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Abstract: Due to the Jacobian matrix rank reduction near singularities, applying numerical methods
to study PMs’ motion stability at singularities is quite difficult. As a result, there is a scarcity of
literature on the investigation of PMs’ dynamic behaviors near singularities and the influence of
kinematic parameters on the motion stability of PMs. To address the research gap related to the above
issues, based on the Gerschgorin perturbation method, Hurwitz exact approach, and the Lyapunov
dynamic stability theory, the influence of kinematic parameters and external loads on a PM’s motion
stability at singularities is studied for the first time. The theoretical analysis results reported in this
paper reveal many previously undiscovered features beyond those derived from previous numerical
methods, and indicate the limitations of some widely accepted statements. For example, increasing
the angular speed of the movable platform can expand the range of the external loads that meet
the motion stability at singular configurations. The prevailing notion in prior research that PMs are
unable to support external loads in the direction of the gained DoF at singular configurations is only
partially accurate. This pioneering research establishes a theoretical foundation for exploring a new
real-time approach to avoid dynamic singularities by fully exploiting the influence mechanisms of
kinematic parameters on PMs’ dynamic stability at singularities.

Keywords: dynamical motion stability; kinematic singularities; kinematic parameters; nonlinear
stability theory; parallel manipulator (PM)

MSC: 37G10; 37N30; 70E50; 65P40

1. Introduction

Parallel manipulators (PMs) offer a multitude of benefits over serial manipulators,
such as an exceptional load-carrying capacity, precision, and rigidity. Nevertheless, PMs
present a significant obstacle due to singularities within their workspace [1,2]. Singular
configurations can result in PMs instantaneously gaining or losing a degree of freedom
(DoF), restricting their ability to withstand external forces or torque in specific directions.
Because singularities can adversely impact PMs’ static properties and motion control,
avoiding singularities in their workspace is of primary importance [3–5].

The singularity-free design approaches [6–8] attempt to eliminate singularities by se-
lecting a workspace region during the design stage. Another approach involves identifying
the singularity-free region [9–12], which helps determine the subsets of the workspace
where the robot can move freely without encountering singularities. While PM works inside
the singularity-free region, it can move freely without encountering singularities. Because
the singular loci [13] are closely related to the amplitude of the end-effector orientation
parameters, the singularity-free workspace will be significantly reduced if the orientation
parameters change over a relatively large scope. Singularity-free path planning [14–16] is a
commonly used method to avoid singularities when performing a specific task within a
given workspace. The trajectory planning algorithms aim to create a path that connects the
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initial configuration to the final configuration without encountering a singularity. However,
in cases where the initial and final configurations are located in different regions separated
by singularity distribution hypersurfaces [13], determining a singularity-free path is some-
times impossible. This challenge is further complicated because the singularity-free regions
are not continuous.

Introducing redundancies in a PM can help avoid singularities by adding an actuator to
one of the passive joints or introducing additional legs into the manipulator [17]. The PM’s
kinematic properties at singular configurations can then be modified and improved. This
approach has been studied in various studies [18–20], including reconfigurable PMs [3,21].
Gosselin et al. [22] found that incorporating active masses to select links can alter the center
locations of masses and other dynamic properties of PMs. Building on this concept, Parsa
et al. [23] implemented it to enhance the dynamic properties of the planar 3-RRR PM during
tasks involving sharp turns. In another study [24], the authors investigated the feasibility
of implementing a desired trajectory containing direct kinematic singularities for a planar
2-RPR PM. They applied reconfigurable active masses to help the PM cross these kinematic
singular configurations. The theoretical investigation demonstrated that by applying
reconfigurable mass parameters, the PM could cross kinematic singular configurations.
Agarwal et al. [25] developed a strategy to prevent dynamic singularities in PMs. They
used an artificial potential function that changes a PM’s behavior when it approaches
singularities. This control scheme enables the PM to avoid singularities without deviating
off the path, which makes it suitable for dynamic singularity avoidance within workspaces.
However, the proposed scheme has one drawback: it sacrifices one DoF to avoid the
singularities in the low-dimensional task space. However, introducing redundancy [17–21]
or active mass [22–25] will increase the complexity of the online control of PMs and the
system’s cost. In aerospace applications, the addition of redundancy or active mass is
restricted due to the increased weight and complexity of the control system they cause.

Measuring the closeness to singularities based on the characteristics of PMs at near-
singular configurations, such as Jacobian-based indices [26] and the transmission index [27],
is a way to prevent a manipulator from falling into static singularities. Saafi et al. [28] used
force sensors to prevent PMs from falling into a single configuration, considering that a
small force or torque applied in a particular direction related to the obtained degrees of
freedom will produce a massive force in a linkage of a singular configuration. However, it
is difficult for motion/force or Jacobian matrix-based indicators to accurately capture all
singularities in the vicinity of PM’s singular configurations due to their sudden changes
in values [29]. Hu et al. [30] proposed an offline strategy to measure the closeness to
singularity and avoid singularity for a planar robot with kinematic redundancy based on
the performance of the kinematics and dynamics. Meanwhile, Yao et al. [31] introduced a
geometric algebra index for measuring the proximity to a PM’s singularities by determining
the ratio of the non-singularity workspace volume, which has a precise geometrical and
physical interpretation. Lastly, Kapilavai and Nawratil [32] proposed extrinsic metrics that
can identify the configurations closest to singularities, utilizing algorithms from numerical
algebraic geometry implemented in Bertini’s software package (Bertini 1.6v) [33]. The
singularity-free methods mentioned in [3,4,29–32] require offline computations before
execution whenever the path, workspace, or end-effector orientation parameters change.
However, the recalculation process will reduce the method’s flexibility and lead to a loss
of optimal adjustment time, which can be crucial in aerospace applications and could
result in severe disasters. In such a scenario, while a robotic system deviates from its
pre-programmed path and encounters a singularity, it may be unable to reposition itself to
avoid upcoming singularities along its trajectory.

It is often challenging to identify all singularities in the whole workspace analyti-
cally. Thus, singularity-free operations should be performed dynamically without prior
knowledge of the locations of the gain-type singularities inside the workspace. Moreover,
in aviation and space explorations, adaptive real-time singularity avoidance is essential
for equipment safety with driving PMs [34]. In view of the adverse effects of introducing



Mathematics 2024, 12, 1771 3 of 20

redundancy and mass on the system weight and complexity and offline recalculation
reducing control flexibility and robustness, the proposal of a real-time control method
that can realize PMs’ adaptive singularity avoidance without offline calculation and the
introduction of redundancy and mass is required.

In most cases, PMs pass by their singular configurations dynamically rather than
staying at the singular configurations. In such situations, kinematic parameters can affect
the dynamic stability, particularly in singular configurations such as a parallelogram
mechanism. At a certain velocity, it can pass through the singular configuration, where the
crank coincides with the ground, with predetermined motion and load capacity. Inspired
by this case, the motion stability of a planar 3-RPR PM dynamics system at singular
configurations corresponding to the kinematic parameters was investigated [35] by a
numerical analysis of the eigenvalues of the linear approximation dynamical system at the
singularities based on Lyapunov’s stability theorem [36].

This paper builds upon the prior research by using an analytical approach to inves-
tigate the relationship between kinematic parameters and a PM’s dynamic stability at
singular configurations. The main goal is to comprehensively understand how each kine-
matic parameter affects motion stability at singularities. This study aims to develop a more
efficient and user-friendly method suitable for aerospace applications that can dynamically
and adaptively avoid singularities in real time based on sensing input parameters without
offline calculations. To the best of the author’s knowledge, no existing literature has consid-
ered the system’s dynamic characteristics when constructing singularity-free approaches
and studying PMs’ motion stability at singularities.

2. Materials and Methods
2.1. Linear Approximation Dynamics System of the 3-RPR PM

To analyze the motion stability of the 3-RPR PM dynamics system at the singular
configuration related to the system’s kinematic parameters, the 3-RPR PM should be
dispersed into a system of particles, as shown in Figure 1 in Ref. [35]. The continuous mass
of the movable platform is dispersed into three concentrated masses, m1, m2, and m3, which
are located at three respective revolute (R) joints Bi on the movable platform. The distances
between the two revolute joints on the movable platform are b1, b2, b3, respectively. The
prismatic pair (P), such as the prismatic pair related to the input parameter l1, is dispersed
into two concentrated masses, m4 and m7, at point D1 and point C1, respectively. The
distance from D1 to the fixed joint A1 is represented by d1; the distance from C1 to the
revolute joint B1 is represented by c1. The symbols representing the other two branches,

l2 and l3, have the same meaning. The external forces
→
F i, (i = 1, 2, 3) act on the movable

platform via the revolute joints, Bi, (i = 1, 2, 3), respectively. Using the first-class Lagrange
approach, the dynamics equation of this discrete system of particles is modeled.

Select the center coordinates xc, yc of the moveable platform and the rotation angle θ

as the generalized coordinates q = {q1, q2, q3}T = {xc, yc, θ}T . All coordinates of discrete
concentrated masses of the system can be represented by this set of generalized coordinates.
The geometric constraint equations for the 3-RPR PM are:

f4i−3 = (Bi+1 − Bi)
T(Bi+1

∣∣∣i f i+1>3,i+1=i−2 − Bi)− b2
i = 0

f4i−2 = (Di − Ai)
T(Di − Ai)− d2

i = 0
f4i−1 = (Bi − Ci)

T(Bi − Ci)− c2
i = 0 i = 1, 2, 3

f4i = BiCi//DiAi

(1)
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The constraint forces caused by the above geometric constraints acting on each set of
generalized coordinates are (Ars see Appendix A)

Bri(q1, q2, q3, t) =
9×2
∑

s=1
Ars

∂us

∂qi
, r = 1, . . . , 12

9×2
∑

s=1

∂ fr

∂us
dus =

9×2
∑

s=1
Arsdus = 0, us ∈

{
xi, yi

}
i=1,2,...,9

(2)

Considering that the external forces
→
F 1,

→
F 2,

→
F 3 and the gravities act on the three

concentrated particles m1, m2, m3, respectively, the second Lagrange dynamics equation for
the 3-RPR PM is 

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
= Qi +

12
∑

r=1
λrBri (i = 1, 2, 3)

3
∑

i=1
Bri

.
qi + Br = 0(r = 1, . . . , 12)

(3)

Eliminate all of the Lagrange multipliers in Equation (3), and let the non degenerate ma-
trix be D =

{
dij

}
3×3 and let the integrated expression of Equation (3) be Dq = B(q,

.
q, t). Let

τTDτq = τTB(q,
.
q, t)τ, then the second order of uncoupled expression for Equation (3) is

..
q1 = ϕ1(

.
q2, q, q2, . . . , q12, α1, α2, α3, F1, F2, F3)

..
q2 = ϕ2(

.
q2, q, q2, . . . , q12, α1, α2, α3, F1, F2, F3)

..
q3 = ϕ3(

.
q2, q, q2, . . . , q12, α1, α2, α3, F1, F2, F3)

(4)

Substitute the generalized coordinates q0 = {xc0, yco, θc0}T at the singular configura-
tion into the above equation, and give up higher 7-order terms; the dynamics equation at
the singular configuration related to the generalized coordinates q is

..
q1 = φ1(

.
q2, q, q2, . . . , q6, α1, α2, α3, F1, F2, F3)

..
q2 = φ2(

.
q2, q, q2, . . . , q6, α1, α2, α3, F1, F2, F3)

..
q3 = φ3(

.
q2, q, q2, . . . , q6, α1, α2, α3, F1, F2, F3)

(5)

The dynamic stability of differential dynamics systems mainly depends on its lower-
order dynamic terms [36]. Here, using the Taylor series method to obtain the lower-
order terms, the linear approximation dynamics system of the 3-RPR PM represented by
Equation (5) in the vicinity of the singular configuration is

.
x = Ax + G(x, t) + O(∥x∥3) (6)

Here, A =

(
0 I

A 1 C

)
, A1 =

{
aij

}
3×3, C =

(
cij
)

3×3, Ψ ∈ R6×6, and G(x, t) = xTΨx is

the secondary homogeneous polynomial related to x =
{

q1, q2, q3,
.
q1,

.
q2,

.
q3
}T .

2.2. Analytical Methods

This study aims to develop a new approach for a PM to operate robustly and adap-
tively in online control mode throughout its entire workspace by sensing and adjusting
the primary kinematic parameters without encountering the singularity problem. The
PM should be discretized into a system of discrete particles. Then, its detailed analytical
uncoupled quadratic dynamical model should be constructed using the first-class Lagrange
method or alternative analytical approaches. Next, the PM’s analytical dynamic model
should be reduced into a linear approximation dynamic system with the lower-order terms
based on the Taylor series method. This is because the motion stability of differential
dynamic systems primarily depends on their lower-order dynamic terms. However, using
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analytical techniques to model the dynamics of PMs with multiple degrees of freedom is
complicated. Usually, numerical methods, such as the universal unfolding method [37], are
required to simplify this by treating the model as a linear polynomial in the germ space
of the singular point so that follow-up analytical procedures can be applied. Finally, the
motion stability of PMs at singular configurations corresponding to joint kinematic param-
eters should be investigated analytically based on the eigenvalue equations determined
by the linear approximation dynamic system. Three analytical approaches were adopted
here: direct analysis, the Gerschgorin circle-based approximate analysis, and the Hurwitz
criterion-based exact analysis.

The analytical process shown in Figure 1 encounters two main challenges. The first is
eliminating all acceleration terms and multipliers in the first-class Lagrange equation. The
second challenge is to obtain an explicit analytical expression of the eigenvalue equation,
which governs the motion stability of a PM dynamic system at singular configurations
corresponding to the joint kinematic parameters. The former is quite technical, while
the latter is more complicated for complex PMs, such as a 6-SPS PM. Different from the
singular configuration determined by the pose parameters of the movable platform, the
singular configuration in this paper is closely related to the joint parameters, such as the
input parameters [38], treated as the bifurcation parameters. Thus, the method to avoid
singularity can be constructed by detecting the input parameters. However, the singular
configuration determined by pose parameters cannot be used to construct this type of
singularity-free approach.
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Figure 1. Analytical approaches to determine primary kinematic parameters for constructing new
singularity-free approach for aerospace applications.

3. Results
3.1. Unstable Motion Related to qbi = mi(µi − vi) = 0

According to the first approximate stability theorem of Lyapunov [36], if each of
the eigenvalues of the linear approximation for the 3-RPR PM dynamics system has a
negative real part at a singular configuration, then the motion of the dynamics system at
a singular configuration is stable. Thus, the problem of evaluating whether the PM can
pass by the singular configuration dynamically with a definite anti-disturbance capability
is transformed to estimating whether each of the eigenvalues of the linear approximation
dynamics system has a negative real part. If all the eigenvalues have negative real parts, the
system’s motion at the singular configuration is stable; consequently, the manipulator can
pass by the singular configuration with the desired motion and anti-disturbance capability.
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When the coordinates of three revolute joints Bi = {xi(t), yi(t)}T
i=1,2,3 on the movable

platform are taken as the generalized coordinates, the dynamic model of the 3-RPR PM can
be built similarly, as follows:

M
..
u = FG + Pqb + Qqd (7)

where M = diag{m1, m1, m2, m2, m3, m3},
..
u =

{ ..
x1,

..
y1,

..
x2,

..
y2,

..
x3,

..
y3
}T , P =

{
pij

}
6×3,

Q =
{

qij
}

6×3.

qb =


qb1
qb2
qb3

 =


m1(

.
l1

2 − .
x1

2 − .
y1

2 + l1
..
l1)

m2(
.
l2

2 − .
x2

2 − .
y2

2 + l2
..
l2)

m3(
.
l3

2 − .
x3

2 − .
y3

2 + l3
..
l3)


qd =


qd1
qd2
qd3

 =


F1(cos α1x1 + sin α1y1)− m1gy1
−a0F2 cos α2 + b0(m2g − F2 sin α2) + cos α2F2x2 + sin α2F2y2)− m2gy2
F3(cos α3x3 + sin α3y3 − a cos α3)− m3gy3


FG = {cos α1F1, sin α1F1 − m1g, cos α2F2, sin α2F2 − m2g, cos α3F3, sin α3F3 − m3g}T

pij, qij are parameters related to xi(t), yi(t) and the dimensions of the 3-RPR PM.

µi =
.
li

2 + li
..
l i in qbi are known as the input kinematic parameters, and vi =

.
xi

2 +
.
yi

2

are the kinematic parameters of the joint velocities; thus, qbi = mi(µi − vi).
Equation (7) provides a comprehensive understanding of how input kinematic param-

eters, joint velocities, external loads, and gravities interact to influence the PM’s dynamic
properties. The uncoupled quadratic equation, without multipliers, offers a clear insight
into the impact of these variables on the PM’s dynamic properties throughout its workspace,
especially near singular configurations. This analytical expression provides a necessary
means or bridge to investigate the motion stability of the 3-RPR PM at singular configura-
tions corresponding to the system’s input kinematic parameters and joint velocities.

By employing the Taylor series method, a similar linear approximation dynamics
system equivalent to Equation (6) can be obtained in the vicinity of the singular configu-
ration with respect to Equation (7). In Equation (7), both µi and vi have impacts on the
eigenvalues of matrix A. If qbi = mi(µi − vi) causes at least one of the eigenvalues to have a
nonzero positive real part, the dynamic response or motion of the 3-RPR PM at its singular
configurations will become unstable. On the other hand, if µi and vi satisfy the condition
qbi = 0, all the elements in the sub-matrix of A1 of the linear approximate system matrix
A related to Equation (6) will be zero. Consequently, all the eigenvalues of matrix A will
also be zero. Based on the theorem of Lyapunov, the motion of the 3-RPR PM at its singular
configuration becomes unstable. There are three types of cases related to this situation.

i. vi = 0 and
.
li =

..
l i = 0.

In this case, the position of the PM’s movable platform is fixed (the manipulator
remains stationary). According to the stability theorem, the motion of the dynamic system
at the singular configuration related to the static state is unstable. When the lengths of
all the input legs (or parameters) are locked, the movable platform will gain a single
DoF around the center mid-perpendicular of the movable platform when subjected to
disturbances, and the movable platform will lose control. This type of static singularity is
categorized as a type II singularity and has been extensively studied by researchers. The
literature on singularity-free strategies for PMs has primarily focused on addressing this
type of singularity.

ii. vi = 0, µi =
.
li

2 + li
..
l i = 0, and

.
li ̸= 0,

..
l i ̸= 0.

When the input kinematic parameters of the 3-RPR PM dynamics system satisfy
µi =

.
li

2 + li
..
l i = 0, and the movable platform is at its instantaneous static stage, vi = 0,

the system’s motion at its singular configurations becomes unstable. This stresses that the
trajectory of the joints will be involved in the motion stability of the dynamics system at
the singular configurations. However, there is currently no literature in the field of PMs
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that discusses the trajectory of the joints in relation to PMs’ motion stability at singular
configurations, or the exclusion of singularities by adjusting the kinematic parameters of
the inputs and/or the joint velocities.

iii. µi = vi, and µi ̸= 0, vi ̸= 0, then qbi = mi(µi − vi) = 0.

This case corresponds to the correlation between the input kinematic parameters and
the joint velocities. In this situation, the movable platform will lose control in singular con-
figurations under external disturbances. To improve the performance of the PM at singular
configurations, for example, the motion stability, including anti-disturbances and/or the
load capability, preventing the above correlation from emerging while controlling a PM to
pass by a singular point in the workspace is desirable. None of the literature in the relevant
field mentions or addresses this type of singularity.

3.2. Stable Motion Related to qbi = mi(µi − vi) ̸= 0

The direct analysis in Section 3.1 confirms that the input kinematic parameters and the
joint velocities impact the dynamic system’s motion stability at singular points. By applying
Lyapunov’s stability theorem, the motion stability of the PM at singular configurations was
studied [35] by analyzing the eigenvalues of the linear approximation of the dynamical
system related to Equation (6) at the singularities. It was demonstrated that the motion
stability of the PM dynamical system at the singularity can be effectively improved by
separately or jointly adjusting the input kinematic parameters and the joint velocities.
In particular, increasing the angular speed of the movable platform in the appropriate
rotation direction and adjusting the joint velocities to move the absolute velocity center
of the movable platform away from the intersecting point of the three driving legs by a
certain distance can improve the motion stability of the dynamic system at the singular
configuration.

3.2.1. Movable Platform’s Instantaneous Center

To study the motion stability relative to the position of the instantaneous center of
absolute velocity of the movable platform, let x0, y0 represent the instantaneous center of
absolute velocity of the movable platform, and let ω represent the angular speed of the
movable platform around the center; thus, the velocities of the joints are

.
xi0 = −ω(yi − y0)

and
.
yi0 = ω(xi − x0). Without the loss of generality, let µi =

.
li

2 + li
..
l i in qbi = mi(µi − vi)

be constant. The polynomial of the eigenvalues determined by the linear approximation of
the 3-RPR PM dynamics system of Equation (6) with respect to the instantaneous center of
absolute velocity x0, y0 and the angular speed ω can be obtained. The distributions of the
real parts of eigenvalues corresponding to the coordinates of the instantaneous center of
absolute velocity x0, y0 are shown in Figure 2a.

In this figure, the angular speed of the movable platform is constant, ω = ω0 ̸= 0,
and S is the instantaneous rotation center of the gained DoF of the movable platform at
the singular configuration in which the three driving legs of the 3-RPR PM intersect at this
point. At this singular configuration, by fixing the lengths of legs l1, l2 and releasing leg l3,
the free-moving trace of joint B3 on the movable platform osculates with the arc centered at
A3 with radius l3. While fixing the lengths of all three input legs, the movable platform
can still rotate around point S. This rotation is a gained DoF. Correspondingly, the absolute
value of the negative real part of eigenvalue λ1 is close to its minimum value near the
point S (singular point), and its absolute value along line SA2 is even smaller than in other
regions. Therefore, the motion stability of the 3-RPR PM at the singular configuration is
worse if the movable platform’s instantaneous center of absolute velocity is located near
line SA2, especially near the intersecting point S.
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Figure 2. Motion stability related to the instantaneous center of absolute velocity of the
movable platform.

The real part distributions of other eigenvalues have the same features as eigenvalue
λ1, such as the distribution of eigenvalue λ3, as shown in Figure 2b. Along line SA2 and
line SA1, the absolute value of the negative real part of the eigenvalue λ3 is smaller than in
other areas. In particular, in the vicinity of the singular configuration corresponding to the
intersecting point S, the absolute value of the negative real part is close to its minimum.
However, when the instantaneous center of the absolute velocity of the movable platform
moves away from the intersecting point S and toward the fixed joint A3, which is the
farthest joint from the intersecting point S of the three driving legs, the absolute value of
the negative real part of eigenvalue λ3 increases; correspondingly, the motion stability of
the system at the singular configuration is enhanced. In addition, the closer the PM is to
the singular position, the smaller the value of the negative real part of the eigenvalues
becomes, and the dynamic stability of the 3-RPR PM worsens. However, when the absolute
instantaneous velocity center of the movable platform is far away from point S along with
line SA3, the dynamic stability of the system will be enhanced. From Figure 2, it can be
deduced that for 3-RPR PM, if the movable platform’s absolute velocity instantaneous
center is close to the line from the intersecting point S of the three driving legs to the nearest
joint on the platform, the dynamic system’s motion stability at the singular configuration
will be at its worst. Conversely, if the absolute velocity center is farther from point S to
the farthest fixed joint, the motion stability at the singular configuration will improve.
Therefore, it is desirable to allow the instantaneous center of the absolute velocity of the
movable platform to be far away from the instantaneous rotation center of the gained
degree of freedom of the movable platform at the singular configuration while planning
the joint trajectory or the actual control of the PM.

3.2.2. Velocity of the Mass Center (
.
xc,

.
yc)

Using the first approximate stability Lyapunov criterion to analyze the motion stability
of the PM at singular configurations, corresponding to velocities and external forces directly,
for example, through constructing the Lyapunov potential function, is quite complex and
impractical. In this case, the perturbation analysis method based on the Gerschgorin circle
theorem is employed to examine the motion stability of the PM at singular configurations
(xc0, yc0, θc0) = (0.2516, 0.4372, 0) [38] related to the velocities and external forces by
investigating the approximate distribution of the eigenvalues.

λ3 + C2(F, α,
.
q2

c ,
.
qc)λ

2 + C1(F2, F, α,
.
q4

c ,
.
q2

c ,
.
qc)λ + C0(F4, F3, F2, F, α,

.
q4

c ,
.
q3

c ,
.
q2

c ,
.
qc) = 0 (8)
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Here,
{ .

xc,
.
yc
}T represents the initial velocities of the mass center of the movable plat-

form, α = {α1, α2, α3}T , qm
c =

{
.
xi

c
.
yj

c

.
θ

m−i−j
c

∣∣∣∣
i=1∼m, j=1∼m−i

}T

, and

Fm =

{
Fi

1 Fj
2 Fm−i−j

3

∣∣∣
i=1∼m, j=1∼m−i

}T
.

Suppose that B = (bij) is a plural matrix in the n-order plural plane; the n Gerschgorin
circles in the complex plane are

Gi(B) : |λ − bii| ≤ Ri =
n

∑
j=1,j ̸=i

∣∣bij
∣∣, i = 1, 2, . . . , n (9)

Here, Ri are the radii of the Gerschgorin circles related to matrix B = (bij). bii are
centers of the Gerschgorin circles. Then, n eigenvalues of matrix B will be distributed
within the union sets of the n Gerschgorin circles Gi(B), i.e., λ(B) ⊆ ∪n

i=1Gi(B).
According to the Gerschgorin circle theorem, the distribution equations relative to

the dynamics system of the 3-RPR PM represented by Equation (6) in the vicinity of the
singular point are



b11 = (3.047 cos α1 + 3.367 sin α1)F1 + (1.23 cos α2 + 33.64 sin α2)F2 + (3.047 cos α3 − 2.691 sin α3)F3

−1.344 × 10−12 + 2.555
.
θ

2

R1 = −(1.843 cos α1 + 2.035 sin α1)F1 − (7.86 cos α2 + 20.35 sin α2)F2 − (1.843 cos α3 − 1.628 sin α3)F3

−1.927 × 10−12 − 1.545
.
θ

2

b22 = −(0.0837 cos α1 + 2.2 sin α1)F1 + (0.105 cos α2 − 1.873 sin α2)F2 − (0.084 cos α3 − 1.547 sin α3)F3

+15.509
.
θ

2
− 809.99

R2 = (0.125 cos α1 + 3.274 sin α1)F1 − (0.156 cos α2 − 2.788 sin α2)F2 + (0.125 cos α3 + 2.302 sin α3)F3

−23.085
.
θ

2
+ 1.205 × 103

b33 = (0.845 cos α1 + 3.657 sin α1)F1 − (1.056 cos α2 − 0.366 sin α2)F2 + (0.845 cos α3 − 2.93 sin α3)F3

−
.
θ

2
+ 5.017 × 10−12

R3 = (0.791 cos α1 + 3.426 sin α1)F1 − (0.989 cos α2 − 3.426 sin α2)F2 + (0.791 cos α3 − 2.74 sin α3)F3

+4.45 × 10−12
.
θ − 2.736 × 10−12

.
θ

2
+10−15(6.711

.
xc + 5.903

.
yc)

.
θ

(10)

In the expressions above, the velocity of the movable platform’s mass center, (
.
xc,

.
yc),

minimally impacts the PM’s motion stability at the singular configuration. For this reason,
in the subsequent study, the velocity of the mass center is disregarded.

According to the Lyapunov criterion, if each eigenvalue of the linear approximation
for the PM dynamic system has a negative real part at a singular configuration, then the
motion of the dynamic system at a singular configuration is stable. Therefore, for the PM to
exhibit stable motion at singular configurations, it must satisfy the following conditions:

bii < 0,−bii > Ri, i = 1, 2, 3 (11)

The corresponding inequations are
G1 =

.
θc

2 ≥ 40.24
G2 = F2 cos(0.334 + α2) < 86F3 cos(1.290 + α3)
G3 = F2 cos(0.334 + α2) < −3.75F1 cos(1.344 − α1)

G4 = F1 cos(1.533 − α1) + 0.296F2 cos(1.515 + α2)+0.896F3 cos(1.517 − α3) < 0.563
.
θc

2

(12)

Equation (12) unequivocally confirms that the motion stability of the 3-RPR PM at
singular configurations is entirely independent of the velocity of the mass center of the
movable platform, or any minimal relationship. Therefore, in the follow-up study, the
velocity of the mass center is disregarded. Nonetheless, the revealed inequality,

.
θc

2 ≥ 40.24,
holds great significance in guiding the trajectory design of the PM. It hints that only when
the angular speed of the movable platform is more significant than a specific value can the



Mathematics 2024, 12, 1771 10 of 20

dynamics system of the 3-RPR PM obtain stable motion at singular configurations. The
higher the angular speed is, the better its motion stability at singular configurations is. This
result is consistent with the conclusion in [35].

3.2.3. External Loads

The external loads
→
F i (including amplitude Fi and direction αi in Equation (12)) are

the minimum load capacities to meet the requirements of the motion stability at sin-
gular configurations. From the fourth inequation of Equation (12), it can be observed
that when the load direction is determined, without the loss of generality, for instance,
α1= 1.5327(rad), α2= −1.5145(rad), α3= 1.5167(rad), and the loads along the acting direc-
tions are restricted by

F1 + 0.2958F2 + 0.896F3 < 0.5628
.
θc

2 = 0.5628 × 40.24

However, the load capacities along the opposite directions of the acting forces have no
restriction, such as Fi = −Fi. In this situation, the statement [39] that PMs cannot bear the
external loads along the gained DoF at singular configurations is not valid; it should be
modified as PMs cannot bear the external loads along a specific direction of the gained DoF
at singular configurations; however, in the opposite direction of the specific direction of
the gained DoF, the load capability of the PMs cannot be affected. The new finding here
that, in the opposite direction of the specific direction of the gained DoF, the load capability
of PMs cannot be affected is significant for expanding applications of PMs and improving
their performance in the whole workspace in which singular configurations exist. For
instance, the singularity may be eliminated if the external loads act in the opposite direction
of the specific direction of the gained DoF through trajectory planning in the design or
practical control stage. The direction in which the degree of freedom is gained should be
pre-analyzed individually for specific PMs.

Equation (12) has seven variables. Adjusting these kinematic parameters in the tra-
jectory stage makes it easy to obtain the distributions of the movable platform’s velocity
and angular speed that meet the motion stability at singular configurations corresponding
to the specific load capability. For instance, while α1= 1.533(rad), α2= −1.515(rad), and
α3= 1.517(rad), the distributions of the external loads that meet the motion stability at
singular configurations are shown in Figure 3a. When external loads are positioned within
the inner space surrounded by π1, π2, π3 , the PM can produce stable motion even at a
singular configuration. Increasing the angular speed of the movable platform can expand
the range of external loads that meet the motion stability at singular configurations, as
shown in Figure 3b.
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3.3. Improving Motion Stability at Singular Configuration
3.3.1. Hurwitz Criterion

When all the eigenvalues obtained from Equation (12) fall within the negative real axis
space, the Gerschgorin circle theorem can be utilized to reliably determine external loads
that conform to the criteria for motion stability. Nonetheless, this method’s stringent nature
may result in the exclusion of eigenvalues with negative real parts that partially intersect
with the Gerschgorin circles in the negative real part space. In contrast, the Hurwitz
criterion, an exact method providing necessary and sufficient conditions for ascertaining
the negativity of eigenvalues’ real parts, is employed to assess the influence of the external
loads, velocity, and angular speed of the movable platform on the PM’s motion stability.

For the polynomial equation of the eigenvalues shown in Equation (8), the neces-
sary and sufficient condition for each of the eigenvalues having a negative real part is
∆k > 0, k = 1, 2, · · ·, n. The three inequations related to n = 3 are

∆1 = C2 > 0, ∆2 =

∣∣∣∣C2 C0
1 C1

∣∣∣∣ > 0, ∆3 =

∣∣∣∣∣∣
C2 C0 0
1 C1 0
0 C2 C0

∣∣∣∣∣∣ > 0 (13)

Here, C2 = F1 cos(0.903 − α1) + 0.0.199F2 cos(1.281 + α2) + 1.32F3 cos(1.082 + α3)−
2.94

.
θc

2 + 131.82.

C1 =
3
∑

i=1
τiF2

i + 0.817
.
θ

2
c − 0.018

.
θ

4
c + 10−4(8.58

.
xc − 9.413

.
yc)

.
θ

3
c − 10−2(4.15

.
xc − 4.014

.
yc)

.
θc

+
3
∑

i=0
υi+3Fi) + F2(ς0

.
θ

2
c + (ς1

.
xc + ς2

.
yc)

.
θc +

3
∑

i=0
ςi+3Fi) + F3(ζ0

.
θ

2
c + (ξ1

.
xc + ξ2

.
yc)

.
θc +

3
∑

i=0
ξi+3Fi)

+27.802 + (υ1
.
xc + υ2

.
yc)

.
θc + F1(υ0

.
θ

2
c )

C0 = p0F1F2F3 +
3

∑
i=1

piF3
i +

3

∑
i=1

3

∑
j=1

qijF2
i Fj +

.
θ

2
c

3

∑
i=1

3

∑
j=1

uijFiFj +
.
θ

4
c

3

∑
i=1

viFi

and p, q, τ, υ, ξ, ζ are coefficients relative to the acting directions αi of the external forces.
The inequation relative to ∆1 = C2 > 0 is

F1 cos(0.90 − α1 + π) + 0.2F2 cos(1.28 + α2 + π) + 1.32F3 cos(1.08 + α3 + π) < 131.8 − 2.94
.
θc

2 (14a)

Two inequations, C2 · C1 − C0 > 0 and C2 · C1 · C0 − C0 · C0 > 0, related to ∆1 > 0,
∆2 > 0 are equivalent to C0 > 0 and C2 · C1 − C0 > 0. The expression of C0 > 0 is

p0F1F2F3 +
3

∑
i=1

piF3
i +

3

∑
i=1

3

∑
j=1

qijF2
i Fj +

.
θ

2
c

3

∑
i=1

3

∑
j=1

uijFiFj +
.
θ

4
c

3

∑
i=1

viFi > 0 (14b)

The expression C2 · C1 − C0 > 0 is very complicated and long-winded. Its whole
expression has more than 900 terms in Mathematica®. Here, its formal representation is

C2 · C1 − C0 = f1(F3
i ,

.
θ

6
c ,

.
xc,

.
yc, αi) > 0 (14c)

3.3.2. Motion Stability at the Singular Configuration with a Gained Rotation-Type DoF

Equation (12) has demonstrated that the motion stability of the 3-RPR PM at singular
configurations has a minimal relation to the velocity of the movable platform’s mass
center. For this reason, the velocity of the mass center is neglected in the follow-up study.
Let

.
xc =

.
yc = 0 without a loss of generality. The inequation (14a)–(14c) still contains

six variables, Fi, αi, i = 1, 2, 3. Theoretically, it should be feasible to obtain external loads
that meet the dynamic stability requirements from these equations concerning the angular
velocity of the movable platform.
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i. Static singularity (
.
θc = 0)

Assuming that the directions of the external forces are given, such as α1= 0.902(rad),
α2 = −1.281(rad), and α3 = −1.082(rad), the detailed expression of Equations (14a)–(14c)
is as follows:

∆1 = C2 > 0 : ⇒ F1 + 0.1988F2+1.3204F3 > −131.824 > 0 (15a)

∆2 = C0 > 0 :⇒ 0.0496 F1
3+0.0935F2

3 − 0.2398 F3
3+6.685F1F2F3

+F2
1 (457.37 + 5.369F2 − 0.2072F3)+F2

2 (−47.61 − 1.5197F1 − 0.7947F3)
+F2

3 (− 277.01 − 0.4934F1+1.732F2) + 160.05F1F2+278.27F2F3+86.1563F1F3 > 0
(15b)

∆3 = C2 · C1 − C0 > 0 :⇒ 2.251 × 106 − 0.08087F1
3+0.172F2

3+0.305F3
3 − 1.324F1F2F3

−F2
1 (113.98+1.392F2+0.599F3)+F2

2 ( − 175.69+0.589F1+1.2585F3
)

−F2
3 (322.57+0.418F1 − 0.8264F2) − 154.23F1F2 − 531.65F2F3 − 322.08F1F3

−411.79F1 + 37528F2+6535.58F3 > 0

(16)

Consider that the ranges of the external loads are confined within
Fi ∈ {−500(N), 500(N)}. Three external load distribution surfaces, π1, π2, and π3, sat-
isfying the requirements of the dynamic stability at static singularities corresponding to
Equation (15), are shown in Figure 4a. In the π1 plane, ∆1 > 0 is distributed along the
direction of the normal

→
n 1. ∆2 > 0 is distributed in the outer space of the surface based on

π2 along the direction of the surface normal
→
n 2. As ∆2 increases, π2 expands outward in

the
→
n 2 direction. ∆3 > 0 is distributed in the inner and outer space of the surface based on

π3 along the direction of the surface normal
→
n 3. As ∆3 increases, the complex surface of the

π3 space shrinks inward toward
→
n 3. In the eight quadrants, π1, π2, and π3 intersect only

in the first quadrant. Therefore, the range that can meet the dynamic stability requirements
at static singular configurations is the local space enclosed by the surfaces π2 and π3 in the
first quadrant. Obtaining this local space with stable motion by trial-and-error numerical
methods is challenging. When the values of αi, i = 1, 2, 3 are altered, the intersecting
distribution spaces of the external loads that satisfy dynamic stability at singularities may
undergo changes or even cease to exist.

When the directions of the external forces are coaxial with the driving legs,
α1= 1.484(rad), α2= 3.752(rad), α3= 2.618(rad), there is a common load distribution re-
gion that satisfies ∆i > 0, i = 1, 2, 3 simultaneously, as shown in Figure 4b. When the
external load is perpendicular to the driving legs, that is, when the directions of the external
loads are consistent with the directions of the gained DoF, no load distribution region
simultaneously satisfies ∆i > 0. Because the external load distribution region determined
by ∆1 > 0 does not intersect with the load distribution region determined by ∆2 > 0, the
Hurwitz stability criterion is not met. Thus, the system will exhibit an unstable motion state
at singularities. This analysis result aligns with those obtained using previous numerical
methods. That is, when a PM with a gained rotation-type singularity is subjected to external
loads in the direction of the gained DoF at the static singular configuration, the moving
platform cannot withstand the external loads.

ii. Dynamic singularity (
.
θc ̸= 0)

Figure 4c illustrates three load distributions that result in stable motion at a singular
configuration. These distributions are associated with a gained rotation-type DoF around
the instantaneous rotational center of the movable platform when

.
θc

2 = 40.24 and the
external loads act from the fixed platform to the movable platform along the driving legs.
The figure depicts two intersecting regions, Ω1 and Ω2, associated with three inequalities
from Equation (14a)–(14c) and their corresponding load distribution surfaces, π1, π2,
and π3. The Ω1 region gradually expands from the load center, aligning with the result
obtained using the Gerschgorin circle theorem. This suggests that when the angular
speed of the movable platform exceeds a specific value, the system still meets the motion
stability requirements at singular configurations, even when the external loads are zero.



Mathematics 2024, 12, 1771 13 of 20

By increasing the angular speed of the movable platform, the PM’s load capability to
meet motion stability at singular configurations in the Ω1 region is enhanced, as shown in
Figure 4d.

Similar load distribution results can be observed when the external forces are perpen-
dicular to the input leg axes. However, by adjusting the velocity of the movable platform’s
mass center, (

.
xc,

.
yc), the external load distributions that meet the motion stability at singu-

lar configurations are almost maintained. For other singular configurations of the 3-RPR
PM with a rotation-type DoF [38], the external load distributions ensuring motion stability
at singular configurations are similar to those depicted in Figure 4. Increasing the angular
speed of the movable platform is an effective method to improve the PM’s motion stability
at the singular configuration once the angular speed surpasses a specific threshold.
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Figure 4. Distributions of external loads at the singular configurations with a gained rotation-type DoF.

3.3.3. Motion Stability at the Singular Configuration with a Gained Translation-Type DoF

For the singular configuration (xc0, yc0, θc0) = (0.3646, 0.45, 40deg) [38] with a gained
translation-type DoF for the 3-RPR PM, a specific external load distribution region Ω1 satis-
fying ∆i > 0 simultaneously related to α1= 1.072(rad), α2= 0.135(rad), and
α3= −1.076(rad) is depicted in Figure 5a. As the velocity of the movable platform increases
in the direction of the gained translation-type DoF,

[ .
xc/

.
yc = tan(40deg)

]
, the external load

distribution region Ω1, satisfying ∆i > 0, gradually diminishes until it vanishes. A similar
external load distribution feature for the region Ω1 can be observed when increasing the
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velocity of the movable platform perpendicular to the gained translation-type DoF. Increas-
ing the angular velocity of the movable platform, the external load distribution region Ω1
with ∆i > 0 gradually shrinks until it disappears, or a shared intersection region appears
on a larger external load space.
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Figure 5. Distributions of external loads meeting ∆i > 0, i = 1, 2, 3 at the singular configuration with
one gained translation-type DoF..

When the external loads are perpendicular to the driving leg axes, the approximate

expression for ∆1 > 0 is
.
θ

2
c > 54.489. Figure 5b depicts the external load distributions

meeting both ∆2 > 0 and ∆3 > 0 simultaneously. In this figure, the region Ω1 representing
the external load distribution meeting ∆i > 0 is relatively larger. As a result, the 3-RPR PM
can achieve a greater motion stability at the singular configuration.

3.4. Summary of New Findings for Singularly Properties

It is essential to comprehend the dynamic characteristics and influence mechanisms of
kinematic parameters and external loads on the system’s stability at singularities. This un-
derstanding is necessary to address the PM’s dynamic singularity-free issue by thoroughly
elucidating the PM’s dynamic characteristics at singularities. For a long time, scholars
have primarily concentrated on examining singularity avoidance issues associated with
the first type of static singularities (

.
li =

..
l i = 0 and vi = 0) while neglecting to address

other static singularities, such as the second (µi =
.
li

2 + li
..
l i = 0,

.
li ̸= 0,

..
l i ̸= 0 and vi = 0)

and third types (µi = vi, µi ̸= 0, vi ̸= 0; then, qbi = mi(µi − vi) = 0). Consequently, there
has been minimal investigation into the dynamic stability of PMs at singular points under
external loads within the current body of literature. The artificial potential function in [25]
and reconfigurable active masses in [23,24] have explicitly and implicitly considered the
effect of kinematic parameters on PMs’ motion stability to modify PMs’ dynamic behaviors
at singular configurations. However, the mechanism to improve PMs’ dynamic behaviors,
including motion stability at singular configurations, has yet to be studied in the existing
literature.

In order to address the research gap in this area, which is currently lacking any
literature that takes into account the dynamic characteristics of the system when developing
singularity-free methods and exploring PMs’ motion stability at singularities, this paper
conducts a theoretical analysis of the spatial distribution surfaces where PMs meet the
dynamic stability criteria at singularities related to kinematic parameters and external loads.
From the perspective of dynamic stability, the theoretical analysis achieved in this paper,
based on the Gerschgorin perturbation approach and the Hurwitz exact approach, has
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led to many discoveries beyond previous numerical methods. The information in Table 1
provides a summary of some noteworthy new discoveries.

Table 1. Summary of new findings for singularity properties related to kinematic parameters and
external forces.

Type of the Gained DoF Static Singularity Dynamic Singularity

Rotation-type
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vi = 0 and
µi =

.
li

2 + li
..
l i = 0;

.
li ̸= 0;

..
l i ̸= 0

µi = vi, µi ̸= 0, vi ̸= 0.
The PM cannot withstand the external
loads acting toward the gained DoF at
static singular points.

Let the platform’s instantaneous center of
absolute velocity be away from the
singular point S.
The higher the angular speed is, the
better its motion stability at singular
configurations is while θc ≥ ω0.
The PM’s load capability cannot be
affected in the opposite direction of the
gained DoF.
Increasing the angular speed can enhance
the PM’s load capability and meet motion
stability at singular points.
The PM’s motion stability at singularities
is almost maintained related to changing
the movable platform’s velocity.

Translation-type
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velocity along the gained DoF will reduce
the PM’s load capability with stable
motion at the singularity.

The PM’s load capability with stable
motion at the singularity will be
enhanced if the external loads are
perpendicular to the driving leg axes.

The primary objective of this study is to thoroughly comprehend the impact of each
kinematic parameter on the PM’s motion stability at singularities. The goal is to develop a
more efficient and user-friendly method, specifically tailored for aerospace applications,
that can dynamically and adaptively avoid singularities in real time based on sensing
input parameters without requiring offline calculations. The stability analysis of nonlinear
dynamical systems is complicated, especially for high-dimensional ones. PMs are typically
part of high-dimensional nonlinear dynamic systems, making it more challenging to study
their singularity dynamic bifurcation characteristics, based on which a new singularity
avoidance method is constructed to realize real-time singularity avoidance control. The
work presented in this paper aims to simplify subsequent research on PMs’ dynamic
bifurcation characteristics by identifying the critical kinematic parameters that influence
the dynamic characteristics at singularity, and using them as bifurcation parameters. To the
best of the author’s knowledge, no existing literature has considered the system’s dynamic
characteristics when constructing singularity-free approaches and studying PMs’ stability
at singularities.

The theoretical analysis results presented in Table 1 have led to many discoveries
beyond previous numerical methods, besides confirming the significant impact of kinematic
parameters on the PM’s motion stability at singular configurations. For instance, it has been
found that changing the velocity of the mass center of the movable platform is a simple
and effective method to enhance the PM’s motion stability at singular configurations. Some
commonly accepted statements in prior research, such as the statement that PMs cannot
support external loads in the direction of the gained DoF at singular configurations [39],
are only partially accurate. It has been found that PMs’ load capacity is not affected when
the load is applied in the opposite direction of the gained DoF. The effects of the kinematic
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parameters on the PM’s motion stability at singular configurations revealed in this paper
will pave the way for a new singularity-free method for realizing PMs’ adaptive and robust
singularity-free control by detecting kinematic parameters without introducing redundancy
or active mass.

4. Discussion

In aerospace engineering, it is essential to enhance PMs’ accuracy in practical oper-
ations and improve their dexterity and adaptability in planning and tracking workspace
trajectories. This investigation aims to comprehensively elucidate the influence of kine-
matic parameters on a PM’s motion stability at singularities, aiming at developing a more
agile and adaptive singularity-free approach tailored for aerospace applications without
requiring offline calculations. Thus, the PM's singularities can be swiftly eliminated based
on sensing input parameters.

Studying the dynamic behaviors of PMs is challenging due to the complex issue
of Jacobian matrix rank reduction near singularities. Consequently, there is a scarcity
of literature on the investigation of PMs’ dynamic behaviors near singularities and the
influence of kinematic parameters on the motion stability of PMs. The present paper utilizes
Lyapunov’s dynamic stability theory to explore a PM’s dynamic stability at singularities and
how kinematic parameters influence it. With the linear approximation of the PM dynamic
system near the singular point and the perturbation analysis method, this pioneering study
addresses a research gap by providing insight into the limited research and understanding
of PM’s dynamic behaviors at singularities and their relation to kinematic parameters in
the academic community. The proposed theoretical analysis has led to many discoveries
beyond previous numerical methods. Two new types of static singularities have been
discovered for the first time, and some important dynamic characteristics and influence
mechanisms of kinematic parameters and external loads on the PM’s dynamic stability at
singularities have been revealed.

In aerospace applications, addressing the real-time, robust, and reliable singularity
avoidance of PMs is of the utmost importance. The authors have been dedicated to
developing a new method to solve this issue over an extended period. The artificial
potential function in [25] and reconfigurable active masses in [23,24] have explicitly and
implicitly considered the effect of kinematic parameters on PMs’ motion stability to modify
their dynamic behaviors at singular configurations. However, the mechanism to improve
PMs’ dynamic behaviors, including motion stability at singular configurations, has yet
to be studied in the existing literature. Francisco et al. [3] developed an approach that
allows the PM to follow the trajectory and avoid singular configurations while keeping
the actuator forces to a minimum by reconfiguring the mobile and fixed platforms via
changing the anchoring points’ locations on both platforms. A prototype was created
to quickly test the reconfiguration strategy, where anchoring points are moved to holes
drilled in the fixed and mobile platforms to enable reconfiguration by adjusting their
position. Baron et al. [4] developed a robust geometric method to prevent singularities in a
redundant planar PM by utilizing the properties of the instantaneous centers of rotation
(ICRs). This approach offers the advantage of being able to quantify a PM’s proximity
to a singularity using a physical distance, and it enables the PM to move away from a
singular configuration by minimizing the radius through sub-mechanism reconfiguration
in terms of a redundant variable. Refs [3,4] enhance singular avoidance robustness but
may require sacrifices, such as redundant DoFs or components, resulting in control bias
near the singular configuration. Moreover, optimization is essential for implementing
singularity-free control processes, so these methods still need improvement to achieve real-
time control. Specifically, recalculating singularity and its spatial distribution is essential
when pose parameters are changed because the identified singularity is closely related to
the pose parameters of the moving platform. Therefore, the singularity avoidance method’s
adaptivity should be enhanced.
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The stability analysis of nonlinear dynamical systems is complicated, especially for
high-dimensional ones. PMs are typically part of high-dimensional nonlinear dynamic
systems, making it more challenging to study their singularity dynamic bifurcation char-
acteristics, based on which a new singularity avoidance method is constructed to realize
real-time singularity avoidance control. The work proposed in this paper aims to simplify
subsequent research on PMs’ dynamic bifurcation characteristics by identifying the critical
kinematic parameters that influence the dynamic characteristics at singularity, and using
them as bifurcation parameters. To the best of the author’s knowledge, no existing literature
has considered the system’s dynamic characteristics when constructing singularity-free
approaches and studying a PM’s stability at singularities.

The research method proposed in this paper is universal since any PM can be dis-
cretized into a particle system, and the consistency of the kinematic parameters influences
dynamic motion stability at singular configurations. Some of the new findings listed in
Table 1 may also be applicable to other PMs. However, due to the significant differences
in PMs’ dynamic characteristics, individual research is necessary to obtain the primary
kinematic parameters affecting PMs’ dynamic stability and construct the corresponding
singularity-free algorithm.

In our future work, we plan to use a holistic design methodology to develop a new
approach for achieving real-time singularity-free control, considering the system’s dynamic
characteristics and sensor-based real-time control while comprehensively considering
the effects of the kinematic parameters on motion stability. By inspecting the system’s
kinematic parameters, the approach can guide a PM to pass by singular configurations
with robustly stable motion in the real-time control model without introducing redundancy
or active mass. This approach benefits PMs in aerospace engineering, ensuring the safety
of aerospace devices equipped with PMs by avoiding redundancy or active mass.

5. Conclusions

The analytical approach, based on the Gerschgorin circle theorem approximate ap-
proach and the exact Hurwitz criterion approach, is applied to reveal the effect mechanisms
of kinematic parameters on the motion stability of the planar 3-RPR PMs at singular config-
urations. The proposed theoretical analysis method has resulted in numerous discoveries
beyond previous numerical methods, and primary kinematic parameters affecting the
PM’s motion stability at singular configurations are determined. Moreover, two other
static singularities overlooked by scholars have been revealed. The research gap in the
limited literature and the understanding of PMs’ dynamic behaviors at singularities and
their relation to kinematic parameters in the academic community due to the complex
issue of Jacobian matrix rank reduction near singularities has been filled. The findings in
this paper about how the kinematic parameters impact PMs’ motion stability at singular
configurations will pave the way for developing a new method to realize PMs’ adaptive
and robust singularity-free control by detecting kinematic parameters without introducing
redundancy or active mass.
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Nomenclature

P Prismatic pair in mechanism. 2-RPR PM is a PM with two branches consisting of RPR joints.
S Spherical pair in mechanism. RPR is a branch with two R pairs at ends and a P pair in middle.
R Revolute pair in mechanism. 3-RPR PM is a PM with three branches consisting of RPR joints.
Ai Three revolute joints (i = 1, 2, 3) on the base.
Bi Three revolute joints (i = 1, 2, 3) on the movable platform.
mi Discrete concentrated masses located at Bi, (i = 1, 2, 3).
a The length from A1 to A3.
a0,b0 The horizontal and vertical coordinates of A2.
bi Distance between two neighboring revolute joints on the movable platform.
m4,m7 Two concentrated masses of two components of the prismatic pair P1 related to the input parameter l1.
li Input parameters, or lengths of legs li, (i = 1, 2, 3).
c1 The distance from m1(C1 ) to m4(B1 ).
d1 The distance from m7(D1 ) to A1.
xc, yc The mess center coordinates of the movable platform.
xc0, yc0 Singularity coordinates of 3-RPR PM.
x0, y0 Instantaneous velocity center of the movable platform.
→
F i External forces act on the movable platform through joints Bi.

αi Acting angles of
→
F i related to the horizontal axis x.

ζ = [ζi]
12
i=1,...,12 Lagrange multiplier.

.
li,

..
l i The velocities and accelerations of the input kinematic parameters.

µi Input kinematic parameters, µi =
.
li

2 + li
..
l i, (i = 1, 2, 3).

vi Kinematic parameters related to joint velocities, vi =
.
xi

2 +
.
yi

2.
A The eigenvalue matrix of the first-order nonlinear differential dynamics system of the planar 3-RPR PM.
λ Eigenvalue determined by matrix A.
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