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Abstract: In order to resist the security risks caused by quantum computing, post-quantum cryp-
tography (PQC) has been a research focus. Constructing a key encapsulation mechanism (KEM)
based on lattices is one of the promising PQC routines. The algebraically structured learning with
errors (LWE) problem over power-of-two cyclotomics has been one of the most widely used hardness
assumptions for lattice-based cryptographic schemes. However, power-of-two cyclotomic rings
may be exploited in the inflexibility of selecting parameters. Recently, trinomial cyclotomic rings
of the form Zq[x]/(xn − xn/2 + 1), where n = 2k3l , k ≥ 1, l ≥ 0, have received widespread atten-
tion due to their flexible parameter selection. In this paper, we propose Tyber, a variant scheme of
the NIST-standardized KEM candidate Kyber over trinomial cyclotomic rings. We provide three
parameter sets, aiming at the quantum security of 128, 192, and 256 bits (actually achieving 129,
197, and 276 bits) with matching and negligible error probabilities. When compared to Kyber, our
Tyber exhibits stronger quantum security, by 22, 31, and 44 bits, than Kyber for three security levels.

Keywords: lattice-based cryptography; post-quantum cryptography; module learning with errors;
Kyber; trinomial cyclotomics

MSC: 94A60

1. Introduction

If practical quantum computers are ever built, the current public-key cryptography,
which relies heavily on the hardness assumptions of factoring integers and solving discrete
logarithms, will be vulnerable to quantum attacks. Given the escalating risks posed by
quantum computing in recent years, the crypto community has shifted its research focus
towards post-quantum cryptography (PQC). Constructing cryptographic schemes based
on lattices is one of the promising PQC routines. It has driven several nations to launch
professional organizations to start the standardizations of PQC schemes.

In 2016, the US National Institute of Standards and Technology (NIST) initiated a stan-
dardization competition for post-quantum cryptography primitives, including public-key
encryption (PKE), key encapsulation mechanisms (KEMs), and digital signatures. Notably,
lattice-based schemes occupied a significant portion of the submissions, accounting for
26 out of 64 in the initial round [1], 12 out of 26 in the second round [2], and ultimately,
7 out of 15 in the third round [3]. In 2022, NIST finally selected lattice-based schemes named
Kyber [4] (official name is ML-KEM [5]) and Dilithium [6] (official name is ML-DSA [7]) as
the standardized candidates [8].

The Chinese Association for Cryptologic Research (CACR) also initiated a PQC compe-
tition to standardize PQC schemes between 2018 and 2019. In the second round of the Chi-
nese National cryptographic algorithms design contest, lattice-based schemes accounted for
11 out of 14 among public-key schemes [9].

Most of these lattice-based schemes are “small lattice systems”, which are based on
algebraically structured lattices, such as ideal lattices and module lattices, with polynomial

Mathematics 2024, 12, 1769. https://doi.org/10.3390/math12111769 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111769
https://doi.org/10.3390/math12111769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12111769
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111769?type=check_update&version=2


Mathematics 2024, 12, 1769 2 of 14

rings as their underlying algebraic structures. The most common one is the cyclotomic ring
Z[x]/(Φm(x)), where Φm(x) is defined as the m-th cyclotomic polynomial.

For the lattice-based schemes, the learning with error (LWE) problem [10] is one
of the most common hardness assumptions to construct public-key encryption or key
encapsulation mechanisms. But for those “small lattice systems”, they are based on
variants of LWE, which are over cyclotomic rings R = Z[ξm] ∼= Z[x]/(Φm(x)), where
ξm = exp( 2πi

m ) is an m-th root of unity, e.g., a ring learning with error (RLWE) prob-
lem [11] or module learning with error (MLWE) problem [12]. The most popular cyclo-
tomic polynomial used in lattice-based crypto is the power-of-two cyclotomic polynomial:
Φm(x) = xn + 1, where m = 2e+1 and n = ϕ(m) = 2e are power-of-two integers, and ϕ
is the Euler function. At this time, its corresponding cyclotomic ring is Z[x]/(xn + 1).
In fact, the analysis in [11,12] is mainly in the case of Z[x]/(xn + 1). Through the NIST
round 3, Kyber [4], Saber [13], and Dilithium [6] use Z[x]/(x256 + 1) as their underlying
polynomial ring. There are some advantages of choosing power-of-two cyclotomic rings.
(1) They are simple but useful: xn + 1, where n is a power of two, is one of the simplest
cyclotomic rings. And Z[x]/(xn + 1) is one of the best understood and the most widely
studied cyclotomic rings in algebraic number theory, and there are no improved attacks that
have been proposed against the schemes based on {R,M}LWE over Z[x]/(xn + 1). (2) Most
{R,M}LWE-based schemes use suitable parameters such that number theoretic transform
(NTT) can be utilized to compute the polynomial multiplication in Zq[x]/(xn + 1). As we
know, NTT-based schemes are very efficient due to the remarkable memory efficiency and
speed of NTT, outperforming any other algorithm for multiplication in polynomial rings.

However, some disadvantages cannot be ignored in their practical application. The main
focus should be on the inflexibility of selecting parameters. Take RLWE-based schemes as an
example. The security level is directly influenced by the ring dimension n of RLWE-based
schemes. Since n is a power of two, to achieve a higher security level, it is inconvenient
to find a polynomial of some particular degree up to the next power of two. To reach
128-bit security, the ring dimension n should be somewhere around 700 [14]. There are two
power-of-two integers: 512 and 1024 which are close to 700, but the former integer leads to
insufficient security and the latter one leads to redundant security.

A natural question to ask in this point is as follows.
Motivating question 1: Are there ever flexible ways to use other cyclotomic rings rather than

power-of-two cyclotomic rings?
Considering 128-bit security in the post-quantum era, it is interesting but meaningful

to be able to construct lattice-based schemes over other cyclotomic rings as alternatives.
For motivating question 1, the answer to the question is affirmative. The work in [15]
shows that for any cyclotomic polynomial Φm(x), RLWE can work entirely in the ring
Z[x]/(Φm(x)). There also have been some schemes using trinomial cyclotomic rings.
For example, Falcon Round 1 used Z[x]/(xn − xn/2 + 1), where n = 3 · 2e [16]. NewHope-
Compact, an RLWE-based scheme [17], and NTTRU, an NTRU-like scheme [18], use
Zq[x]/(x768 − x384 + 1) with a prime q. Scabbard applies Zq[x]/(x768 − x384 + 1) with a
power-of-two q due to its hardness of ring learning with rounding (RLWR) [19]. Later,
the work in [14] instantiated NTRU over some trinomial cyclotomic rings of the form
Zq[x]/(xn − xn/2 + 1) with various n in order to select flexible parameters. The fact is that
xn − xn/2 + 1 is the 3n-th cyclotomic ring if n is of the form n = 2k3l , k ≥ 1, l ≥ 0.

There is a gap for schemes based on module lattices, especially MLWE-based schemes.
One exception is that the work in [20] provided a variant scheme of Kyber; however,
over power-of-three cyclotomic rings. Actually, no one has applied trinomial cyclotomics to
MLWE-based schemes. Undoubtedly, MLWE-based schemes take into account the security
of LWE-based schemes and the efficiency of RLWE-based schemes. Therefore, there will
be a balance between security and efficiency by adjusting the parameters. Changing
the sampling number k is a major way to achieve different security levels for MLWE-
based schemes. But, the increase in k will lead to a more complex implementation. In
addition, Z[x]/(xn + 1) is still widely used in MLWE-based schemes. For example, Kyber,
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an outstanding representative of MLWE-based schemes, and the only NIST-standardized
KEM candidate, is based on the power-of-two cyclotomic ring Z3329[x]/(x256 + 1). Kyber’s
supporting documentation has mentioned that “One could consider using Kyber with a
ring that is not Z[x]/(xn + 1)”, as Z[x]/(xn + 1) may be exploited in the inflexibility of
selecting parameters. Such a sentence is also applicable to other MLWE-based schemes.
Hence, it leads to the following question.

Motivating question 2: Could we extend the known power-of-two MLWE-based schemes
(e.g., Kyber) to the cases over trinomial cyclotomic rings, with appropriate selection of parameters so
as to achieve a practical security level and matching error probabilities?

We answer motivating question 2 in the affirmative by proposing a variant
scheme of Kyber, named Tyber, which is constructed over trinomial cyclotomic rings
Zq[x]/(xn − xn/2 + 1), where n is a positive integer of the form n = 2k3l , with k ≥ 1, l ≥ 0
in this paper. The modulus q is chosen as a prime number, in order to be suitable for NTT.
The security level of our Tyber is aimed at NIST security levels I, III, and V, while it can
also achieve negligible error probabilities.

1.1. Related Works

There is a line of recent works that use trinomial cyclotomic rings of the form
Z[x]/(xn − xn/2 + 1). Table 1 shows their detailed descriptions.

Table 1. Details of related works.

References Polynomial Rings Cryptographic Primitives Hardness Assumption

[16] Z18433[x]/(x768 − x384 + 1) Digital signature NTRU
[21,22] Zq[x]/(xn − xn/2 + 1), n ∈ {648, 768, 864, 972} Digital signature NTRU

[18] Z7681[x]/(x768 − x384 + 1) PKE/KEM NTRU
[14] Zq[x]/(xn − xn/2 + 1), n = 2k3l−1, k ≥ 1, l ≥ 0 PKE/KEM NTRU
[23] Zq[x]/(xn − xn/2 + 1), n = 2k3l−1, k ≥ 1, l ≥ 0 PKE/KEM NTRU
[24] Zq[x]/(xn − xn/2 + 1), n = 2k3l−1, k ≥ 1, l ≥ 0 PKE/KEM module-NTRU
[17] Z3457[x]/(x768 − x384 + 1) PKE/KEM RLWE
[25] Z7681[x]/(x768 − x384 + 1) PKE/KEM RLWE
[19] Z1024[x]/(x768 − x384 + 1) PKE/KEM RLWR

This work Zq[x]/(xn − xn/2 + 1), n = 2k3l−1, k ≥ 1, l ≥ 0 PKE/KEM MLWE

The early version of Falcon, i.e., Falcon Round 1 [16], used Z18433[x]/(x768 − x384 + 1)
for its parameter set of n = 768. Later, Espitau et al. [21] proposed Mitaka, which is a
simpler, parallelizable and maskable variant of Falcon, and its underlying polynomial
rings include trinomial cyclotomic rings. Then, the Gaussian sampling and smoothing
parameters of Mitaka were studied and optimized in subsequent work [22]. Lyubashevsky
and Seiler [18] proposed a variant of NTRU, named NTTRU, by offering a new ring
structure Z7681[x]/(x768 − x384 + 1). There have even been further improvements since
then. Duman et al. [14] extended the rings Zq[x]/(xn − xn/2 + 1) with various n in order
to select flexible parameter sets. Additionally, Liang et al. [23] proposed compact and
efficient NTRU-based KEMs over trinomial cyclotomic rings with the aid of lattice-based
error correction codes. Recently, Bai et al. [24] designed compact PKEs based on the
module-NTRU hardness assumption over trinomial cyclotomic rings. As for RLWE-based
schemes, Alkim et al. [17] improved NewHope and presented NewHope-Compact by
offering a parameter set for NIST security level III, over the trinomial cyclotomic ring
Z3457[x]/(x768 − x384 + 1). Similarly, Liang et al. [25] proposed NewHope-Unified, which
used Z7681[x]/(x768 − x384 + 1) as its underlying ring for n = 768. This can be extended
to the case of RLWR-based schemes. For example, Bermudo Mera et al. [19] introduced
a suite of post-quantum KEMs, named Scabbard, and it contained an RLWR-based KEM
applying Z1024[x]/(x768 − x384 + 1).
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1.2. Our Contributions

We propose Tyber, a variant scheme of Kyber over trinomial cyclotomic rings of the
form Zq[x]/(xn − xn/2 + 1), where n = 2k3l , k ≥ 1, l ≥ 0. Our Tyber includes an IND-
CPA secure public key encryption and an IND-CCA secure key encapsulation mechanism.
The parameter sets of Tyber are provided, featuring quantum security of 128, 192, and
256 bits (actually achieving 129, 197, and 276 bits) with matching and negligible error
probabilities. When compared to Kyber, our Tyber exhibits stronger quantum security, by
22, 31, and 44 bits, than Kyber for three security levels. All analysis and conclusions in this
paper can be extended to any other power-of-two MLWE-based schemes.

2. Preliminaries
2.1. Notation and Definitions

Let Z represent the ring of rational integers, with n and q being positive integers.
We define Zq as the quotient ring Z/qZ and it comprises the set {0, 1, . . . , q − 1}. Fur-
thermore, we denote Z×q as the group of invertible elements within Zq. For a given real
number x, we use the notation ⌈x⌋ to represent the integer closest to x. Additionally, we
introduce the notation R for the ring Z[x]/(xn − xn/2 + 1) and Rq for the quotient ring
Zq[x]/(xn − xn/2 + 1). Elements in R or Rq are polynomials, denoted by regular font
letters, such as f , g, v. All the vectors in this paper are column vectors by default. Bold
lowercase letters represent polynomial vectors overR orRq while bold uppercase letters
are polynomial matrices. For example, v and A, whose transposes are denoted by vT and
AT , respectively. A polynomial f inR (orRq) has two equivalent representations: a power
series form f = ∑n−1

i=0 fixi and a column vector form f = ( f0, f1, . . . , fn−1)
T , where fi ∈ Z

(or fi ∈ Zq) for i = 0, 1, . . . , n− 1. A function ϵ : N → [0, 1] is said to be negligible if it
satisfies ϵ(λ) < 1/λc for any positive c and sufficiently large λ. Such a function is denoted
by negl.

Cyclotomics. Additional information regarding cyclotomic polynomials is avail-
able in [26]. Given a positive integer m, the m-th root of unity is denoted by
ξm = exp

(
2πi
m

)
. The m-th cyclotomic polynomial, labeled Φm(x), is expressed as

Φm(x) = ∏m
j=1,gcd(j,m)=1 (x− ξ

j
m). This type of polynomial is monic, irreducible, and has a

degree of n = φ(m) over the polynomial ring Z[x], where φ represents the Euler function.
The m-th cyclotomic field is Q(ξm) ∼= Q[x]/(Φm(x)), with its associated ring of integers
being Z[ξm] ∼= Z[x]/(Φm(x)). Some important types of cyclotomic polynomials are men-
tioned in this paper: (1) Power-of-two cyclotomic polynomials Φm(x) = xn + 1 with m of
the form m = 2k, k ≥ 1 and n = φ(m) = m/2; (2) Trinomial cyclotomic polynomials with
m of the form m = 2k3l , k, l ≥ 1 and n = φ(m) = m/3.

Modular reductions. Let α be a positive integer. We define the modulo operation with
signed remainder as follows. For even α, r′ = r mod ±α represents the unique element in
the range − α

2 < r′ ≤ α
2 satisfying r′ ≡ r (mod α). For odd α, r′ = r mod ±α represents

the unique element in the range − α−1
2 ≤ r′ ≤ α−1

2 satisfying r′ ≡ r (mod α). For any α,
r′ = r mod +α represents the unique element in the range 0 ≤ r′ < α satisfying r′ ≡ r
(mod α). It is simply written as r mod α if the exact representation is not important.

Sizes of elements. For any element w in the ring Zq, ∥w∥∞ represents |w mod ±q|.
We define the ℓ∞ norm and the ℓ2 norm for any vector w ∈ R as follows: the ℓ∞ norm is

given by maxi |wi|, while the ℓ2 norm is computed as
√

∑n−1
i=0 ∥wi∥2

∞. Furthermore, for a

vector w = (w1, . . . , wk) ∈ Rk, we introduce the ℓ∞ norm as maxi ∥wi∥∞ and the ℓ2 norm

as
√

∑k
i=1 ∥wi∥2

∞.

Sets and distributions. For a given set D, we utilize the notation x $←− D to indi-
cate that x is sampled uniformly from D. Furthermore, when referring to a probability
distribution Ψ, the notation x ← Ψ signifies that x is selected in accordance with the distri-
bution Ψ. The centered binomial distribution Bη , parameterized by a positive integer η, is
defined as follows: Sample (a1, . . . , aη , b1, . . . , bη) uniformly from {0, 1}2η and output the
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sum ∑
η
i=1 (ai − bi). The distribution B̄η is defined as Bη mod ±3. Sampling a polynomial

v ← Ψ or a polynomial vector v ← Ψk means sampling each coefficient according to
Ψ individually.

Compression function. The compression function is formulated as Compressq(x, d) =⌈
2d

q · x
⌋

mod +2d, while the decompression function is defined as Decompressq(x, d) =⌈
q

2d · x
⌋

. When they deal with a polynomial (vector), the procedure is applied to each

coefficient individually. For any x ∈ Zq, x′ = Decompressq(Compressq(x, d), d) is an element
close to x, i.e., |x′ − x mod ±q| ≤ ⌈ q

2d+1 ⌋.
Module learning with error (MLWE). Let n be a power of two. The underlying

hardness assumption of Kyber [4,27] is module learning with error (MLWE) [12] over the
ringR. The hard problem module learning with errors (MLWE) overR is to distinguish

uniform samples (ai, bi)
$←− Rk

q ×Rq from the samples (ai, bi) ∈ Rk
q ×Rq, where ai

$←− Rk
q

and bi = aT
i s + ei with s ← Ψ1 and ei ← Ψ2 for all i. The MLWE problem over R is

hard if the advantage Advmlwe
m,k,Ψ1,Ψ2

(A) of any probabilistic polynomial time adversary A is
negligible, where

Advmlwe
m,k,Ψ1,Ψ2

(A) =
|Pr

[
b′ = 1 : A $←− Rl×k

q ; (s, e)← Ψk
1 ×Ψl

2;
b = As + e; b′ ← A(A, b)

]
− Pr

[
b′ = 1 : A $←− Rl×k

q ; b← Rl
q; b′ ← A(A, b)

]
|.

2.2. Cryptographic Primitives

A public-key encryption scheme contains PKE = (KeyGen, Enc, Dec), with a message
spaceM. The key generation algorithm KeyGen returns a pair of a public key and a secret
key (pk, sk). The encryption algorithm Enc takes a public key pk and a message m ∈ M to
produce a ciphertext c. The deterministic decryption algorithm Dec takes a secret key sk
and a ciphertext c, and outputs either a message m ∈ M or a special symbol ⊥ to indicate
a rejection. The decryption error probability of PKE, which is denoted as δ, is defined
as E[maxm∈MPr[Dec(sk,Enc(pk, m))] ̸= m]< δ. The advantage of an adversary A against
indistinguishability under chosen-plaintext attacks (IND-CPA) for public-key encryption is
defined as

AdvCPA
PKE(A) =

∣∣∣∣∣∣∣∣∣Pr

b′ = b :

(pk, sk)← KeyGen();
(m0, m1)← A(pk);

b $←− {0, 1}; c∗ ← Enc(pk, mb);
b′ ← A(c∗)

− 1
2

∣∣∣∣∣∣∣∣∣.
A key encapsulation mechanism consists of three algorithms, which are defined

as KEM = (KeyGen, Encaps, Decaps) with a key space K. The key generation algorithm
KeyGen returns a pair of a public key and a secret key (pk, sk). The encapsulation algorithm
Encaps takes a public key pk to produce a ciphertext c and a key K ∈ K. The deterministic
decapsulation algorithm Decaps inputs a secret key sk and a ciphertext c, and outputs
either a key K ∈ K or a special symbol ⊥ to indicate a rejection. The correctness error δ of
KEM is defined as Pr[Decaps(sk, c) ̸= K : (c, K)← Encaps(pk)] < δ. The advantage of an
adversary A against indistinguishability under chosen-ciphertext attacks (IND-CCA) for
the key encapsulation mechanism is defined as

AdvCCA
KEM(A) =

∣∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

(pk, sk)← KeyGen();

b $←− {0, 1};
(c∗, K∗0)← Encaps(pk);

K∗1
$←− K;

b′ ← A Decaps(·)(pk, c∗, K∗b )

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
.
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2.3. Kyber

In 2017, Bos et al. [27] proposed a lattice-based cryptography suite called Crypto-
graphic Suite for Algebraic Lattices (CRYSTALS for short). The algorithms of CRYSTALS
are designed based on the MLWE problem over a module lattice, meaning that the algo-
rithms take into account the security of LWE-based schemes and the efficiency of RLWE-
based schemes. Among them, Kyber is an IND-CCA secure key encapsulation mechanism
(KEM). Kyber follows a common construction framework. Specifically, it has two steps: the
first step is to construct an IND-CPA secure public key encryption (Kyber.CPAPKE); The
second step is to transform the IND-CPA secure PKE into an IND-CCA secure KEM (Ky-
ber.CCAKEM) by using a variant of Fujisaki–Okamoto transform [28,29]. More precisely,
Kyber is based on the MLWE problem over power-of-two cyclotomic ring Z[x]/(xn + 1),
where n is a power of two. In the first round of the NIST PQC competition, Kyber’s
modulus was chosen to be 7681, but it was changed after the first round, and adjusted
from 7681 to 3329 [4]. Additionally, Kyber’s secret distribution has been different from
the ciphertext noise distribution for Kyber512 since the third round. In 2022, NIST finally
selected MLWE-based Kyber (official name is ML-KEM) as the only standardized KEM
candidate [8].

3. Our Proposal: Tyber

In this section, we will propose Tyber, a variant scheme of Kyber [4] over trinomial
cyclotomic rings Zq[x]/(xn − xn/2 + 1). The construction of our Tyber is based on [4],
and also includes an IND-CPA secure public-key encryption (Tyber.CPAPKE) and an
IND-CCA secure key encapsulation mechanism (Tyber.CCAKEM). There are some slight
differences between our Tyber and that in [4].

3.1. Concrete Description

Firstly, the formal description of IND-CPA secure public key encryption (Tyber.CPAPKE)
of our Tyber is presented in Algorithms 1–3. It can be transformed into its IND-CCA
secure key encapsulation mechanism (Tyber.CCAKEM) by using a variant of the Fujisaki–
Okamoto transform [28,29]. The detailed description of our Tyber.CCAKEM is presented
in Algorithms A1–A3 in Appendix A.

Algorithm 1 Tyber.CPAPKE.KeyGen(): key generation

1: A∼Rk×k
q := Sam(ρ)

2: (s, e)← Ψk
1 ×Ψk

1
3: t := As + e
4: return (pk := (t, ρ), sk := s)

Algorithm 2 Tyber.CPAPKE.Enc(pk = (t, ρ), m ∈ M): encryption

1: A∼Rk×k
q := Sam(ρ)

2: (r, e1, e2)← Ψk
1 ×Ψk

2 ×Ψ2

3: u := Compressq(A
Tr + e1, du)

4: v := Compressq(tTr + e2 + ⌈ q
2⌋ ·m, dv)

5: return c := (u, v)

Algorithm 3 Tyber.CPAPKE.Dec(sk = s, c = (u, v)): decryption

1: u := Decompressq(u, du)

2: v := Decompressq(v, dv)

3: return m′ := Compressq(v− sTu, 1)
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We restate the definitions of R and Rq: R = Z[x]/(xn − xn/2 + 1) and Rq =

Zq[x]/(xn − xn/2 + 1), respectively, where n is a positive integer of the form 2k3l with
k ≥ 1 and l ≥ 0. We introduceM as the message space for Tyber.CPAPKE, consisting
of binary strings of length n, which can be interpreted as polynomials in R with coeffi-
cients in {0, 1}. Sam is an extendable output function, and takes as input an n-bit string
ρ, and then, produces A, uniformly random over Rk×k

q , in Algorithms 1 and 2. Ψ1 and
Ψ2 are the distributions overR. The definitions of Compressq and Compressq can be found
in Section 2.1.

3.2. Parameter Sets

The parameter sets of Tyber are given in Table 2. We mainly provide parameter sets
aimed at quantum security of 128, 192, and 256 bits. The polynomial dimension n is fixed to 324.
Actually, n can be any integer of the form 2k3l , k ≥ 1, l ≥ 0, like 256, 384, or 432. We use
two moduli: q = 2917 for k = 2, and q = 3889 for k ∈ {3, 4}. Both two moduli support very
fast NTT-based polynomial multiplications when n = 324 according to the studies in [14,18].
Φ(x) means the underlying cyclotomic polynomial used in the schemes, and we use a
trinomial cyclotomic polynomial of the form xn − xn/2 + 1. Ψ1 and Ψ2 are the distributions
overR. We mainly consider the centered binomial distribution Bη and the distribution B̄η

with respect to a positive integer η, as described in Section 2.1. According to the studies
in [30], the centered binomial distribution can guarantee a relatively strong theoretical
security, while achieving easier and safer implementation. du and dv are the compression
parameters. The magnitudes of the public key (|pk|), ciphertext (|ct|), and bandwidth (B.W.,
i.e., |pk|+ |ct|) are quantified in bytes. The column “(Sec.C,Sec.Q)” means the estimated
security level with respect to the primal attack expressed in bits, where “Sec.C” denotes
classical security and “Sec.Q” denotes quantum security. We follow the classical and the
quantum core-SVP hardness methodology as in Kyber [4] and use the same Python script
to calculate security levels. The last column δ gives the error probabilities, whose details
can be found in Section 4.1.

Table 2. Parameter sets of Tyber.

Scheme n k q Φ(x) (Ψ1, Ψ2) (du, dv) |pk| |ct| B.W. (Sec.C,Sec.Q) δ

Tyber
Tyber648 324 2 2917 xn − xn/2 + 1 (B̄2, B̄2) (9,5) 1004 932 1936 (142,129) 2−129

Tyber972 324 3 3889 xn − xn/2 + 1 (B1, B1) (10,3) 1490 1337 2827 (217,197) 2−204

Tyber1296 324 4 3889 xn − xn/2 + 1 (B1, B1) (10,5) 1976 1823 3799 (305,276) 2−256

4. Analysis

In this section, we will present a correctness analysis, provable security reduction, and
implementation analysis of our scheme.

4.1. Correctness Analysis

The correctness analysis of Tyber.CPAPKE and Tyber.CCAKEM in our scheme is
similar to that in [4,27]. Firstly, following the condition of decryption error in [4,27], we
have the following theorem.

Theorem 1 (Derived from Theorem 1 in [27]). Let k, Ψ1, Ψ2, du, dv be the values as in Table 2.
Let s, e, r, e1, e2 be random variables according to the same distribution as in Algorithms 1–3. Let
cu ← ψk

du
, cv ← ψdv be generated according to the distribution ψd, which is defined as follows:

Sampling y $←− R, and returning (y−Decompressq(Compressq(y, d), d)) mod ±q. Denote

δ = Pr
[
∥eTr− sT(e1 + cu) + cv + e2∥∞ ≥ ⌈q/4⌋

]
, (1)

then our Tyber.CCAKEM has an error probability of δ.
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4.1.1. The Product in Z[x]/(xn − xn/2 + 1)

In order to calculate δ in Formula (1), the computations of eTr− sT(e1 + cu) + cv + e2
have to be figured out. Note that all the computations in Formula (1) in Theorem 1 are
performed in the ringsR andRq. For example, the inner product eTr needs to be computed
in the ringRq = Zq[x]/(xn − xn/2 + 1), where e, r← Ψk

1.
Our way to calculate δ in Formula (1) is different from that in [4,27], since the form of

the product h = f g ∈ Z[x]/(xn + 1) is different from that of h = f g ∈ Z[x]/(xn− xn/2 + 1).

In the following, we take Z[x]/(x4 + 1) as an example. The product of f =
3
∑

i=0
fixi and

g =
3
∑

i=0
gixi can be represented as

h =


h0
h1
h2
h3

 =


f0 − f3 − f2 − f1
f1 f0 − f3 − f2
f2 f1 f0 − f3
f3 f2 f1 f0

 ·


g0
g1
g2
g3

. (2)

The main characteristic of h is that each coefficient of h is the sum of four numbers,
each of which is in the form of f i gj . E.g., the third coefficient h3 in Formula (2) is
h3 = f3g0 + f2g1 + f1g2 + f0g3. However, in the ring Z[x]/(x4 − x2 + 1), the product of f
and g can be obtained from

h =


h0
h1
h2
h3

 =


f0 − f3 − f2 − f1 − f3
f1 f0 − f3 − f2
f2 f1 + f3 f0 + f2 f1
f3 f2 f1 + f3 f0 + f2

 ·


g0
g1
g2
g3

, (3)

where the coefficient of h might contain some summands in the form of figj + ( fi + fi′)gj′ .
E.g., the third coefficient h3 in Formula (3) is h3 = ( f3g0 + ( f1 + f3)g2) + ( f2g1 + ( f0 + f2)g3).

Inspired by the methodology in [18], the general representation of the product between
f = ∑n−1

i=0 fixi and g = ∑n−1
i=0 gixi in Z[x]/(xn − xn/2 + 1) is achieved through a matrix–

vector multiplication as follows:

h =


h0
h1
...

hn−1

 =

[
L−U −F−U
F + U F + L

]
·


g0
g1
...

gn−1

, (4)

where F, L, U are the Toeplitz matrices of dimension n
2 , which are defined as follows:

F =


fn/2 fn/2−1 · · · f1

fn/2+1 fn/2 · · · f2
...

...
. . .

...
fn−1 fn−2 · · · fn/2

,

L =


f0 0 · · · 0
f1 f0 · · · 0
...

...
. . .

...
fn/2−1 fn/2−2 · · · f0

, U =


0 fn−1 · · · fn/2+1
...

...
. . .

...
0 0 · · · fn−1
0 0 · · · 0

.
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The correctness error of Tyber is based on the general form of h. The whole prod-
uct is divided into two parts through the form of partitioned matrices. As specified in
Formula (4), the individual coefficients in the lower half of the resulting product, i.e.,

[
F + U F + L

]
·


g0
g1
...

gn−1

, (5)

are obtained from the sum of n/2 terms:

σi,i′ ,j,j′ = figj + ( fi + fi′)gj′ (6)

The third coefficient h3 in Formula (3) is an example. The coefficient of the l-th row in
the upper half, i.e.,

[
L−U −F− L

]
·


g0
g1
...

gn−1

, (7)

is the sum of (n/2− l) terms of the form σi,i′ ,j,j′ = figj + ( fi + fi′)gj′ , as in Formula (6),
and l terms of the form θi,i′ ,j,j′ = figj + fi′gj′ .

As suggested in [18], the first form has a “wider” distribution than the latter form
from the random variance point of view. Therefore, our subsequent correctness analysis
will be based on the first form for conservative estimation.

4.1.2. Error Probability over Z[x]/(xn − xn/2 + 1)

The detailed procedure of calculating the error probability δ in Theorem 1 is given
here. As for the term eTr− sT(e1 + cu) + cv + e2 in Formula (1), each coefficient of the
product eTr is distributed as the sum of kn/2 independent random variables of the form
σi,i′ ,j,j′ = eirj + (ei + ei′)rj′ , as in Formula (6), where ei, ei′ , rj, rj′ ← Ψ1, since eTr is a
polynomial inner product including k single polynomial multiplications.

The analysis is the same for the term sT(e1 + cu), except that they are generated from
different distribution s← Ψk

1, e1 ← Ψk
2, cu ← ψk

du
, as in Theorem 1.

The sum of the random variances eTr, sT(e1 + cu), cv, and e2, is obtained by computing
their convolutions, where it uses the symmetry of the centered binomial distribution.
The probability that any coefficient of eTr− sT(e1 + cu) + cv + e2 is greater than ⌈q/4⌋ is
its tail probability with the threshold ⌈q/4⌋. Finally, the final correctness error δ is derived
by applying the union bound.

As for the three parameter sets in Table 2, we obtain the corresponding error proba-
bilities as 2−129, 2−204, and 2−256, respectively, by using the reasonable but conservative
methodology over trinomial cyclotomic rings mentioned above.

4.2. Provable Security Reduction

In the following, we will derive the provable security based on the MLWE assumption,
which is similar to that of Kyber [4,27]. Formally, the following theorems guarantee its
IND-CPA security and IND-CCA security.

Theorem 2. Under the MLWE hardness assumption over trinomial cyclotomic rings, the public
key encryption of Tyber is IND-CPA secure in the random oracle model.

Proof. We complete our proof via a progression of games G0, G1, and G2. Consider an
adversary A who challenges the IND-CPA security experiment. We define Succi as the
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occurrence wherein A wins in the game Gi, specifically, when A produces an output b′ that
matches the challenge bit b in Gi.

Game G0. We define the initial security experiment as Game G0, which serves as the
foundation for achieving original IND-CPA security. Thus, AdvCPA

PKE(A) = |Pr[Succ0]− 1/2|.
Game G1. This game is the same as G0, except replacing t := As + e used in KeyGen

by t $←− Rk
q. To distinguish G1 from G0 is equivalent to solve an MLWE problem. More

precisely, there exists an adversary B such that |Pr[Succ0]− Pr[Succ1]| ≤ Advmlwe
k,k,Ψ1,Ψ1

(B).
Game G2. This game is identical to G1, except using uniformly random elements

from Rk
q and Rq to replace ATr + e1 and tTr + e2, respectively. Similarly, there exists an

adversary C such that |Pr[Succ1]− Pr[Succ2]| ≤ Advmlwe
k+1,k,Ψ1,Ψ2

(C).
Note that in G2 the information of mb is perfectly hidden by uniformly random

elements, so Pr[Succ2] = 1/2.
Finally, we obtain AdvCPA

PKE(A) ≤ Advmlwe
k,k,Ψ1,Ψ1

(B) + Advmlwe
k+1,k,Ψ1,Ψ2

(C). Therefore, if
the MLWE problem over trinomial cyclotomic ring is hard, our PKE is IND-CPA secure.

If the underlying PKE is IND-CPA secure, the studies in [29,31] show us that the
resulting KEM obtained by using a variant of the Fujisaki–Okamoto transform is IND-CCA
secure in both the random oracle model and quantum random oracle model. According
to [4,27,29,31], we have the following theorem.

Theorem 3. Under the MLWE hardness assumption over the trinomial cyclotomic ring
Z[x]/(xn − xn/2 + 1), the key encapsulation mechanism of Tyber is IND-CCA secure in both
the random oracle model and quantum random oracle model.

4.3. Implementation Analysis

From an implementation point of view, the fundamental and time-consuming oper-
ation is the polynomial multiplication in algebraically structured lattice-based schemes,
including Kyber and our Tyber. A more efficient polynomial multiplication algorithm can
greatly accelerate the efficiency of the schemes. According to the studies in [14,18], our
Tyber can achieve the same efficiency as Kyber.

As shown in Table 2, Tyber uses trinomial cyclotomic rings Zq[x]/(xn − xn/2 + 1),
where (n = 324, q = 2917) and (n = 324, q = 3889). As for both parameter tuples,
from the work in [18] we can know that there is the isomorphism Zq[x]/(xn − xn/2 + 1) ∼=
Zq[x]/(xn/2 − ζ1) × Zq[x]/(xn/2 − ζ2), where ζ1 and ζ2 should satisfy ζ1 + ζ2 = 1 and
ζ1 · ζ2 = 1. We can choose ζ1 = ζ162 and ζ2 = ζ810, where ζ is the primitive 3n-th
(i.e., 972-th) root of unity in Zq. Then, we can utilize the efficient radix-2 NTT and radix-
3 NTT techniques from [14]. The former corresponds to the isomorphism Zq[x]/(x2s −
ζ2β) ∼= Zq[x]/(xs − ζβ)×Zq[x]/(xs + ζβ), and the latter corresponds to the isomorphism
Zq[x]/(x3s − ζ3β) ∼= Zq[x]/(xs − ζβ)× Zq[x]/(xs − ρζβ)× Zq[x]/(xs − ρ2ζβ), where s, β
are positive integers and ρ is the third root of unity. In detail, the final isomorphism can be
described as follows:

Zq[x]/(xn − xn/2 + 1) ∼= ∏
i∈Z×3n

Zq[x]/(x− ζ i),

where Z×3n is the group of invertible elements of Z3n.
According to the benchmark results in [14,18], the NTT technique mentioned above

is as efficient as that of Kyber. Regarding the implementation analysis in this section, we
present an implementation analysis that, while not exhaustive, aims to demonstrate the
potential efficiency of our schemes in comparison to Kyber.

5. Comparisons

As illustrated in Table 3, we provide concise comparisons between our scheme and the
NIST-standardized candidate Kyber [4]. n is the polynomial dimension. q is the modulus.
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Φ(x) means the underlying cyclotomic polynomial used in the schemes. The magnitudes of
the public key (|pk|), ciphertext (|ct|), and bandwidth (B.W., i.e., |pk|+ |ct|) are quantified
in bytes. “Sec.C” denotes classical security and “Sec.Q” denotes quantum security, both of
which are expressed in bits. δ means the error probability.

Table 3. Comparison of schemes.

Scheme n k q Φ(x) |pk| |ct| B.W. (Sec.C,Sec.Q) δ

Tyber (Ours)
Tyber648 324 2 2917 xn − xn/2 + 1 1004 932 1936 (142,129) 2−129

Tyber972 324 3 3889 xn − xn/2 + 1 1490 1337 2827 (217,197) 2−204

Tyber1296 324 4 3889 xn − xn/2 + 1 1976 1823 3799 (305,276) 2−256

Kyber
Kyber512 256 2 3329 xn + 1 800 768 1568 (118,107) 2−139

Kyber768 256 3 3329 xn + 1 1184 1088 2272 (183,166) 2−164

Kyber1024 256 4 3329 xn + 1 1568 1568 3136 (256,232) 2−174

Upon comparison, our scheme utilizes trinomial cyclotomic rings, so there is more
flexibility when selecting parameters. The dimension n in our scheme can take values of the
form 2k3l , k ≥ 1, l ≥ 0. However, Kyber suffers from the inflexibility of selecting parameters
due to its underlying power-of-two cyclotomic rings, since n can only be 2k, k ≥ 1.

Although Kyber has a more compact public key and ciphertext for the three security
levels, Kyber actually achieves quantum security of 107, 166, and 232 bits, respectively,
which is far less than 128, 192, and 256 bits, respectively. Note that Kyber768 has a quantum
security of 166 bits, which has a very large margin for quantum security of 128 bits, resulting
in larger security redundancy. Another important point is that the error probability of
Kyber1024 is only 2−174, which actually does not match its security requirement as 232-bit
quantum security.

According to Table 3, our scheme stands out with the practical and reliable security
guarantees, since our scheme achieves the target quantum security of 128, 192, and 256 bits
(actually achieving 129, 197, and 276 bits). The error probabilities of our scheme are pre-
cisely calibrated to satisfy the targeted security level for each parameter set, making them
negligible in comparison to the specified security level, as they are substantively lower than
2−129, 2−204, and 2−256, respectively. When compared to Kyber, Tyber648, Tyber972, and Ty-
ber1296 exhibit stronger quantum security, by 22, 31, and 44 bits, than Kyber512, Kyber768,
and Kyber1024, respectively. In addition, Tyber972 and Tyber1296 demonstrate significantly
lower error probabilities when compared to Kyber768 and Kyber1024, respectively.

Note that Tyber uses different moduli, q = 2917 and q = 3889, in order to achieve
a balanced integrated performance for the three security levels. However, to adapt to
different moduli we need two suites of NTT algorithms with different primitive roots of
unity, resulting in more complicated implementation and more memory usage. In addition,
according to the studies in Section 4.1, the trinomial cyclotomic rings used in Tyber lead to
lower error probabilities due to their more complicated structures, but the error probabilities
can be controlled in a negligible range by choosing parameter sets carefully.

6. Conclusions and Future Works

To overcome the inflexibility of selecting parameters with respect to MLWE-based
schemes over power-of-two cyclotomic rings, in this paper we propose Tyber, a vari-
ant scheme of Kyber over trinomial cyclotomic rings, and provide three parameter sets
which achieve the target quantum security of 128, 192, and 256 bits (actually achieving
129, 197, and 276 bits) with matching and negligible error probabilities. Tyber exhibits
stronger quantum security by 22, 31, and 44 bits than Kyber for the three security levels,
respectively. As for the limitation of this work, we only provide the concrete construction
and theoretical analysis of Tyber. Therefore, the future works should consist of practical
software or hardware implementations, such as C, Cortex-M4 and FPGA implementations.
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Appendix A. IND-CCA KEM from Fujisaki–Okamoto Transform

Algorithm A1 CCAKEM.KeyGen()

1: (pk′, sk′) := CPAPKE.KeyGen()
2: pkh := F (pk′)

3: z $←− {0, 1}n

4: return (pk := pk′, sk := (z, pkh, pk, sk′))

Algorithm A2 CCAKEM.Encaps(pk)

1: m $←− {0, 1}n

2: (K̂, r) := G(F (pk), m)
3: c := CPAPKE.Enc(pk, m; r)
4: K := H(K̂, c)
5: return (c, K)

Algorithm A3 CCAKEM.Decaps(sk = (z, pkh, pk, sk′), c)

1: m′ := CPAPKE.Dec(sk′, c)
2: (K̂′, r′) := G(pkh, m′)
3: c′ := CPAPKE.Enc(pk, m′; r′)
4: if c = c′ then
5: return K := H(K̂′, c)
6: else
7: return K := H(z, c)
8: end if
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