr/(N − r)
if N > r and r∗ = +∞ otherwise. The Rellich–Kondrachov embedding theorem ensures
that W1,r

0 (Ω) is compactly embedded into Ld(Ω) for every 1 ≤ d < r∗. In particular, there
exists a positive constant Sd,r such that

∥u∥d ≤ Sd,r∥∇u∥r, ∀ u ∈ W1,r
0 (Ω). (4)

For the background of Sobolev spaces, we refer to [11]. Here, we solely recall that a Banach
space W1,r

0 (Ω) with 1 < r < +∞ is separable. This implies the existence of a Galerkin basis
of space W1,r

0 (Ω), meaning a sequence {Xn}n∈N of vector subspaces of W1,r
0 (Ω) satisfying

(a) dim(Xn) < ∞, ∀ n;
(b) Xn ⊂ Xn+1, ∀ n;

(c)
∞⋃

n=1

Xn = W1,r
0 (Ω).

We refer to [12] for background related to Galerkin bases.
The negative r-Laplacian −∆r : W1,r

0 (Ω) → W−1,r′(Ω) is the operator (nonlinear if
r ̸= 2) given by

⟨−∆ru, v⟩ =
∫

Ω
|∇u(x)|r−2∇u(x) · ∇v(x)dx, ∀ u, v ∈ W1,r

0 (Ω).

The first eigenvalue of −∆r is given by

λ1,r = inf
v∈W1,r

0 (Ω)\{0}

∥∇v∥r
r

∥v∥r
r

. (5)

More details can be found, e.g., in [3]. Since q1 < p1 and q2 < p2, there are the continu-
ous embeddings W1,p1

0 (Ω) ↪→ W1,q1
0 (Ω) and W1,p2

0 (Ω) ↪→ W1,q2
0 (Ω), which can be readily

verified through Hölder’s inequality. Therefore, the sums −∆p1 + µ1∆q1 : W1,p1
0 (Ω) →

W−1,p′1(Ω) and −∆p2 + µ2∆q2 : W1,p2
0 (Ω) → W−1,p′2(Ω) entering system (1) are well de-

fined.

3. Associated Euler Functional

We focus on nonsmooth function F : R2 → R, for which assumption (H) holds true.

Lemma 1. Assume that condition (H) is satisfied. Then, for each ε > 0, there exist constants
c(ε) > 0 and d(ε) > 0 such that

|F(t, s)| ≤ |F(0, 0)|+ c0|t|+ d0|s|+
(

c1

p1
+ ε

)
|t|p1

+

(
d2

p2
+ ε

)
|s|p2 + c(ε)|t|r1 + d(ε)|s|r2 . (6)

Proof. Rademacher’s theorem ensures that there exists a gradient ∇F(x1, x2) = ( ∂F
∂x1

(x1, x2),
∂F
∂x2

(x1, x2)) for almost all (x1, x2) ∈ R2. On the other hand, for every (t, s) ∈ R2, the function
τ 7→ F(τt, τs) belongs to space W1,1(I) on any bounded open interval I that contains [0, 1].
Therefore, we may write

F(t, s)− F(0, 0) =
∫ 1

0

(
∂F
∂x1

(τt, τs)t +
∂F
∂x2

(τt, τs)s
)

dτ for all (t, s) ∈ R2.
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Then, taking into account that(
∂F
∂x1

(τt, τs),
∂F
∂x2

(τt, τs)
)
∈ ∂F(τt, τs)

(see [1], p. 32), hypothesis (H) implies

|F(t, s)| ≤ |F(0, 0)|

+
∫ 1

0

(
(c0 + c1|τt|p1−1 + c2|τs|

p2
r′1 )|t|+ (d0 + d1|τt|

p1
r′2 + d2|τs|p2−1)|s|

)
dτ

≤ |F(0, 0)|+ c0|t|+ d0|s|+
c1

p1
|t|p1 +

d2

p2
|s|p2

+
c2r′1

p2 + r′1
|t||s|

p2
r′1 +

d1r′2
p1 + r′2

|t|
p1
r′2 |s|.

Now, using Young’s inequality with ε, we arrive at (6), which completes the proof.

Lemma 2. Under assumption (H), the functional Φ : Lp1(Ω)× Lp2(Ω) → R given by

Φ(v1, v2) =
∫

Ω
F(v1(x), v2(x)) dx for all (v1, v2) ∈ Lp1(Ω)× Lp2(Ω) (7)

is Lipschitz continuous on the bounded subsets of Lp1(Ω)× Lp2(Ω). The generalized gradient

∂Φ : Lp1(Ω)× Lp2(Ω) → 2Lp′1 (Ω)×Lp′2 (Ω) has the following property: if (ζ1, ζ2) ∈ ∂Φ(u1, u2),
with (u1, u2) ∈ Lp1(Ω)× Lp2(Ω), then

(ζ1(x), ζ2(x)) ∈ ∂F(u1(x), u2(x)) for a.e. x ∈ Ω. (8)

Proof. The verification of the Lipschitz condition for the function Φ in (7) on the bounded
subsets of the product space Lp1(Ω) × Lp2(Ω) is straightforward. The Aubin–Clarke
theorem on the subdifferentiation under the integral sign (see [1], p. 83) can be shown
to be valid under hypothesis (H). This readily leads to Formula (8), thus completing the
proof.

In view of Lemma 2, the compact embeddings W1,pi
0 (Ω) ↪→ Lp(Ω), i = 1, 2 yield the

multivalued mapping ∂Φ : W1,p1
0 (Ω)× W1,p2

0 (Ω) → 2W−1,p′1 (Ω)×W−1,p′2 (Ω). On this basis,
we introduce the functional J : W1,p1

0 (Ω)× W1,p2
0 (Ω) → R as follows:

J(v1, v2) =
1
p1

∥∇v1∥
p1
p1 −

µ1

q1
∥∇v1∥

q1
q1 +

1
p2

∥∇v2∥
p2
p2 −

µ2

q2
∥∇v2∥

q2
q2

−
∫

Ω
F(v1(x), v2(x)) dx (9)

for all (v1, v2) ∈ W1,p1
0 (Ω)× W1,p2

0 (Ω).

Proposition 1. Assume condition (H). Then, the functional J in (9) is locally Lipschitz, with the
generalized gradient expressed as

∂J(v1, v2) = (−∆p1 v1 + µ1∆q1 v1,−∆p2 v2 + µ2∆q2 v2)− ∂Φ(v1, v2) (10)

for all (v1, v2) ∈ W1,p1
0 (Ω)× W1,p2

0 (Ω).

Proof. The functional J in (9) is the difference of a continuously differentiable function
and Φ in (7), which is known from Lemma 2 to be locally Lipschitz. Therefore J is locally
Lipschitz continuous, and its generalized gradient on the product space Lp1(Ω)× Lp2(Ω)
has the expression in (10).
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Proposition 2. Assume condition (H). Then, the functional J in (9) is coercive on W1,p1
0 (Ω)×

W1,p2
0 (Ω), that is, J(v1, v2) → ∞ as ∥∇v1∥p1 + ∥∇v2∥p2 → ∞.

Proof. From (9) and (6) in Lemma 1, we infer, for every ε > 0, that

J(v1, v2) ≥ 1
p1

∥∇v1∥
p1
p1 +

1
p2

∥∇v2∥
p2
p2 −

|µ1|
q1

∥∇v1∥
q1
q1 −

|µ2|
q2

∥∇v2∥
q2
q2

−
∫

Ω

(
|F(0, 0)|+ c0|v1|+ d0|v2|+

(
c1

p1
+ ε

)
|v1|p1

+

(
d2

p2
+ ε

)
|v2|p2 + c(ε)|v1|r1 + d(ε)|v2|r2

)
dx

for all (v1, v2) ∈ W1,p1
0 (Ω)× W1,p2

0 (Ω), with constants c(ε) and d(ε). Using (4), (5), and
Hólder’s inequality, the preceding estimate entails

J(v1, v2) ≥ 1
p1

(
1 − c1λ−1

1,p1
− p1λ−1

1,p1
ε
)
∥∇v1∥

p1
p1 +

1
p2

(
1 − d2λ−1

1,p2
− p2λ−1

1,p2
ε
)
∥∇v2∥

p2
p2

−|µ1|
q1

|Ω|
p1−q1

p1 ∥∇v1∥
q1
p1 −

|µ2|
q2

|Ω|
p2−q2

p2 ∥∇v2∥
q2
p2 − c0S1,p1∥∇v1∥p1

−d0S1,p2∥∇v2∥p2 − c(ε)Sr1
r1,p1∥∇v1∥r1

p1 − d(ε)Sr2
r2,p2∥∇v2∥r2

p2 − |F(0, 0)||Ω|.

It is known from assumption (H) that c1 < λ1,p1 and d2 < λ1,p2 . A value of ε > 0 so small
that 1 − c1λ−1

1,p1
− p1λ−1

1,p1
ε > 0 and 1 − d2λ−1

1,p2
− p2λ−1

1,p2
ε > 0 is selected. Since 1 < r1 < p1,

1 < r2 < p2, 1 < q1 < p1, and 1 < q2 < p2, we conclude that the functional J is coercive,
which completes the proof.

4. Finite Dimensional Approximations to Resolve System (1)

Let us fix a Galerkin basis {Xn} of the space W1,p1
0 (Ω) and a Galerkin basis {Yn} of

the space W1,p2
0 (Ω). It follows that {Xn × Yn} is a Galerkin basis of the product space

W1,p1
0 (Ω)× W1,p2

0 (Ω). Minimization in the finite dimensional space Xn × Yn will enable us
to construct a generalized solution to system (1).

Proposition 3. Assume condition (H). For each positive integer n, there exist (u1n, u2n) ∈
Xn ×Yn and (z1n, z2n) ∈ Lp′1(Ω)× Lp′2(Ω) with (z1n(x), z2n(x)) ∈ ∂F(u1n(x), u2n(x)) for a.e.
x ∈ Ω such that

⟨−∆p1 u1n, v1⟩+ µ1⟨∆q1 u1n, v1⟩ −
∫

Ω
z1nv1dx = 0, ∀ v1 ∈ Xn, (11)

⟨−∆p2 u2n, v2⟩+ µ2⟨∆q2 u2n, v2⟩ −
∫

Ω
z2nv2dx = 0, ∀ v2 ∈ Yn. (12)

Proof. According to Proposition 1, the functional J : W1,p1
0 (Ω) × W1,p2

0 (Ω) → R in (9)
is locally Lipschitz and, thus, continuous, while according to Proposition 2, J is coercive.
Taking into account that the subspace Xn ×Yn of W1,p1

0 (Ω)×W1,p2
0 (Ω) is finite dimensional,

there exists (u1n, u2n) ∈ Xn × Yn satisfying

J(u1n, u2n) = inf
(v1,v2)∈Xn×Yn

J(v1, v2). (13)

A necessary condition of optimality for (13) is that

(0, 0) ∈ ∂(J|Xn×Yn)(u1n, u2n). (14)

In view of (10), inclusion (14) provides (z1n, z2n) ∈ ∂Φ(u1n, u2n) for which (11) and (12) hold.
The fact that (z1n, z2n) ∈ ∂F(u1n, u2n) a.e. in Ω is the consequence of Lemma 2.
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Proposition 4. Assume condition (H). Then, the sequence {(u1n, u2n)} in Proposition 3 is
bounded in W1,p1

0 (Ω)× W1,p2
0 (Ω).

Proof. Proposition 3 ensures that equalities (11) and (12) hold true. As (u1n, u2n) ∈ Xn ×Yn,
we are allowed to use v1 = u1n in (11) and v2 = u2n in (12) as test functions. In conjunction
with Hölder’s inequality, this gives

∥∇u1n∥
p1
p1 = µ1∥∇u1n∥

q1
q1 +

∫
Ω

z1nu1ndx ≤ |µ1||Ω|
p1−q1

p1 ∥∇u1n∥
q1
p1 +

∫
Ω
|z1n||u1n|dx (15)

and

∥∇u2n∥
p2
p2 = µ2∥∇u2n∥

q2
q2 +

∫
Ω

z2nu2ndx ≤ |µ2||Ω|
p2−q2

p2 ∥∇u2n∥
q2
p2 +

∫
Ω
|z2n||u2n|dx, (16)

with (z1n, z2n) ∈ ∂F(u1n, u2n) a.e. in Ω. We are entitled to invoke hypothesis (H) to obtain∫
Ω
|z1n||u1n|dx ≤

∫
Ω
(c0 + c1|u1n(x)|p1−1 + c2|u2n(x)|

p2
r′1 )|u1n(x)|dx

= c0∥u1n∥1 + c1∥u1n∥
p1
p1 + c2

∫
Ω
|u2n(x)|

p2
r′1 |u1n(x)|dx

and ∫
Ω
|z2n||u2n|dx ≤

∫
Ω
(d0 + d1|u1n(x)|

p1
r′2 + d2|u2n(x)|p2−1)|u2n(x)|dx

= d0∥u2n∥1 + d1

∫
Ω
|u1n(x)|

p1
r′2 |u2n(x)|dx + d2∥u2n∥

p2
p2 .

Through Young’s inequality with any ε > 0, we find that

c2

∫
Ω
|u2n(x)|

p2
r′1 |u1n(x)|dx ≤ ε∥u2n∥

p2
p2 + c(ε)∥u1n∥r1

r1

and

d1

∫
Ω
|u1n(x)|

p1
r′2 |u2n(x)|dx ≤ ε∥u1n∥

p1
p1 + d(ε)∥u2n∥r2

r2 ,

with positive constants c(ε) and d(ε). Take the sum of Inequalities (15) and (16) and insert
the preceding estimates, also using (4) and (5), which result in(

1 − λ−1
1,p1

(c1 + ε)
)
∥∇u1n∥

p1
p1 +

(
1 − λ−1

1,p2
(d2 + ε)

)
∥∇u2n∥

p2
p2

≤ |µ1||Ω|
p1−q1

p1 ∥∇u1n∥
q1
p1 + |µ2||Ω|

p2−q2
p2 ∥∇u2n∥

q2
p2

+c0S1,p1∥∇u1n∥p1 + d0S1,p2∥∇u2n∥p2 + c(ε)Sr1
r1,p1∥∇u1n∥r1

p1 + d(ε)Sr2
r2,p2∥∇u2n∥r2

p2 .

Assumption (H) postulates that c1 < λ1,p1 and d2 < λ1,p2 , so we may choose a value of
ε > 0 so small so as to have 1 − λ−1

1,p1
(c1 + ε) > 0 and 1 − λ−1

1,p2
(d2 + ε) > 0. Because

1 < r1 < p1, 1 < r2 < p2, 1 < q1 < p1, and 1 < q2 < p2, we can conclude that the sequence
{(u1n, u2n)} is bounded in W1,p1

0 (Ω)× W1,p2
0 (Ω), thus completing the proof.

Proposition 5. Assume condition (H). The sequence {(u1n, u2n)} ⊂ W1,p1
0 (Ω) × W1,p2

0 (Ω)
given in Proposition 3 has the following property: there exists a constant M > 0 such that

∥ − ∆p1 u1n + µ1∆q1 u1n − z1n∥W−1,p′1 (Ω)
≤ M, ∀ n (17)
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and

∥ − ∆p2 u2n + µ2∆q2 u2n − z2n∥W−1,p′2 (Ω)
≤ M, ∀ n, (18)

with z1n and z2n as stated in (11) and (12), respectively.

Proof. According to Proposition 4 there is a constant M0 > 0 such that

max{∥∇u1n∥p1 , ∥∇u2n∥p2} ≤ M0, ∀ n. (19)

Notice that

(−∆p1 u1n + µ1∆q1 u1n − z1n,−∆p2 u1n + µ2∆q2 u2n − z2n) ∈ ∂J(u1n, u2n), ∀ n.

As the functional J : W1,p1
0 (Ω)× W1,p2

0 (Ω) → R is Lipschitz continuous on the bounded
subsets of the space W1,p1

0 (Ω)× W1,p2
0 (Ω), we directly infer from (19) the existence of a

constant M > 0 for which (17) and (18) are fulfilled. The proof is achieved.

5. Proofs of the Main Results and Example

Proof of Theorem 1. Consider the sequence {(u1n, u2n)} ⊂ W1,p1
0 (Ω)× W1,p2

0 (Ω), which
is provided by Proposition 3 corresponding to the Galerkin basis {Xn × Yn} of the space
W1,p1

0 (Ω) × W1,p2
0 (Ω). It is known from Proposition 4 that the sequence {(u1n, u2n)} is

bounded in W1,p1
0 (Ω)× W1,p2

0 (Ω). Precisely, the bound in (19) holds.
Thanks to the reflexivity of the space W1,p1

0 (Ω)× W1,p2
0 (Ω), we may admit that along

a subsequence, we have u1n ⇀ u1 in W1,p1
0 (Ω) and u2n ⇀ u2 in W1,p2

0 (Ω), as n → ∞
for some (u1, u2) ∈ W1,p1

0 (Ω)× W1,p2
0 (Ω). We will show that the weak limit (u1, u2) is a

generalized solution to system (1).
It is clear that condition (i) is verified. For each positive integer n, Proposition 3 provides

(z1n, z2n) ∈ Lp′1(Ω)× Lp′2(Ω) with (z1n, z2n) ∈ ∂F(u1n, u2n) a.e. in Ω such that (11) and (12)
are satisfied. Proposition 5 ensures that the sequence {−∆p1 u1n + µ1∆q1 u1n − z1n} is bounded
in W−1,p′1(Ω) and that the sequence {−∆p2 u2n + µ2∆q2 u2n − z2n} is bounded in W−1,p′2(Ω).
Specifically, the bounds are expressed in (17) and (18).

The reflexivity of the spaces W−1,p′1(Ω) and W−1,p′2(Ω) implies that we can pass
to relabeled subsequences satisfying −∆p1 u1n + µ1∆q1 u1n − z1n ⇀ η1 in W−1,p′1(Ω) and
−∆p2 u2n + µ2∆q2 u2n − z2n ⇀ η2 in W−1,p′2(Ω) for some (η1, η2) ∈ W−1,p′1(Ω)×W−1,p′2(Ω).

We claim that η1 = 0 and η2 = 0, that is, ⟨η1, v⟩ = 0 for all v ∈ W1,p1
0 (Ω) and

⟨η2, v⟩ = 0 for all v ∈ W1,p2
0 (Ω). We only prove the first assertion because the second one

can be checked analogously. Let v ∈ W1,p1
0 (Ω) and suppose, first, that v ∈ ⋃∞

n=1 Xn. Fix
some m with v ∈ Xm. Then, for each n ≥ m, the element v can be used as a test function
in (11), which gives

⟨−∆p1 u1n, v⟩+ µ1⟨∆q1 u1n, v⟩ −
∫

Ω
z1nvdx = 0.

In the limit, as n → ∞, we obtain ⟨η1, v⟩ = 0. If v ∈ W1,p1
0 (Ω) is arbitrary, we obtain

⟨η1, v⟩ = 0, owing to the density of
⋃∞

n=1 Xn in W1,p1
0 (Ω), as required by condition (c) of

the Galerkin basis. Therefore, the claim is proven, which shows that condition (ii) in the
definition of the generalized solution to system (1) is satisfied.

Now, we deal with condition (iii) in the definition of the generalized solution to (1). It
is known from (11) and (12) that
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⟨−∆p1 u1n, u1n⟩+ µ1⟨∆q1 u1n, u1n⟩ −
∫

Ω
z1nu1ndx = 0, ∀ n,

⟨−∆p2 u2n, u2n⟩+ µ2⟨∆q2 u2n, u2n⟩ −
∫

Ω
z2nu2ndx = 0, ∀ n.

On the other hand, according to assertion (ii), one has

lim
n→∞

[
⟨−∆p1 u1n, u1⟩+ µ1⟨∆q1 u1n, u1⟩ −

∫
Ω

z1nu1dx
]
= 0,

lim
n→∞

[
⟨−∆p2 u2n, u2⟩+ µ2⟨∆q2 u2n, u2⟩ −

∫
Ω

z2nu2dx
]
= 0.

Combining the preceding estimates renders

lim
n→∞

[
⟨−∆p1 u1n, u1n − u1⟩+ µ1⟨∆q1 u1n, u1n − u1⟩ −

∫
Ω

z1n(u1n − u1)dx
]
= 0, (20)

lim
n→∞

[
⟨−∆p2 u2n, u2n − u2⟩+ µ2⟨∆q2 u2n, u2n − u2⟩ −

∫
Ω

z2n(u2n − u2)dx
]
= 0. (21)

Lemma 2 guarantees that the functional Φ : Lp1(Ω)× Lp2(Ω) → R given in (7) is Lipschitz
continuous on the bounded subsets of Lp1(Ω) × Lp2(Ω); thus, its generalized gradient

∂Φ : Lp1(Ω)× Lp2(Ω) → 2Lp′1 (Ω)×Lp′2 (Ω) is a bounded multifunction, which means that
the image of every bounded set is a bounded set. Hence, on the basis of the inclusion
(z1n, z2n) ∈ ∂Φ(u1n, u2n) and Proposition 4, we are led to the conclusion that the sequence
{(z1n, z2n)} is bounded in Lp′1(Ω) × Lp′2(Ω). Recalling that u1n ⇀ u1 in W1,p1

0 (Ω) and
u2n ⇀ u2 in W1,p2

0 (Ω), the Rellich–Kondrachov compact embedding theorem provides
strong convergence (u1n, u2n) → (u1, u2) in Lp1(Ω)× Lp2(Ω). It turns out that

lim
n→∞

∫
Ω

z1n(u1n − u1)dx = 0,

lim
n→∞

∫
Ω

z2n(u2n − u2)dx = 0.

Inserting this into (20) and (21), we see that requirement (iii) in the definition of the
generalized solution is fulfilled. Therefore, (u1, u2) ∈ W1,p1

0 (Ω)×W1,p2
0 (Ω) is a generalized

solution to system (1). The proof of Theorem 1 is complete.

Proof of Theorem 2. Assume that µ1 ≤ 0 and µ2 ≤ 0. Let (u1, u2) ∈ W1,p1
0 (Ω)× W1,p2

0 (Ω)
be a generalized solution to system (1). Then, there exists a sequence {(u1n, u2n)} ⊂
W1,p1

0 (Ω)× W1,p2
0 (Ω) satisfying conditions (i), (ii), and (iii).

Using conditions (i) and (iii), as well as µ1 ≤ 0 and the monotonicity of −∆q1 , we derive

lim sup
n→∞

⟨−∆p1 u1n, u1n − u1⟩

= lim
n→∞

[
⟨−∆p1 u1n, u1n − u1⟩+ µ1⟨∆q1 u1n, u1n − u1⟩

]
− µ1 lim sup

n→∞
⟨∆q1 u1n, u1n − u1⟩

= µ1 lim inf
n→∞

⟨−∆q1 u1n, u1n − u1⟩

≤ µ1 lim inf
n→∞

⟨−∆q1 u1n + ∆q1 u1, u1n − u1⟩+ µ1 lim
n→∞

⟨−∆q1 u1, u1n − u1⟩ ≤ 0.

This enables us to use the S+ property of the operator −∆p1 : W1,p1
0 (Ω) → W−1,p′1(Ω),

meaning that u1n ⇀ u1 in W1,p1
0 (Ω) and lim supn→∞⟨−∆p1 u1n, u1n − u1⟩ ≤ 0 provide

u1n → u1 (refer to [3]). Therefore, the S+ property of the operator −∆p1 implies the strong

convergence u1n → u1 in W1,p1
0 (Ω). According to the continuity of the operators −∆p1

and ∆q1 in the norm topologies, we have −∆p1 u1n + µ1∆q1 u1n → −∆p1 u1 + µ1∆q1 u1 in
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W−1,p′1(Ω). Similarly, we prove that u2n → u2 in W1,p2
0 (Ω) and −∆p2 u2n + µ2∆q2 u2n →

−∆p2 u2 + µ2∆q2 u2 in W−1,p′2(Ω).
Lemma 2 establishes that the functional Φ : Lp1(Ω)× Lp2(Ω) → R in (7) is Lipschitz

continuous on the bounded subsets of Lp1(Ω)× Lp2(Ω). Since (z1n, z2n) ∈ ∂Φ(u1n, u2n),
the sequence {(z1n, z2n)} is bounded in Lp′1(Ω) × Lp′2(Ω) up to subsequence z1n ⇀ z1

in Lp′1(Ω) and z2n ⇀ z2 in Lp′2(Ω) for some (z1, z2) ∈ Lp′1(Ω) × Lp′2(Ω). Taking into
account the strong convergence (u1n, u2n) → (u1, u2) in Lp1(Ω) × Lp2(Ω), we find that
(z1, z2) ∈ ∂Φ(u1, u2) due to the fact that the generalized gradient ∂Φ is strongly-weakly∗

closed.
At this point, it suffices to pass to the limit as n → ∞ in condition (ii) in the defi-

nition of the generalized solution (u1, u2) of system (1) to deduce that in the dual space
W1,p′1(Ω)× W1,p′2(Ω), the following equality holds:

(−∆p1 u1 + µ1∆q1 u1 − z1,−∆p2 u2 + µ2∆q2 u2 − z2) = (0, 0).

This is equivalent to (3). Since (z1, z2) ∈ ∂Φ(u1n, u2n), hypothesis (H) and the Aubin–
Clarke theorem (see [1]) confirm the validity of the pointwise inclusion (z1(x), z2(x)) ∈
∂F(u1(x), u2(x)) for almost all x ∈ Ω. We conclude that (u1, u2) is a weak solution to
system (1).

The existence of a weak solution to system (1) when µ1 ≤ 0 and µ2 ≤ 0 follows from
Theorem 1 and the first part of Theorem 2 that we have already proven. The proof is,
thus, complete.

Here is an example showing how our results can be applied.

Example 1. Let B : R → 2R denote the generalized gradient of the absolute value function | · |
on R, that is, B(t) = −1 if t < 0, B(t) = 1 if t > 0, and B(0) = [−1, 1]. Given the numbers
p1 ∈ (2,+∞) and p2 ∈ (2,+∞), consider on the bounded domain Ω ⊂ RN the following system
of hemivariational inclusions:

− ∆p1 u1 + ∆u1 ∈ u2B(u1) + cos(u1 + |u2|) in Ω

− ∆p2 u1 + ∆u2 ∈ |u1|+ cos(u1 + |u2|)B(u2) in Ω

u1 = u2 = 0 on ∂Ω,

(22)

where ∆ stands for the ordinary Laplacian operator, i.e., ∆ = ∆2. This is system (1) for µ1 = µ2 = 1,
q1 = q2 = 2, and F : R2 → R given by F(t, s) = (s|t|) + sin(t + |s|) for all (t, s) ∈ R2, since
∂F(t, s) = (s∂|t|+ cos(t + |s|), |t|+ cos(t + |s|)∂|s|) for all (t, s) ∈ R2.

Setting r1 = r2 = 2 (so r′1 = r′2 = 2), it is seen that condition (H) is fulfilled. Indeed, for
every (ζ1, ζ2) ∈ ∂F(t, s), we have

|ζ1| ≤ |s|+ 1 ≤ 2 + |s|
p2
2

and
|ζ2| ≤ |t|+ 1 ≤ 2 + |t|

p1
2 .

Theorem 1 guarantees that the system presented in (22) admits a generalized solution (u1, u2) in
W1,p1

0 (Ω)× W1,p2
0 (Ω).

If in place of −∆p1 + ∆ and −∆p2 + ∆, we take −∆p1 − ∆ and −∆p2 − ∆, respectively.
Theorem 2 ensures the existence of a weak solution (u1, u2) in W1,p1

0 (Ω) × W1,p2
0 (Ω) for the

obtained system.
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