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Abstract: The human–computer interaction attribute of the interactive genetic algorithm (IGA) allows
users to participate in the product design process for which the product needs to be evaluated,
and requiring a large number of evaluations would lead to user fatigue. To address this issue, this
paper utilizes an XGBoost proxy model modified by particle swarm optimization and the graphical
interaction mechanism (GIM) to construct an improved interactive genetic algorithm (PXG-IGA),
and then the PXG-IGA is applied to 3D vase design. Firstly, the 3D vase shape has been designed by
using a bicubic Bézier surface, and the individual genetic code is binary and includes three parts: the
vase control points, the vase height, and the texture picture. Secondly, the XGBoost evaluation of the
proxy model has been constructed by collecting user online evaluation data, and the particle swarm
optimization algorithm has been used to optimize the hyperparameters of XGBoost. Finally, the GIM
has been introduced after several generations, allowing users to change product styles independently
to better meet users’ expectations. Based on the PXG-IGA, an online 3D vase design platform has
been developed and compared to the traditional IGA, KD tree, random forest, and standard XGBoost
proxy models. Compared with the traditional IGA, the number of evaluations has been reduced by
58.3% and the evaluation time has been reduced by 46.4%. Compared with other proxy models, the
accuracy of predictions has been improved up from 1.3% to 20.2%. To a certain extent, the PXG-IGA
reduces users’ operation fatigue and provides new ideas for improving user experience and product
design efficiency.
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1. Introduction

As a distinctive craft and utility item, ceramics have held significant importance
throughout the history of human civilization. From the earliest earthenware to the later
exquisite porcelain, the narrative of ceramics is full of stories and legends. In ancient
civilizations, ceramics were essential in everyday life, serving as vessels for food and other
necessities. With the advancement of technology and the refinement of craftsmanship,
ceramics diversified into a plethora of forms and functions.

With the advancement of society, people’s demand for ceramics has gradually sur-
passed traditional styles, and they are beginning to pursue more unique designs and
shapes. However, traditional vase designs often rely on manual drawing by designers with
accumulated experience. While they possess a high degree of artistry, they also have certain
limitations. Designers’ personal aesthetics and creativity may be constrained by their own
knowledge and experience, thus being unable to fully explore all possibilities in the design
space. Additionally, the manual design and modification process is time-consuming and
laborious, making it difficult to quickly generate a large number of design proposals with
different styles and forms.
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One of the key steps in ceramic design is modeling, which involves transforming
creative ideas into actual product forms. Modeling requires mathematically representing
the design’s appearance and structure, often using mathematical surfaces to describe the
shape of the product, with Bézier surfaces being widely applied. Previous studies have
used neural networks to control 3D models to address wound reconstruction in the medical
field [1,2], providing insights into using algorithms to control modeling to solve various
problems. Therefore, ceramic modeling designs combined with artificial intelligence have
emerged. However, AI-generated designs may produce unexpected ceramic shapes, failing
to meet the desired outcomes [3].

In this context, the interactive genetic algorithm (IGA) [4,5], as an intelligent opti-
mization algorithm, demonstrates its unique advantages and potential. By simulating
the processes of natural selection and genetic mutation, the interactive genetic algorithm
is able to automatically generate and optimize design solutions. Users play the role of
“selectors” in the design process, evaluating each generation of design individuals. The
algorithm continuously adjusts and optimizes design solutions based on these evaluations.
This interactive process not only combines human aesthetic judgment with the powerful
computational capabilities of computers but also enables the exploration and discovery
of innovative designs that traditional methods may find difficult to achieve in a relatively
short period of time.

IGA is developed from the genetic algorithm (GA). The GA is an evolutionary op-
timization algorithm that can solve some problems that can be defined by mathematical
formulas. The GA involves the optimization of target systems, models, and performance in
multiple fields. In recent years, the GA has been applied to effective feature selection for IoT
botnet attack detection [6], active disturbance rejection control of bearingless permanent
magnet synchronous motors [7], gesture recognition CAPTCHA [8], state-of-charge estima-
tion of lithium-ion batteries [9], and residential virtual power plants [10]. The application of
the GA in these areas has become increasingly widespread, with more and more researchers
applying the GA to solve various practical problems in their own fields.

The IGA is also an optimization algorithm. The most significant difference between
the IGA and the traditional GA and other metaheuristic algorithms is that it can realize
human–computer interaction. Through communication with people, the IGA can be guided
in the process of evolution. Unlike the GA, the IGA is not limited to solving problems with
clearly defined formulas but is also able to deal with some problems that cannot be clearly
defined by formulas. Currently, the IGA has been widely applied in automatic terrain
generation systems [11], 3D gaming model design [12], fashion design [13,14], and music
melody composition [15], etc.

However, there are many factors that affect the IGA, such as individual knowledge
reserve, personal preferences, thinking, and emotions, which can affect the fitness evalua-
tion of the algorithm. These factors can cause fluctuations in fitness, resulting in different
optimal solutions for everyone. In the IGA, the evolutionary direction of the population is
uncertain. Since the user only needs to evaluate the individual’s fitness, the IGA reorganizes
the population characteristics according to the individual’s fitness, thereby generating the
next generation. Its evolutionary process does not align with the users’ thinking, thus the
next generation generated by such a process does not always suit the users’ aesthetic tastes.
Therefore, users usually need to evolve for multiple generations. In the process of small
population evolution, in the IGA, due to the limited number of populations, the number of
individual characteristics is also limited, which leads to the phenomenon that it is easy to
produce a local optimum solution at the end of evolution. If no new population is added,
the population may fall into a local optimal solution and be difficult to overcome. Each
time, the population evolution needs to receive the users’ fitness evaluation. However,
the core issue with the IGA is that a large number of user evaluations and interactive
operations may lead to the user’s fatigue, Specifically, the interactive genetic algorithm
requires users to evaluate and provide feedback on multiple individuals in each generation
of the population. As the number of generations increases, the amount of information and
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the number of interactions that the user needs to handle increase dramatically. This high
frequency of interactions not only consumes the user’s energy and time but also may lead
to subjective bias and inconsistent evaluation standards during the evaluation process. For
instance, users may carefully evaluate each design individual at the initial stage but, as
time goes on, the increasing fatigue may cause users to become impatient and make hasty
evaluations. This situation not only reduces the reliability and accuracy of user evaluations
but also may affect the convergence speed of the algorithm and the quality of the final
optimization results.

To address the above issues, a large number of researchers have used proxy model
methods to predict the fitness value, thereby reducing the number of user evaluations and
alleviating fatigue. Huang et al. [16] constructed KD tree proxy models and random forest
proxy models to assist with evaluations based on historical user evaluation information.
Lu et al. [17] constructed a user cognitive proxy model based on the BP neural network
(BPNN). Gypa et al. [18] proposed an IGA integrated with a support vector machine for
propeller optimization. Zhen and Nie [19] constructed the objective fitness values of the
IGA based on the weight values. Sheikhi and Kaedi [20] tackled the user’s fatigue problem
in the interactive genetic algorithm by using the candidate elimination algorithm. As users
may not be professional product designers, they may not be able to accurately evaluate
the product and can only have a rough interval estimation of the product. Therefore,
some researchers have thought of using individual interval fitness values to reduce the
uncertainty of fitness values. Sun et al. [21] proposed an improved semi-supervised learning
co-training algorithm to assist the IGA, which considers the uncertainty of interval-based
fitness values when training and weighting two co-training models. Gong et al. [22]
proposed an IGA based on the proxy model of individual interval fitness.

XGBoost is an efficient and flexible machine learning algorithm that is used in various
fields in combination with the GA. Deng et al. [23] proposed a hybrid gene selection method
based on XGBoost and a multi-objective genetic algorithm for cancer classification. Wu
et al. [24] used an improved genetic algorithm and XGBoost classifier for transformer fault
diagnosis. Ghatasheh et al. [25] employed a genetic algorithm to optimize XGBoost for
spam prediction. Gu et al. [26] used the genetic algorithm in combination with an XGBoost
model for prediction of maximum settlement in mines. Li et al. [27] utilized a genetic
algorithm and the XGBoost algorithm for identification of mixed mine water inrush.

Currently, there are fewer applications of XGBoost combined with the IGA. In order to
solve the core problem of the user’s fatigue, this study proposes a method to improve the
IGA using an XGBoost proxy model and the GIM and using particle swarm optimization to
optimize the hyperparameters of the XGBoost proxy model. This method uses the collected
user evaluation information to construct the XGBoost model. The proxy model predicts the
fitness value for each individual, assisting users in their evaluations. If users feel that the
predicted score differs significantly from the expected value, they can make modifications.
The GIM helps users to adjust the shape and appearance of the product independently and
enables them to find satisfactory individual solutions more quickly. The main contribution
of this paper is the proposal to use the XGBoost proxy model to improve the IGA. By
predicting the users’ evaluation fitness value based on collected historical user data, the
number of user evaluations is reduced, thereby addressing the issue of the user’s fatigue.
Additionally, the GIM is integrated into the interactive interface, allowing users to fine-tune
the shape of the evaluated individuals, enhancing user satisfaction while avoiding the
fatigue caused by repetitive operations. In this study, the algorithm is applied to a 3D vase
design platform to verify its accuracy, optimization capability, and ability to mitigate the
user’s fatigue.

2. Algorithm and Principle
2.1. The Proposed Method

The algorithm of this study is based on the combination of the interactive genetic
algorithm and the XGBoost proxy model improved by particle swarm optimization. The



Mathematics 2024, 12, 1932 4 of 22

proxy model is constructed by users’ historical data to predict the individual’s fitness
value and help users to evaluate and reduce user operations. To allow users to participate
more intuitively in the process of product design, a graphical interaction mechanism has
been implemented in this study. The users can freely modify the characteristics of the
individual product, enabling the interactive genetic algorithm to efficiently generate a
customized design. Such an approach reduces the time required for design and enhances
users’ satisfaction.

2.2. Principle of XGBoost Algorithm

XGBoost [28], originally proposed by the team led by Tianqi Chen, is an optimized
distributed gradient enhancement library designed to achieve higher efficiency, flexibility,
and portability. It is an efficient and widely used gradient lifting algorithm for machine
learning and data mining tasks. The basic components of XGBoost are the decision trees,
which are referred to as weak learners. These weak learners collectively form the XGBoost.
The core idea is to grow a tree by constantly adding trees and constantly splitting features.
Each time a tree is added, it is actually learning a new function f (x). There is a sequence
between the decision trees that make up XGBoost; the generation of the latter decision tree
will consider the prediction results of the previous decision tree; that is, the deviation of the
previous decision tree will be taken into account. The data set required for each decision
tree is the entire data set, so the process of generating each decision tree can be regarded as
the process of generating a complete decision tree.

When predicting a new sample, it is necessary to input the new sample into each
decision tree of XGBoost in turn. In the first decision tree, a predictive value will be
generated. In the second decision tree, another predicted value will be generated. By
analogy, the new sample is consistently put into all the decision trees. Finally, the predicted
values calculated by all the decision trees are aggregated to obtain the final predictive value
for the new sample. The prediction model is then constructed, and it is defined in the
following way:

yt
i =

t

∑
k=1

fk(xi) = yt−1
i + ft(xi), (1)

In Equation (1), fk(xi) is the predicted value of the decision tree and t is the number of
decision trees. The XGBoost algorithm retains the prediction of the previous t − 1 round
during each model training and adds a new function ft(xi) to the model, which is the
prediction result of the ith sample at the tth model training.

The prediction accuracy of the model is determined by the deviation and variance of
the model. The loss function represents the deviation of the model and, in order to keep
the variance small, the regularization term needs to be added to the objective function to
prevent over-fitting. Therefore, the objective function is composed of the loss function of
the model and the regularization term that suppresses the complexity of the model. The
definition of the objective function is as follows:

Obj(θ) = L(θ) + Ω(θ) =
n

∑
i=1

L
(
yi, yt

i
)
+

t

∑
k=1

Ω( fk), (2)

In Equation (2), it can be seen that the objective function Obj(θ) is composed of two
parts: ∑n

i=1 L
(
yi, yt

i
)

is the sum of the errors generated between the true value and the
predicted value of n test samples, and L is the loss function of XGBoost.

Ω( fk) is the regularization penalty function of model complexity, which is defined as

Ω( fk) = γT +
1
2

λ

T

∑
k=1

w2
k , (3)
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In Equation (3), γ represents the penalty coefficient, and λ represents a fixed coefficient.
γ is used to control the number of leaf nodes in the decision tree. When the number of leaf
nodes is too large it is easy to produce over-fitting. λ is used to control the weight of each
decision tree, to ensure that its value is not too large, and to avoid limited space for the
subsequent decision tree. T represents the number of leaf nodes of the decision tree. fk, wk
is the vector formed by all the leaf node values of the decision tree, and this formula is the
complexity of a single classifier.

The objective function is simplified by Taylor’s formula and defined as

Obj =
T

∑
i=1

[
Giwi +

1
2 (Hi + λ)w2

i

]
+ γT, (4)

In Equation (4), Gi is the sum of the first gradient of the ith leaf node of all decision
trees and Hi is the synthesis of the second gradient of the ith leaf node of all decision trees.
When each decision tree is generated, the structure is determined, and then Gi, Hi and T
will also be determined.

To achieve the best performance of XGBoost, it is essential to use appropriate methods
to construct the optimal structure of the decision tree. There are two ways to split the nodes
of the XGBoost algorithm: the greedy algorithm and the approximation algorithm. The
greedy algorithm is the main node-splitting method in XGBoost. Starting from the root
node, the greedy strategy is used to select the best splitting feature as the splitting node to
segment the training data. Then the greedy strategy is continuously used to split until the
decision tree can no longer continue to split. The information gain of each splitting feature
is calculated. The feature with the largest information gain is the best splitting feature,
which is defined as

Lsplit =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)

HL + HR + λ

]
− γ, (5)

In Equation (5), Lsplit is the information gain, and G2
L

HL+λ , G2
R

HR+λ , (GL+GR)
HL+HR+λ are the values

of the left subtree, the right subtree and the undivided decision tree, respectively. When
Lsplit < 0, the decision tree gives up segmentation.

2.3. Principles of Particle Swarm Optimization

Particle swarm optimization (PSO) [29] is an optimization algorithm based on the
foraging behavior of birds in nature, and it is used to solve optimization problems. The PSO
simulates the social behavior and collaborative learning processes between individuals in
bird flocks to find the optimal solution.

1. Individual representation: In the particle swarm optimization algorithm, each candi-
date solution in the solution space is called a particle, and each particle represents the
hyperparameters of XGBoost, which includes the objective function, the learning rate,
the maximum depth of each tree, the sub-sampling rate of the training samples of
each tree, the sub-sampling rate of the features of each tree, and the number of trees.
The loss function is used to minimize the mean square error, as shown in Equation (6):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (6)

2. Fitness function: The problem solved by the particle swarm optimization algorithm
usually needs to maximize or minimize an objective function, which is called a fitness
function. The fitness function is the RMSE of the XGBoost proxy model. The smaller
the value is, the better the model’s effectiveness will be, as shown in Equation (7):
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RMSE =

√√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2. (7)

3. Initialization: At the onset of the algorithm, a certain number of particles are randomly
generated, and their position and velocity are initialized. In general, the positions of
particles are randomly distributed in the solution space, and the velocity is initialized
as a zero vector.

4. Fitness evaluation: For each particle, the fitness value is calculated corresponding to
its position.

5. Individual optimal position update: For each particle, the individual optimal position
should be updated, the current fitness value should be compared with the fitness
value of the individual optimal position, and it should be updated if it is better.

6. Global optimal position update: The position of the particle with the best fitness value
among all individuals should be selected as the global optimal position.

7. Velocity and position update: According to certain rules, update the velocity and
position of the particles in order to move towards the individual optimal position and
the global optimal position. The velocity update depends on the historical velocity
of the particle, the individual optimal position, and the global optimal position. The
velocity update equation is shown in Equation (8):

Vk+1
iL = wVk

iL + c1r1

(
Pk

bL − Xk
iL

)
+ c2r2

(
Pk

gL − Xk
iL

)
, (8)

In Equation (8), where Vk
iL = [vk

i1, vk
i2, . . . , vk

iL] is the velocity of the ith particle at time
k, Pk

bL = [Pk
i1, Pk

i2, . . . , Pk
iL] is the historical individual optimal position of the ith particle,

and Pk
gL = [Pk

g1, Pk
g2, . . . , Pk

gL] is the global optimal position. The inertia weight w represents
the influence of the velocity of the previous generation of particles on the velocity of the
current generation of particles. A larger inertia weight contributes to global optimization,
while a smaller inertia weight contributes to local optimization. k is the k th generation of
the population, c1 and c2 are the individual velocity factor and the global velocity factor,
respectively, and r1 and r2 are random numbers between 0 and 1.

Xk+1
iL = Xk

iL + Vk+1
iL , (9)

In Equation (9), Xk
iL =

[
xk

i1, xk
i2, . . . , xk

iL

]
is the position of the ith particle at time k.

8. The termination condition: According to the set termination condition (such as the
number of iterations to reach the preset value or the fitness to reach the threshold),
determine whether to end the algorithm. If the termination condition is not met, go
back to step 4.

9. Output results: Output the solution corresponding to the global optimal position as
the optimal hyperparameters of XGBoost.

2.4. Proxy Model Flowchart and Pseudocode

When using PSO to optimize the hyperparameters of XGBoost, the hyperparameters
of XGBoost are typically treated as the optimization variables in PSO. The specific steps
are as follows: First, the dataset for training and testing is collected, including features and
labels. Next, a fitness function is defined, which takes the hyperparameters of XGBoost as
the input and returns the RMSE of the model on the training data. Then, the parameters for
the PSO algorithm are set, as detailed in Table 1. Subsequently, the PSO algorithm is used
to search for the optimal hyperparameter combination of XGBoost to minimize the fitness
function. Once the optimal hyperparameters are found, these parameters are used to train
the XGBoost model. Finally, the performance of the trained XGBoost model is evaluated
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on the test set, and the trained model is saved to a file for future use. The PSO-XGBoost
algorithm flow is shown in Figure 1, and the pseudo-code is shown in Algorithm 1.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 1. The implementation process of evaluation of the proxy model. 

2.5. Data Collection and Update 

The evaluation of the proxy model helps users to assess products. The proxy model, 

also known as an approximation model, is a model constructed to substitute for users in 

evaluation. Generally, a large amount of evaluation sample information makes the evalu-

ation of the proxy model more accurate. The number of evaluations per user is limited, 

and too many ratings will cause users’ fatigue. In order to solve this problem, this paper 

collects all the evaluation information data of users who have used the 3D vase design 

system [30], including the users’ personal information, the individual characteristics data, 

and the fitness value information of the vase. These data are used to construct a PSO-

XGBoost model, which can allow the current user to find the other similar users quickly 

and obtain their historical evaluation data to predict the fitness of the new individual. 

Figure 1. The implementation process of evaluation of the proxy model.

Table 1. PSO parameters setting.

Parameter Numerical Value

number of particles 10
number of dimensions 5
number of iterations 50

inertia weight 0.5
c1, c2 1.5
r1, r2 random generation (0–1)
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Algorithm 1. The pseudo-code of the improved XGBoost proxy model

Input: populationsize, max_generations
Output: best_hyperparameters, predictions
(1) Initialize a population of random hyperparameter sets
(2) best_hyperparameters = None
(3) best_rmse = infinity
(4) For generation in range(max_generations) do
(5) For particle in population do
(6) Evaluate the fitness of the particle’s hyperparameters using RMSE
(7) If fitness is better than the particle’s personal best Then
(8) Update the particle’s personal best hyperparameters
(9) If fitness is better than the global best Then
(10) Update the global best hyperparameters
(11) end
(12) end
(13) end
(14) For particle in population do
(15) Update particle velocity and position using the PSO formula
(16) end
(17) end
(18) learning_rate,max_depth,subsample,colsample_bytree,n_estimators=best_hyperparameters
(19) max_depth = int(max(1, max_depth))
(20) best_xgb_model = xgb.XGBRegressor(objective=‘reg:SSE’,
(21) learning_rate=learning_rate,
(22) max_depth=max_depth,
(23) subsample=subsample,
(24) colsample_bytree=colsample_bytree,
(25) n_estimators=int(n_estimators),
(26) random_state=42)
(27) best_xgb_model.fit(x_train, y_train)
(28) predictions = best_xgb_model.predict(x_test)
(29) Return: best_hyperparameters, predictions

2.5. Data Collection and Update

The evaluation of the proxy model helps users to assess products. The proxy model,
also known as an approximation model, is a model constructed to substitute for users in
evaluation. Generally, a large amount of evaluation sample information makes the evalua-
tion of the proxy model more accurate. The number of evaluations per user is limited, and
too many ratings will cause users’ fatigue. In order to solve this problem, this paper collects
all the evaluation information data of users who have used the 3D vase design system [30],
including the users’ personal information, the individual characteristics data, and the
fitness value information of the vase. These data are used to construct a PSO-XGBoost
model, which can allow the current user to find the other similar users quickly and obtain
their historical evaluation data to predict the fitness of the new individual.

However, it should be noted that the evaluation of the proxy model based on similar
individual information and the adaptive value predicted by the proxy model may be
different from the actual evaluation of the user. Therefore, users are allowed to modify
and submit the individual fitness predicted by the proxy model, and the user’s evaluation
data are saved. Considering that updating the proxy model is a time-consuming process,
in order to avoid affecting the user’s design experience, a system has been designed to
automatically update the proxy model when the population evolution is terminated by the
user. As shown in Figure 2, this ensures that the model is updated in a timely manner.
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3. Vase Design
3.1. Vase Construction and Coding

In order to meet the various needs of different users and generate different types
of vases, the vases are designed based on bicubic Bézier surfaces [31]. First, this method
requires constructing a mesh model of the vase using the control points of the Bézier surface
and then changing the coordinates of the control points to change the shape of the vase,
thereby generating different vases. The definition of a bicubic Bézier surface is as follows:

p(u, v) =
3

∑
i=0

3

∑
j=0

Pi,jBi,3(u)Bj,3(v), (u, v) ∈ [0, 1]× [0, 1]. (10)

In Equation (10), Bi,3(u) and Bj,3(v) are cubic Bernstein basis functions, and Pi,j is the
control point of the surface. The equation can be changed into

p(u, v) = UMPMTVT . (11)

In Equation (11), U =
[
u3u2u1

]
, V =

[
v3v2v1

]
, M =


−1 3 −3 1
3 −6 3 0
−3
1

3
0

0
0

0
0

,

P =


P0,0 P0,1 P0,2 P0,3
P1,0 P1,1 P1,2 P1,3
P2,0
P3,0

P2,1
P3,1

P2,2
P3,2

P2,3
P3,3

.

The construction of the vase model is relatively simple and mainly includes three
parts: the bottle mouth, the bottle body, and the bottle bottom. Due to the central rotational
symmetry of the vases, the vase model can be considered as formed by the rotation of the
Bézier curve. To enhance the intricacy of the vase curve, this study utilized two cubic Bézier
curves for the vase contour [32], as depicted in Figure 3. The control points P0–P6 form a
cubic spline curve, with P3 serving as the connection point for the two curves. To ensure
a smooth connection between the two curves, it is essential to maintain the collinearity
of points P2, P3, and P4. On the right side of the image is the control point grid model for
the double cubic Bézier surfaces. To maintain the central rotational symmetry of the vase,
the x and y coordinates of the initial control points in the same row are multiplied by the
same scaling factor. This ensures a uniform reduction or enlargement of the control points
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in the same row, preventing deformation of the vase. The control points aligned with P0,
such as P00–P03, as shown in Figure 3, undergo scaling by the scaling factor applied to the
P0–P6 control points. Therefore, this study adjusts the scaling factor to P0–P6, allowing
the control points of the vase to be modified, thereby simplifying the users’ operation in
shaping the vase.
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Before constructing the vase, it is necessary to generate the vase mesh model using
control points. When creating the mesh model, a quadrilateral mesh is used; however, in
the rendering and computation processes, triangular meshes are generally more stable,
especially during deformation or transformations. Therefore, when using Three.js to add
materials and render the vase, the mesh model is converted into a form composed of
triangles. The vase mesh model is illustrated in Figure 4. As two cubic Bézier curves were
employed to form the vase contour, it becomes essential to divide the vase body into upper
and lower sections. The upper section comprises four bicubic Bézier surfaces, and the
lower section is formed by four surfaces. The vase mouth is constructed by a circle formed
by a curve, and the bottom is composed of a circle formed by the concatenation of four
Bézier surfaces. When joining the upper and lower surfaces, the last row of the upper
surface serves as the first row of the lower surface. Similarly, when joining the left and
right surfaces, the last column of the left surface serves as the first column of the right
surface. To ensure the smoothness of surface concatenation, the symmetric control points
at the junction are first uniformly adjusted and then the normal vectors of the surfaces are
calculated. This ensures the correct computation of normal vectors at each surface point.
Correct normal vectors are crucial for rendering smooth and realistic surfaces, especially
for handling lighting and shading. When light strikes the surface, normal vectors are used
to calculate the angle between the light and the surface, influencing the scattering and
reflection of light. This is essential to achieve visual smoothness and a realistic texture,
particularly in the context of lighting and shading processing. In order to elevate the
authenticity of the designed vase, a richer pattern has been incorporated onto its surface.
Employing advanced image texture mapping technology [33], this intricate pattern is
seamlessly fused with the vase, creating a harmonious and lifelike aesthetic.

The IGA’s gene coding is made up of three parts: texture picture, vase height, and
control point parameters. The random combination of the three parts constitutes different
chromosomes representing different vase models. The composition of the vase gene coding
is shown in Figure 5. The curve of the bottle body is composed of anchor points (P0, P3,
P6) and curvature control points (P1, P2, P4, P5). The mouth and bottom of the vase are
controlled by P0 and P6, respectively.
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The individual utilizes binary encoding, consisting of control point parameters, vase
height, and texture images, as illustrated in Figure 6. The x and y coordinates of con-
trol points P0 to P6 are represented by seven sets of 8-bit binary codes, ranging from
0 to 2.55 times their original values. The z-axis coordinates of control points P0 to P6 are
represented by 8-bit binary codes, also ranging from 0 to 2.55 times their original values.
There are a total of 64 texture images, each represented by a 6-bit binary code. Therefore,
the genetic encoding for a vase comprises 70 bits. Once the population evolution has
been completed, the decoding of the corresponding binary codes allows the retrieval of
individual vase characteristics, which can then be displayed on the interactive platform.
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3.2. Evolutionary Operators

The evolutionary operators use roulette selection and elite strategy, multi-point
crossover, and uniform mutation. Figure 7 shows the operation diagram of the crossover
operator and the mutation operator. When the chromosomes intersect, multiple crossover
points are randomly set in the individual chromosomes, and then gene exchange will be
performed. When the chromosome mutates, the mutation probability of each gene point is
the same, and the gene point mutates when the probability is satisfied.
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3.3. Graphic Interaction Mechanism

In this paper, the GIM is introduced in the middle and late stages of individual
evolution. With the GIM, users can modify the characteristics of individual vases according
to their personal preferences so that they can quickly find the products they are satisfied
with. Considering that not all users have a good understanding of vase design, computer
graphics are integrated [34] and a parametric method is used to construct a 3D model. As
shown in Figure 8, the picture of the vase on the left is a 3D vase generated by the bicubic
Bézier surfaces, and several buttons on the right are used to control the parameters of the
vase. With the GIM, the user can change the vase parameters by dragging the button so that
the shape of the vase will be changed. When the users are not satisfied with the shape of the
vase, they can use the GIM to change the shape and add their own preferred individuals to
the population. This enriches the population diversity, so that the evolution does not easily
fall into the local optimum.
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3.4. Algorithm Procedure

In response to the IGA’s core problem of the user’s fatigue, this study has made
improvements to the IGA by adding a proxy model to assist users to evaluate individuals.
If users feel unsatisfied with the fitness values predicted by the proxy model, they have the
option to adjust them to better align with their expectations. However, some users may
have limited understanding of the designed products, resulting to uncertainty in the initial
evaluation. In this study, the GIM has been introduced in the middle and later stages of
evolution, allowing users to freely adjust the vase model according to their preferences.
Once the evolution generation reaches the set generation, the evolution concludes and
the user’s evaluation data are stored to the database to update the proxy model, thereby
enhancing its performance. The algorithm flow chart is shown in Figure 9. Algorithm 2
shows the pseudo-code of the algorithm.

Algorithm 2. Algorithm details steps

Input: population_size,crossover_rate,mutation_rate,interactive_generation,termination_generation
Output: none
(1) generation = 0
(2) population[generation] = initialize_population(population_size)
(3) model = PSO-XGBoost.build(DB.dataset())
(4) While generation<=termination_generation do
(5) model.prediction(population[generation])
(6) If generation > interactive_generation && is_adjust() Then
(7) adjust(population[generation])
(8) end
(9) evaluate(population[generation])
(10) chromosomes = encode(population[generation])
(11) While (population[generation+1].size() < population_size) do
(12) pairs = select(chromosomes)
(13) If rand() < crossover_rate Then
(14) pairs = crossover(pairs)
(15) end
(16) If rand() < mutation_rate Then
(17) pairs = mutate(pairs)
(18) end
(19) population[generation+1].add(decode(pairs.first))
(20) If (population[generation+1].size() < population_size) Then
(21) population[generation+1].add(decode(pairs.second))
(22) end
(23) end
(24) generation++
(25) end
(26) For g = 0 to termination_generation do
(27) DB.save(population[g])
(28) end
(29) model.update(DB.dataset())
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4. Experimental Results and Analysis
4.1. Parameters Setting of Interactive Genetic Algorithm

The main problem of human–computer interaction is the user’s fatigue. Appropriate
population size and evolutionary termination generation can not only help users reduce
fatigue, but also improve efficiency. Therefore, the population size of the system is set to
six, and the generation of evolutions is set to 20. The system will judge when the number
of iterations reaches the set number and the evolution will be automatically terminated.
The crossover probability is set to 0.9 and the mutation probability is set to 0.1. The genetic
parameters of the IGA are shown in Table 2.
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Table 2. Genetic parameters setting.

Parameter Numerical Value

maximum generation 20
population size 6

crossover probability 0.9
mutation probability 0.1

4.2. Comparison of Proxy Models

In order to verify the prediction performance of the PSO-XGBoost proxy model, this
study compares the accuracy of the XGBoost model and the PSO-XGBoost model. Due to
the current single database in the vase design platform, where all user evaluation data and
individual evaluation details are stored, the platform’s database is utilized as the dataset
for training the surrogate model. The dataset is divided into training and testing sets in
a 9:1 ratio. The training set is used to train the surrogate model, while the testing set is
employed to validate the effectiveness of the predicted results. Because there is too much
data in the test set, 100 samples in the test set are randomly selected for comparison, and
the predicted value of the model is compared with the real value, as shown in Figure 10.
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Figure 10. The predicted values of the XGBoost and PSO-XGBoost models are compared with the
real values.

It can be seen from Figure 10 that the PSO-XGBoost model curve better matches the
real value curve than the XGBoost model curve. The performance indicators of the two
models are shown in Table 3.

Table 3. Performance comparison of proxy models.

Proxy Model RMSE MAE Accuracy R2

XGBoost (1) 1.0858 0.695 87.5% 0.793
XGBoost (2) 1.0668 0.656 87.6% 0.798
XGBoost (3) 1.0677 0.642 87.7% 0.797

PSO-XGBoost 1.0286 0.618 88.8% 0.814

It can be seen from Table 3 that this study compares the RMSE, the MAE, the accuracy,
and R2 of the two proxy models under the same data set. XGBoost (1), XGBoost (2), and
XGBoost (3) are models trained under different hyperparameters of XGBoost. The specific
parameters are shown in Table 4. Compared with the XGBoost model, the RMSE of the
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PSO-XGBoost model has decreased by 0.0391–0.0572, the MAE has decreased by 0.024–0.077,
the accuracy has increased by 1.1–1.3%, and the R2 has increased by 0.016–0.021. It is concluded
that the PSO-XGBoost model has better performance and better prediction effect.

Table 4. XGBoost with different parameters.

Parameter XGBoost (1) XGBoost (2) XGBoost (3)

objective reg:squarederror reg:squarederror reg:squarederror
learning_rate 0.1 0.12 0.13
max_depth 5 6 7
subsample 0.7 0.7 0.7

colsample_bytree 0.7 0.7 0.7
n_estimators 1000 1100 1300

In order to further prove the effectiveness of the PSO-XGBoost model, this study
compares the K-D tree (KDT) proxy model, the random forest (RF) proxy model, and the
PSO-XGBoost proxy model. Randomly select 100 samples in the test set for comparison
and use different proxy models to predict user evaluation, as shown in Figure 11.
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Figure 11. The predicted values of the KDT, RF, and PSO-XGBoost models were compared with the
true values.

It can be seen from Figure 11 that the predicted value curve of the PSO-XGBoost model
is consistent with the real value curve, and the predicted value curves of the KDT model
and the RF model have certain gaps from the real value curve. The PSO-XGBoost proxy
model is compared with the KDT model and the RF model performance indicators, as
shown in Table 5.

Table 5. Performance comparison of proxy models.

Proxy Model RMSE MAE Accuracy R2

KDT 2.5677 1.953 68.6% 0.537
BPNN 1.2400 0.812 84.1% 0.738

RF 1.1533 0.750 84.9% 0.766
BCMO-XGBoost 1.0247 0.626 89.1% 0.815

PSO-XGBoost 1.0286 0.618 88.8% 0.814
PSO-XGBoost(average) 1.1015 0.723 86.8% 0.7854
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It can be seen from Table 5 that this study compares the RMSE, the MAE, the accuracy,
and R2 of different proxy models under the same data set. Compared with the KDT and
the RF proxy models, the RMSE of the PSO-XGBoost model decreased by 1.5391 and 0.1247,
respectively, the MAE decreased by 1.335 and 0.132, respectively, the accuracy increased by
20.2 % and 3.9 %, respectively, and the R2 increased by 0.277 and 0.048, respectively. It is
concluded that the prediction effect of the PSO-XGBoost model is better than that of KDT
model and RF model. In addition to algorithms in the field of machine learning, this paper
also compared the BPNN algorithm [18] in the field of deep learning. From the performance
indicators, it can be seen that the prediction performance of PSO-XGBoost is slightly
better. To further demonstrate the performance of PSO-XGBoost, this study also took into
account the randomness in the PSO optimization parameters. Therefore, PSO-XGBoost
was run 10 times to obtain the average performance. From Table 5, it can be observed
that compared to the optimal PSO-XGBoost model, the performance of PSO-XGBoost
(average) is slightly inferior, but it is better than that of the previous three algorithms. In
addition, this paper also utilized Balancing Composite Motion Optimization (BCMO) [35]
to optimize the hyperparameters of XGBoost, referred to as BCMO-XGBoost. As shown
in Table 5, BCMO-XGBoost exhibits slightly better performance in terms of RMSE and
accuracy compared to PSO-XGBoost. However, BCMO-XGBoost shows slightly worse
performance in terms of MAE and R2 compared to PSO-XGBoost. The optimization
stability of BCMO-XGBoost is expected to be better, albeit with longer runtime. In general,
PSO-XGBoost performs well.

4.3. Comparison of Optimization Ability

In order to prove the effectiveness of the methods proposed in this study, the tra-
ditional IGA, IGA using KDT proxy model (KDTGIM-IGA) [17], IGA using RF proxy
model (RFGIM-IGA), IGA using XGBoost proxy model (XGBGIM-IGA), and IGA using
PSO-XGBoost proxy model (PXG-IGA) were compared. Using the method of control-
ling variables, the evolutionary parameters of the five methods are set to the same value.
The evolutionary operator uses roulette selection and elite strategy, multi-point crossover,
and uniform mutation. In this study, five users were selected to operate each algorithm
once. The users operated through the interactive interface, and the scoring interval was
0–10 points. When the population evolves to the end of the 20th generation, the interactive
interface is shown in Figure 12. This study mainly compares the average fitness, average
maximum fitness, number of user evaluations, and user evaluation time of five different al-
gorithms to verify the ability of the method proposed in this study to optimize performance,
reduce the number of user evaluations, and alleviate the user’s fatigue.
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According to the experimental results, Figures 13 and 14 compare the fitness distribu-
tion of the five users using the five methods. Figure 13 shows the trend graph of the average
fitness value of each generation of evolutionary individuals. These five curves represent
the change trend of the average fitness value of each generation of the five methods. The
curve of the PXG-IGA proposed in this study shows an upward trend with the evolution
of generations, and the curve of the PXG-IGA is higher than that of the other algorithms
after the tenth generation, indicating that the PXG-IGA is better than the other algorithms.
In the first 10 generations, there was no significant difference between the traditional IGA
and other IGA curves with the proxy models. However, after 10 generations, due to the
use of the graphical interaction mechanism, the curves of the other four algorithms are
significantly improved compared with the IGA curves. From Figure 14, the change trend
of the average maximum fitness value of the user evaluation individual with the increase
in the generations can be observed. Obviously, the average maximum fitness curve of the
PXG-IGA is higher than that of the other methods.
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4.4. Comparison of User Fatigue Alleviation

The greatest feature of the IGA is using human–computer interaction to solve those
implicit performance index problems. However, humans are prone to fatigue and if
users are required to operate too frequently it will increase their sense of fatigue. The
user’s fatigue will lead to noise in user evaluation and deviation in fitness. This study
introduces the PSO-XGBoost proxy model to help users to evaluate, helping users to reduce
the number of evaluations, thereby reducing fatigue. In order to prove the effect of the
algorithm proposed in this study, the experiment compares the number of evaluations
and time of evaluations of users using different algorithms. The number of evaluations
refers to the number of individuals evaluated by the user. The more users evaluate the
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number of individuals, the more likely they are to be fatigued. The time of evaluations can
reflect the difficulty of the user’s evaluation of the population and the performance of the
system. The longer the evaluation time, the longer the user participates in the design, and
the more likely the user is to be fatigued. Therefore, the number of evaluations and time
of evaluations can be used to measure the indicators of the user’s fatigue. The number of
evaluations and time of evaluations of the five algorithms are shown in Table 6.

Table 6. Comparison of number of evaluations and time of evaluations.

User Number 1 2 3 4 5

IGA
number of evaluations 120 120 120 120 120

time of evaluations 511 s 394 s 478 s 354 s 468 s

KDTGIM-IGA
number of evaluations 73 66 57 54 42

time of evaluations 369 s 407 s 370 s 322 s 341 s

RFGIM-IGA
number of evaluations 68 65 83 31 36

time of evaluations 340 s 341 s 314 s 286 s 292 s

XGBGIM-IGA
number of evaluations 58 60 30 42 75

time of evaluations 358 s 236 s 270 s 242 s 248 s

PXG-IGA
number of evaluations 45 47 65 36 57

time of evaluations 247 s 227 s 272 s 191 s 234 s

Figures 15 and 16 illustrate the number of evaluations and times of evaluations, as well
as their means and standard deviations, for five users on the vase design platform using
IGA, KDTGIM-IGA, RFGIM-IGA, XGBGIM-IGA, and PXG-IGA, respectively. From the
comparison of mean values, the number of evaluations of the PXG-IGA is 3–70 evaluations
fewer than that of the other algorithms, and the times of evaluations are 36.6–206.8 s shorter
than those of the other algorithms. From the perspective of standard deviation comparison,
because the number of evaluations of the IGA is 120 times each time, its standard deviation
is 0, and the standard deviation in the number of evaluations in the PXG-IGA is the smallest
compared with the other three algorithms. The standard deviation in the time of evaluations
of the PXG-IGA is lower than that of IGA, KDTGIM-IGA, XGBGIM-IGA, and higher than
that of RFGIM-IGA. This is because the evaluation behavior of different users may be very
different, resulting in large fluctuations in the times of the evaluations of different users, so
the standard deviation in the number of evaluations of the PXG-IGA is the smallest. On
the contrary, the standard deviation in the time of evaluations will be larger than that of
the RFGIM-IGA. By comparing the number of evaluations and time of evaluations of these
five algorithms, it can be seen that the performance of the IGA with the proxy model is
better than the traditional IGA. The average number of evaluations and time of evaluations
of the PXG-IGA are lower than the other proxy model algorithms, and the stability of the
algorithm is more stable than the other algorithms. This shows that the effectiveness of the
PXG-IGA is better and can effectively mitigate the user’s fatigue.
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5. Conclusions

This system aims to promote the development of product design in a more intelligent
and more convenient direction. A method for improving the IGA has been proposed which
utilizes PSO-XGBoost as the proxy model and introduces the GIM. Based on this method,
a 3D vase design system has been constructed. Based on the user’s historical data, this
method assists users to evaluate individual products by training the PSO-XGBoost proxy
model, and constantly adds data of new users to update the model for improving accuracy.
In order to design the preferred products faster, this study uses the GIM, which allows
users to dynamically change individual features, introduce new features to the population,
and increase its diversity.
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The experimental results indicate that the PSO-XGBoost model has significant advan-
tages in prediction performance regarding proxy model comparison. As for optimization
ability comparison, the PXG-IGA is obviously superior to the IGA, KDTGIM-IGA, XGBGIM-
IGA, and RFGIM-IGA in terms of average fitness and average maximum fitness, especially
after the tenth generation, when its effect stands out prominently. As for comparison of
the alleviation of user fatigue, the PXG-IGA shows a significant reduction in the number
of evaluations and evaluation time compared to the IGA, KDTGIM-IGA, XGBGIM-IGA,
and RFGIM-IGA, providing users with a better evaluation experience. Finally, it can be
concluded that the method proposed in this study can effectively mitigate the user’s fatigue
and enable the faster design of products that satisfy users. However, in terms of alleviating
the user’s fatigue, different users may have varying habits and preferences. This study
does not examine the impact of individual differences on the effectiveness of fatigue relief,
which is an aspect that requires further, in-depth research.
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