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Abstract: This study introduces the design of a state-feedback controller for Linear Parameter Varying
(LPV) systems in scenarios where exogenous parameters are not directly accessible, and the state
vector is to be estimated. Instead of considering a static feedback gain, it proposes a method for
estimating these parameters and synthesizing a parameter-dependent state-feedback gain that is
robust against uncertainties in parameter estimation. The state vector used by the state-feedback
controller, and some quantities required by the estimation law, are both obtained by a robust filter
synthesized by LMI (Linear Matrix Inequalities). This paper outlines the estimation, filtering, and
control laws, detailing the conditions necessary for ensuring convergence and stability. A numerical
experiment and a 2 DoF torsional system application show the enhanced dynamic performance of the
method when applied to uncertain dynamic systems. The findings highlight the effectiveness of the
proposed approach in maintaining system stability and improving performance despite the inherent
uncertainties in parameter estimation, offering a significant contribution to the field of robust control
for LPV systems.

Keywords: LPV systems; parametric estimation; state-feedback control; linear matrix inequalities;
robust filtering; estimation uncertainty

MSC: 93D21

1. Introduction

Linear Parameter Varying (LPV) systems have received significant attention in control
studies due to their capability to manage systems with dependencies on external adjustment
variables and moderate nonlinearities. This approach is particularly advantageous, as it
enables the application of linear control techniques by using the polytopic representation of
these systems, which can then be addressed through Linear Matrix Inequalities (LMIs) [1–3].

However, the development of LPV control systems often requires the availability
of tuning parameters. Unfortunately, this requirement is not always met in practical
applications. A notable example is the use of a canonical observer, a classical structure
used to provide state information, which aims to replicate the dynamics of the LPV system.
This replication process demands access to the exogenous and general system parameter
to accurately construct the state estimation dynamics [4]. Similarly, LPV filter-based
techniques require either knowledge of the parameter or the adoption of a robust polytopic
formulation. In such a formulation, the parameter is treated as an uncertainty, a method
that can lead to conservatism or even be infeasible in some scenarios [5]. This challenge

Mathematics 2024, 12, 1941. https://doi.org/10.3390/math12131941 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12131941
https://doi.org/10.3390/math12131941
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9288-6376
https://orcid.org/0000-0003-1282-3955
https://orcid.org/0000-0001-7630-1828
https://orcid.org/0000-0001-6996-3129
https://orcid.org/0000-0002-3431-6359
https://doi.org/10.3390/math12131941
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12131941?type=check_update&version=2


Mathematics 2024, 12, 1941 2 of 24

highlights the necessity for innovative approaches to control LPV systems without relying
strictly on the availability of these parameters, thereby ensuring both robustness and
feasibility in practical applications.

When the exogenous parameter is unavailable for reading and direct measurement,
combining parametric estimation techniques with LPV control methodologies becomes
a viable solution. For example, in [6], the challenge of state estimation in LPV systems is
addressed using switched Luenberger observers. These observers are fine-tuned through
a least-squares approach, offering a practical method for parameter estimation. Similarly,
in [7], a modified version of the extended Kalman filter is employed to determine the
tuning parameter for an LPV controller, specifically for the control of reaction engines. This
method resembles the approach developed by [8], which focuses on controlling arterial
pressure. Neural network estimators and machine learning approaches have also provided
good results under the circumstances mentioned above, especially when combined with
observers and robust control techniques, as can be seen in [9,10].

Additional notable contributions on this subject include the works of [11–13]. These
studies further explore various techniques for integrating parameter estimation with LPV
control. Despite these advancements, the issue of guaranteeing the convergence of the
combined closed-loop controller–estimator system remains underexplored and is frequently
disregarded. Ensuring such convergence is crucial for the reliable performance of these
systems in practical applications, indicating a significant area for future research and
development. This gap underscores the need for continued investigation into robust
methodologies that ensure both stability and convergence in LPV control systems using
parametric estimation—a problem to which this article aims to contribute.

The problem of convergence for the closed-loop estimator–controller set is addressed
in [14]. In this research, a single Lyapunov function is constructed that incorporates the
dynamics of both the controller and the estimator. This approach ensures the convergence
of the entire set and provides a robust solution to the problem. Similarly, in [5], the gain
of an LPV controller is defined in terms of a new adaptive estimation law, which also
guarantees the stability of the system. This study employs a joint Lyapunov function to
achieve its results, further solidifying the connection between estimation and control.

Building on these foundations, ref. [15] presents more recent advances in the field
by developing adaptive controllers that are combined with high-order estimators. This
approach involves estimating not only the unknown parameter but also its derivatives,
thereby enhancing the adaptability and precision of the control system. These high-order
estimators contribute to a more nuanced understanding and management of the system dy-
namics. By integrating estimation with control to ensure system stability and convergence,
and addressing the convergence issue through sophisticated techniques such as unified
Lyapunov functions and adaptive estimation laws, these studies represent significant
contributions to the field of LPV systems.

The problem becomes more involved if the states are unavailable for feedback. Consid-
ering the objective of robustly controlling dynamical systems in this case, two approaches
are usually applied: estimating the states through observers [16,17] or developing output
feedback controllers [18–20]. To the best of the authors’ knowledge, the utilization of a
control framework depending only on the system outputs, which performs estimation of
both the parameters and states, and using them to achieve a proper closed-loop stable
system, is still an open problem.

In this context, this work proposes novel LPV control conditions considering the
estimation of the exogenous parameters and the states, along with guarantees of closed-
loop convergence. The approach taken in this study assumes that the adjustment parameter
is partially accessible. This means that it comprises both a nominal component and an
uncertain component, which represents the estimation error.

The main contribution of this paper is the proposition of a framework for the develop-
ment of a reference tracking parameter-dependent control system, supposing that only the
system outputs are available for feedback. Three elements are crucial for the methodology:
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the controller, which is synthesized by considering that the parameters and the estimation
errors are within a given polytope [18,21], and also being robust on errors in the states; the
filter, responsible for robustly computing the estimated states from the outputs of the LPV
uncertain system; and the adaptive estimation procedure, which uses the filter information
to determine the parameters. It is worth mentioning that the synthesis conditions for the
controller and filter are also novel contributions from this paper. Finally, in this paper,
a series of conditions are developed and proposed to assure the convergence of the entire
framework. In this sense, the paper’s novelties and main contributions can be summarized
as follows:

• Development of a state feedback control law considering estimated states and param-
eters, an approach not yet performed through LPV filters;

• Introduction of conditions to assure the stability of the controller fed by the estimated
system states;

• Design of two novel LMI conditions: one aiming to synthesize H∞ state-feedback
gains supposing that the exogenous input matrix also depends on the controller gain,
and a condition to determine filter dynamics minimizing a generalizedH2 norm;

• A new convergence law, joining the parameter estimation procedure with the LPV
control law, achieved by the set estimation error boundaries.

The paper is organized as follows. Section 2 presents the preliminary results, which are
important for the development of the proposed approach, intended to solve the problem
whose formulation is detailed in Section 3. The main results of the paper, which are the
conditions for the synthesis of the controller, filter, and estimation procedure, as well a
convergence analysis, are presented in Section 4. Two experimental results, one analytic and
another stemming from a practical implementation, are presented in Section 5. Section 6
concludes the paper.

2. Preliminaries

In this paper, the following notation is used: Ix is the identity matrix with dimension
x, 0x is a matrix of zeros of dimension x, He{x} = x + xT , and the symbol ⋆ replaces
symmetric conjugate symmetric blocks, such that xij = xT

ji . The following preliminary
concepts are also used throughout this paper.

2.1. H∞ Norm [22]

Let a dynamic system be

ẋ(t) = Ax(t) + Bw(t),

z(t) = Cx(t) + Dw(t),
(1)

with matrices A ∈ Rn×n, B ∈ Rn×q, C ∈ Rq×n, D ∈ Rq×q, and transfer function from w(t)
to z(t) given by G(s) = C(sIn − A)−1B + D. Then, the norm H∞ of system (1), from the
input w(t) to the output z(t), is given by

H∞ : ||Gz,w(s)||∞ = sup
||w||̸=0

||z||2
||w||2

. (2)

2.2. Bounded Real Lemma

Suppose the continuous system presented in (1), and consider P = PT ∈ Rn×n.
The following conditions are equivalent:

||Gz,w(s)||∞ < γ, (3)AT P + PA PB CT

⋆ −γ2Iq DT

⋆ ⋆ −Iq

 < 0, P > 0, (4)
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AP + PAT PCT B
⋆ −γ2Iq D
⋆ ⋆ −Iq

 < 0, P > 0 (5)

More specifically, Conditions (4) and (5) are, respectively, the primal and dual formu-
lations for the Bounded Real Lemma.

2.3. Schur Complement

Consider any set of matrices (R, S, U) of appropriate dimensions, where R = RT and
U = UT . If U is invertible, the following conditions are equivalent:[

R S
ST U

]
< 0,

U < 0, R− SU−1ST < 0

2.4. GeneralizedH2 Norm

The generalizedH2 norm of system (1), from w(t) to z(t), is defined as [23,24]

||Gz,w(s)||2 = sup
i=1,...,nz

{
||zi(t)|| : x(0) = 0,

∫ ∞

0
w(τ)Tw(τ)dτ ≤ 1

}
. (6)

Using Lemma 1, the bounds for theH2 norm can also be obtained.

Lemma 1. The generalizedH2 norm ||Gzw||2 is upper bounded by µ ∈ R if there exists a Lyapunov
function V(x) satisfying

µ2V(x)− z(t)Tz(t) > 0, (7)

V̇(x) < w(t)Tw(t). (8)

3. Problem Formulation

Consider a parameter-dependent linear system given by

ẋ(t) = A(θ)x(t) + Bu(θ)(t) + Bw(θ)w(t),

y(t) = Cy(θ)x(t) + Dyw(θ)w(t),
(9)

in which x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the input vector (control sig-
nal), y(t) ∈ Rny is the output vector, w(t) ∈ Rnw is the exogenous input to the system—
representing disturbances and noise, and θ ∈ Rnθ is the vector that contains the system pa-
rameters, such that θ =

[
θ1, θ2, . . . , θnθ

]T presents magnitude limited by θi ∈
[
¯
θi, θ̄i

]
.

The matrices of (9) present adequate dimensions and are related to θ in an affine way:

M(θ) = M0 +
nθ

∑
i=1

θi Mi. (10)

In this paper, the polytopic representation of the matrices in (9) is used, facilitating
its manipulation at later stages. Thus, the dependence of the matrices in relation to each
parameter is rewritten as a function of vertices of the polytope (αi1, αi2), i = 1, . . . , nθ ,
using (11):

αi1 =
θi − ¯

θi

θ̄i − ¯
θi

, αi2 = 1− αi1, αi = (αi1, αi2) ∈ Λ2, (11)

in which Λr is the unit simplex presented in (12), with r = 2. The composition of several
polytopic elements leads to the multi-simplex representation, presented in Definition 1.

Λr =

{
α ∈ Rr :

r

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , r

}
. (12)



Mathematics 2024, 12, 1941 5 of 24

Definition 1 (Multi-simplex [25]). A multi-simplex Λ is the Cartesian product of a finite number
m of simplexes ΛN1 , ..., ΛNm , i = 1, ..., m, so that Λ = ΛN1 × ...×ΛNm .

For system (9), the output track of a reference r(t), the tracking problem, can be
achieved by defining the auxiliary state q̇(t) = r(t)− y(t), composing the extended state
vector x̄(t) =

[
xT(t) qT(t)

]T , where x̄(t) ∈ Rn̄. The extended system is presented in
Equation (13) and will be summarized in this paper as a general state feedback control
problem (Ā(θ)− B̄(θ)K(θ)),

G(θ)



˙̄x(t) =


[

A(θ) 0n×ny

−Cy(θ) 0ny

]
︸ ︷︷ ︸

Ā(θ)

−
[

Bu(θ)
0n×ny

]
︸ ︷︷ ︸

B̄(θ)

K(θ)

x̄(t) +
[

Bw(θ)
0nw×ny

]
︸ ︷︷ ︸

B̄w(θ)

w(t) +
[

0n×ny

Iny

]
︸ ︷︷ ︸

Br

r(t),

z(t) =
[
Cz(θ) 0ny

]︸ ︷︷ ︸
C̄z(θ)

x̄(t) + Dzww(t),

y(t) =
[
Cy(θ) 0ny

]︸ ︷︷ ︸
C̄y(θ)

x̄ + Dyww(t),

(13)

with z(t) ∈ Rnz being a virtual output vector.
As previously described, one of the objectives of this paper is to precisely determine a

control signal that stabilizes the system, in the format presented in (14), where K(θ) is the
scaled feedback gain and ˜̄x(t) is the estimated state vector.

u(t) = −K(θ) ˜̄x(t). (14)

The feedback law shown in (14) conveys two main problems in the control area.
The first problem is related to the synthesis of the gain K(θ), considering its parametric
dependence, while the second problem is related to the use of an estimated state vector in
state feedback control. In the following subsection, these two problems are disclosed.

3.1. Parametric Dependent Feedback Gain

When considering a completely available state vector, the synthesis of state feedback
gain can be obtained by several robust control techniques consolidated in the literature,
for which two approaches are commonly found:

1. The premise that the vector θ is precisely known [1,26,27];
2. The assumption that θ is not available, defining a static gain K valid for the entire

polytope [28,29].

However, these approaches can have restrictive characteristics: the first approach has
limitations in its practical implementation, while the second can generate conservative
results, especially in cases related to performance parameters, such as controllers of type
H2 andH∞.

A reasonable alternative is to consider the case in which θ is partially available—that is,
composed of an estimated nominal component—added to the reading and/or estimation
error. Thus, the controller synthesis condition can be relaxed compared to a static feedback
gain. Let θ̃i be the estimated parameters, which can be described as

θ̃i = θi + δi, i = 1, . . . , nθ , (15)

in which θi is the nominal parameter and δi is an additive estimation error limited by
|δi| ≤ δ̄i, δ̄i ∈ R+. The affine representation of the matrices in (10) can be generalized to
cover the case of an estimated parameter:
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M
(
θ̃
)
= M0 +

nθ

∑
i=1

(θi + δi)Mi, (16)

with the parameterization of the estimation error δi being obtained in a polytope such
that [18]

βi1 =
δi + δ̄i

2 δ̄i
, βi2 = 1− βi1, βi = (βi1, βi2) ∈ Λ2. (17)

Thus, combining the pair (θi, δi) in (16), and their respective polytopic representations
presented in (11) and (17), the following is obtained:

M(α, β) = M0 +
nθ

∑
i=1

[
αi1 θ̄i + αi2 ¯

θi
]
Mi +

nθ

∑
i=1

[
(βi1 − βi2)δ̄i

]
Mi. (18)

Applying the homogenization process to the matrix M(α, β), the representation of the LPV
matrix is obtained in terms of all vertices of the multi-simplex Λ, available in (19) and (20) [18].

M(α, β) =
2

∑
i1=1
· · ·

2

∑
inθ

=1

2

∑
j1=1
· · ·

2

∑
jnθ

=1
α1i1 . . . αnθ inθ

β1i1 . . . βnθ inθ
Ti1 ...inθ

j1 ...jnθ
, (19)

Ti1...inθ
j1...jnθ

= M0 +
nθ

∑
ℓ=1

[
(iℓ − 1) θ̄ℓ + (2− iℓ) ¯

θℓ + (−1)jℓ δ̄ℓ

]
Mℓ. (20)

Therefore, the system matrices (9) can be described by the composition of two LPV
elements—with α representing nominal components and β representing uncertainties and
errors in the parameter adjustment process. In the context of systems control, an estima-
tion law for θi can be proposed, which will allow removing the restrictive condition of
considering θ as unavailable, and replacing such a condition with one in which only δi is
not precisely known.

3.2. Estimated State Vector

The standard solutions for the state feedback gain, as well as the papers mentioned in
Section 3.1, consider that all states are available. This condition is also conservative, as in
some cases, these quantities cannot be easily obtained in a real-world environment. In this
instance, the use of an estimated state vector is of interest.

Although a common approach to obtain an estimated version of the state vector is
the use of LPV robust observers [16,17,30], the use of Luenberger-based observers is not
viable in this case—in the sense of the problem presented in Section 3.1, due to the non-
precise knowledge of the LPV parameters necessary to reconstruct the system dynamics.
To overcome this problem, we propose the use of robust filters in this work. Consider the
robust filter given by

F
{

ẋ f (t) = A f x f (t) + B f yy(t) + B f rr(t)

z f (t) = C f x f (t) + D f yy(t),
(21)

where x f (t) ∈ Rn̄ is the filter states and z f (t) ∈ Rnz the output satisfying lim
t→+∞

e(t) ≜

z(t)− z f (t) = 0. The dynamics of the augmented system, composed by the states from
red (13) and from the filter (21), are given by
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[
ẋ(t)
ẋ f (t)

]
=

[
Ā(α) 0

B f yC̄y(θ) A f

]
︸ ︷︷ ︸

Ã(α)

[
x(t)
x f (t)

]
︸ ︷︷ ︸

x̃(t)

+

[
B̄w

B f yDyw

]
︸ ︷︷ ︸

B̃w

w(t) +
[

Br
B f r

]
︸ ︷︷ ︸

B̃r

r(t)

e(t) =
[
Cz − D f yC̄y −C f

]︸ ︷︷ ︸
C̃z

[
x(t)
x f (t)

]
+
[
Dzw − D f yDyw

]︸ ︷︷ ︸
D̃w

w(t).

(22)

So, the problem of estimating the state can be achieved by obtaining the matrix set
(A f , B f y, B f r, C f , D f y), composing and stabilizing system (21), which will be presented in
the next section of this paper.

3.3. Summarized Problem Definition

In this context, the stability of the equivalent closed-loop system will depend on
three factors: the guarantee of convergence of the parametric estimation, the guarantee of
convergence of the filtered states, and the guarantee of stability of the feedback system,
considering the polytope composed by the parameter and its estimation uncertainty (α, β).
Assuming the conditions previously presented, the problems to be solved in this paper are
as follows:

1. Find a feedback gain K(α, β) that stabilizes the system, for a case in which θ̃ and the
states ˜̄x(t) are the estimated quantities;

2. Determine the filter matrices (A f , B f y, B f r, C f , D f y) that estimate the states ˜̄x(t).
3. Develop the estimation law for θ̃ and its attraction condition.

To the best of the authors’ knowledge, the combined problem of state feedback with
estimated states and parameters is still an open problem in the control area that this papers
aiming to contribute.

4. Main Results

In the present section, the proposed control system based on the estimated parameters
and states is developed, with the results divided into two parts. Section 4.1 presents the
conditions for the synthesis of a state-feedback gain K(θ̃) robust to uncertainties over the
parameters and depending on the estimated states (Theorem 1). The proposed robust filter
(Theorem 2) is also detailed in Section 4.1, whose condition is defined upon the system
controlled by the previously computed state-feedback gain, along with the procedure for
estimation of exogenous parameters θ̃ (Theorem 3). The conditions for the convergence
of the entire control system, which consists of the state-feedback gain, the filter, and the
estimation procedure, are then presented in Section 4.2. Two main results are detailed
therein: the requirements to assure that the estimation procedure indeed yields a parameter
whose uncertainties are contained within the prescribed bounds (Theorem 4), and the
conditions to the state-feedback gain, depending on the estimated states, guarantee the
stability of the entire system (Theorem 5).

4.1. Controller and Filter Synthesis

Consider the following state-feedback gain affinely dependent on the estimated pa-
rameters θ̃

K
(
θ̃
)
= K0 +

nθ

∑
i=1

(θi + δi)Ki, (23)

which is similar to the formulation in (16). Considering the homogenized formulation
in (19), it is possible to describe the state-feedback gain in (14) as K(α, β), i.e., depending on
the vertices of the multi-simplex Λ. Therefore, the desired control signal to be computed is
described as

u(t) = −K(α, β) ˜̄x(t), ∀(α, β) ∈ Λ. (24)
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The application of such control into system (13), considering Dzw = 0, results in
˙̄x(t) = (Ā(α)− B̄(α)K(α, β))x̄(t) +

[
B̄(α)K(α, β) B̄w(α)

][ e(t)
w(t)

]
+ Brr(t)

z(t) = C̄z x̄(t),
y(t) = C̄y(α)x̄(t) + Dyww(t),

(25)

where e(t) = x̄(t)− ˜̄x(t) is the state estimation error. Note that only the feedback gain
depends on the variable β connected to the estimation error, since the system dynamics
matrices Ā(α) and B̄(α) are inherent to the system.

The following theorem presents a set of conditions to generate the desired state-
feedback gain K(α, β).

Theorem 1. If there exists a definite positive symmetric matrix P(α) ∈ Rn̄×n̄; matrices G∈ Rn̄×n̄,
Z(α, β) ∈ Rny×n̄; and positive predefined scalars ξ1, ξ2, and ξ3 such that


−G− GT ⋆

P(α)− ξ1GT + Ā(α)G− B̄(α)Z(α, β) Ψ
−ξ2GT + C̄z(α)G ξ2(GT Ā(α)T − Z(α, β)T B̄(α)T) + ξ1C̄z(α)G

0n̄ ξ3Z(α, β)T B̄(α)T

⋆ ⋆
⋆ ⋆

ξ2(C̄z(α)G + GTC̄z(α)T)− γ2In̄ ⋆
0n̄ ξ3(G + GT)− In̄

 < 0 (26)

is valid, where

Ψ = ξ1(Ā(α)G + GT Ā(α)T − B̄(α)Z(α, β)− Z(α, β)T B̄(α)T) + B̄w(α)B̄w(α)
T ,

then K(α, β) = Z(α, β)G−1 is a state-feedback gain capable of stabilizing system (25) with H∞
norm from [e(t)Tw(t)T ]T to z(t) bounded by γ.

Proof. Replacing Z(α, β) = K(α, β)G on condition (26) and multiplying it by M on the left
and MT on the right, where Acl(α, β) = Ā(α)− B̄(α)K(α, β) and

M =

[
Acl(α, β) In̄ 0n̄×ny

C̄z(α) 0ny×n̄ Iny

]
,

results in

[
P(α)Acl(α, β)T + Acl(α, β)P(α) + B̄(α)K(α, β)K(α, β)T B̄(α)T + B̄w(α)B̄w(α)T ⋆

C̄z(α)P(α) −γ2Iny

]
< 0.

The application of the Schur complement [22] yields
P(α)Acl(α)

T + Acl(α)P(α) P(α)C̄z(α)T B̄(α)K(α) B̄w(α)
⋆ −γ2Iny 0ny×n̄ 0ny×nw

⋆ ⋆ −In̄ 0n̄×nw

⋆ ⋆ ⋆ −Inw

 < 0,

which is equivalent to the dual formulation for the Bounded Real Lemma, as described
in (5).

Remark 1. The scalars ξi are slack variables intended to improve the feasibility region of the LMI
conditions, often used in similar applications [31–33]. In order to avoid convexity problems, such
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variables need to be predefined. A search procedure can be performed to determine the values that
yield the best results, but such a procedure is beyond the scope of the paper.

With an appropriate state-feedback gain, it is now possible to develop the proposed
robust filter. For this, define the variable z2(t) as

z2(t) = C̃z x̃(t), (27)

which consists of the variable e(t) without considering the terms with w(t), which is
necessary to assure that the generalized H2 norm is finite [23]. The following theorem
states the conditions for synthesizing the desired robust filter (21).

Theorem 2. Suppose that r(t) is such that ||r(t)||2 ≤ ρ2||x(t)||2. If there exist definite positive
symmetric matrices P11(α)∈ Rn̄×n̄, P22(α)∈ Rn̄×n̄, and H(α)∈ Rnz×nz ; matrices P12(α)∈ Rn̄×n̄,
K11(α)∈ Rn̄×n̄, K21(α)∈ Rn̄×n̄, G11(α)∈ Rn̄×n̄, G21(α)∈ Rn̄×n̄, F11(α)∈ Rnw×n̄, R11(α)∈ Rny×n̄,
K̂∈ Rn̄×n̄, M1∈ Rn̄×n̄, M2∈ Rn̄×ny , M3∈ Rn̄×ny , D f y∈ Rnz×ny , D f r∈ Rnz×ny , and C f∈ Rnz×n̄;
and scalars λ1, λ2, λ3, λ4, τ, and µ solving the optimization problem

min µ s.t. (28)

Tr(H(α)) ≤ µ2, (29)H(α) C̃z − D f yC̄y(α) −C f
⋆ P11(α) P12(α)
⋆ ⋆ P22(α)

 > 0, (30)



τρ2In̄ − C̄y(α)TC̄y(α) 0n̄ P11(α) P12(α) C̄y(α)T Dyw 0n̄×ny

⋆ 0n̄ P12(α)
T P22(α) 0n̄×nw 0n̄×ny

⋆ ⋆ 0n̄ 0n̄ 0n̄×nw 0n̄×ny

⋆ ⋆ ⋆ 0n̄ 0n̄×nw 0n̄×ny

⋆ ⋆ ⋆ ⋆ −Inw − DT
ywDyw 0nw×ny

⋆ ⋆ ⋆ ⋆ ⋆ −τIny


+ YF +FTYT < 0, (31)

where

Y =



K11(α) λ1In̄
K21(α) λ2In̄
G11(α) λ3In̄
G21(α) λ4In̄
F11(α) 0nw×n̄
R11(α) 0ny×n̄

, F =

[
Acl(α) 0n̄ −In̄ 0n̄ B̄w Br
M2C̄y M1 0n̄ −K̂ M2Dyw M3

]
(32)

then
A f = K̂−1M1, B f y = K̂−1M2, B f r = K̂−1M3, C f and D f y

are the matrices of the robust filter (21) that minimize the bound µ for the generalized H2 from
[w(t)T y(t)T ]T to z2(t).

Proof. Consider the augmented system (22) and the Lyapunov function V(x̃) given by

V(x̃) = x̃(t)T P(α)x̃(t), P(α) =
[

P11(α) P12(α)
P12(α)

T P22(α)

]
.

First, since conditions (29) and (30) are valid, then it is also true that[
µ2Inz C̃z

C̃T
z P(α)

]
> 0.
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The application of the Schur complement [22] on the latter condition yields

P(α)− µ−2C̃T
z C̃z > 0.

Thus,
x̃(t)T(P(α)− µ−2C̃T

z C̃z
)
x̃(t) > 0 ⇒ µ2V(x̃)− z2(t)Tz2(t) > 0,

which is equivalent to (7).
Therefore, according to Theorem 1, the generalized H2 norm from [w(t)T y(t)T ]T

to z2(t) of the robust filter (21) is lower than µ, provided that w(t) ∈ L2 and ||r(t)||2 ≤
ρ2||x(t)||2, if the following condition holds:

V̇(x̃) < w(t)Tw(t) + y(t)Ty(t). (33)

The condition w(t) ∈ L2 is valid by hypothesis. However, it is necessary to incorporate
the bound

||r(t)||2 ≤ ρ2||x̄(t)||2 ⇒ r(t)Tr(t)− ρ2 x̄(t)T x̄(t) ≤ 0.

Applying the S-procedure [22], condition (33) is valid whenever the prior bound is
satisfied if there exists a scalar τ > 0 such that

V̇(x̃)− w(t)Tw(t)− y(t)Ty(t) + τρ2 x̄(t)T x̄(t)− τr(t)Tr(t) ≤ 0. (34)

Using the system matrices from (22), inequality (34) can be rewritten as

 x̃(t)
w(t)
r(t)

T Ã(α)T P(α) + P(α)Ã(α) + τρ2E− ETC̄y(α)TC̄y(α)E
⋆
⋆

P(α)B̃w + ETC̄y(α)T Dyw PB̃r
−Inw − DT

ywDyw 0nw×ny

⋆ −τIny

 x̃(t)
w(t)
r(t)

,≤ 0,

where

E =

[
In̄ 0n̄
0n̄ 0n̄

]
.

The utilization of Finsler’s Lemma [22], with

Q =


τρ2E− ETC̄y(α)TC̄y(α)E P(α) ETC̄y(α)T Dyw 0n̄×ny

⋆ 0n̄ 0n̄×nw 0n̄×ny

⋆ ⋆ −Inw − DT
ywDyw 0nw×ny

⋆ ⋆ ⋆ −τIny

, BT =


Ã(α)T

−In̄
B̃T

w
B̃T

r



B⊥ =


In̄ 0n̄×nw 0n̄×ny

Ã(α) B̃w B̃r
0nw×n̄ Inw 0nw×ny

0ny×n̄ 0ny×nw Iny

, X =


K(α)
G(α)
F(α)
R(α)


with the application of the following structures for the slack variables

K(α) =
[

K11(α) λ1K̂
K21(α) λ2K̂

]
, G(α) =

[
G11(α) λ3K̂
G21(α) λ4K̂

]
,

F(α) =
[
F11(α) 0nw×n̄

]
, R(α) =

[
R11(α) 0ny×n̄

]
and the following change of variables

M1 = K̂A f , M2 = K̂B f y, M3 = K̂B f r
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result in Condition (31).

The LMI conditions in Theorem 2 depend on predefined scalars λi. Similarly to the ξi
slack variables in Theorem 1, they can be handled as described in Remark 1.

In order to determine the parametric estimation law, consider the closed-loop sys-
tem (25). The parameter-independent elements, which compose the dynamics ϕ(t), are
separated from the matrices affinely dependent on the parameters to be estimated, resulting
in the dynamics Φ(t). As a consequence, the equivalent system can be rewritten as

ẋ(t) = Acl,0x(t) + B̄rr(t)︸ ︷︷ ︸
ϕ(t)

+
[
Acl,1x(t) . . . Acl,nθ

x(t)
]︸ ︷︷ ︸

Φ(t)

 θ1
...

θnθ


︸ ︷︷ ︸

θ

+ B̄ww̄(t), (35)

with Acl,i = Āi − B̄iKi. Using the dynamics of the elements ẋ(t), ϕ(t), and Φ(t), the
parametric estimation procedure applied in the present paper is developed. It is important
to highlight that the dynamics ẋ(t), ϕ(t), and Φ(t) can be reconstructed based on the
knowledge of matrices Acl,0, . . . Acl,nθ

, and the filtered state vector obtained with C̃z = In̄.

Theorem 3 ([33]). Consider ẋ(t), ϕ(t), and Φ(t) as depicted in (35), supposing that Φ(t) is a
persistently excited function [34], and consider also the solutions P(t) and Q(t) of the respective
differential equations (36) and (37):

Ṗ(t) = −ℓP(t) + ΦT(t)Φ(t), P(0) = 0, (36)

Q̇(t) = −ℓQ(t) + ΦT(t)(ẋ(t)− ϕ(t)), Q(0) = 0. (37)

Therefore, the estimation update law

˙̃θ = −Γ(P(t)θ̃(t)−Q(t)), (38)

with Γ > 0, assures that the estimation error θ̂ = θ − θ̃(t) uniformly ultimately converges to the
compact set

Θ =
{

θ̂(t) : ||θ̂(t)||2 ≤
ϵψ

σ

}
, (39)

where ϵψ is an upper bound for

ψ(t) =
∫ t

0
e−ℓ(t−τ)ΦT(τ)B̄ww̄(τ)dτ

and σ a scalar such that P(t) > σI.

Proof. The solution of Equation (36) is given by

P(t) =
∫ t

0
exp−ℓ(t−τ) ΦT(τ)Φ(τ)dτ. (40)

Using ẋ(t)− ϕ(t) from (35), the solution of Equation (37) can be rewritten as

Q(t) =
∫ t

0
e−ℓ(t−τ)ΦT(τ)Φ(τ)dτθ

+

(∫ t

0
e−ℓ(t−τ)ΦT(τ)B̄ww̄(τ)dτ

)
︸ ︷︷ ︸

ψ(t)

= P(t)θ − ψ(t), (41)
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with ||ψ||∞ < ϵψ. On the other hand, the convergence of the estimation error θ̂(t) = θ− θ̃(t)
can be obtained through the analysis of the following Lyapunov function:

V(t) =
1
2

θ̂T(t)Γ−1θ̂(t), V̇(t) < 0. (42)

Since ˙̂θ = − ˙̃θ, the derivative V̇(t) is given by

V̇(t) =
1
2

˙̂θT(t)Γ−1θ̂(t) +
1
2

θ̂T(t)Γ−1 ˙̂θ(t)

=− 1
2

˙̃θT(t)Γ−1θ̂(t)− 1
2

θ̂T(t)Γ−1 ˙̃θ(t).
(43)

Replacing ˙̃θ by (38) and Q(t) by (41), one has

V̇(t) =
1
2

(
θ̃T(t)P(t)T −Q(t)T

)
θ̂(t)+

1
2

θ̂T(t)
(

P(t)θ̃(t)−Q(t)
)
= θ̂Tψ(t)− θ̂T P(t)θ̂(t).

(44)

Considering that P(t) > σI since Φ is supposed to be persistently excited, and using
the upper bound for ϕ(t), the derivative of the Lyapunov function is bounded by

V̇(t) ≤− σ||θ̂(t)||22 + ||θ̂||2||ψ||∞,

≤− ||θ̂(t)||2(σ||θ̂(t)||2 − ϵψ).
(45)

Therefore, the ultimate bounding set (39) can be obtained. More details of the proof
can be found in [33,34].

The scalar parameter ℓ, sometimes known as a leakage factor, assures that the matrices
P(t) and Q(t) are bounded, and the appropriate value for ℓ depends on each application.
Some guidelines can be found, for instance, in [35]. Theorems 1, 2, and 3 present the
synthesis conditions for, respectively, the controller, the filter, and the estimation procedure.
However, it is necessary to guarantee that connecting all pieces together results in a
convergent control system. Such guarantees are proposed in the following section.

4.2. Convergence Guarantees

Theorem 3 describes the procedure for computing the estimated parameter θ̃, which is
then used on the gain-scheduling controller synthesized from Theorem 1. However, it is
necessary to guarantee that the estimation error θ̂i = δi satisfies the stability requirements.
The condition proposed in this paper to assure the stability is described in Theorem 4.

Theorem 4. Let K(α, β) be the gain-scheduling state-feedback gain robust to uncertainties on the
estimated parameters within the intervals

−ηi ≤ δi ≤ ηi, i = 1, . . . , nθ (46)

with ηi being positive scalars given by

ηi =

√√
δ̄i

d
, (47)

with

d =

(
nθ

∑
i=1

(δ̄i)
3/2

)−1

. (48)
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Therefore, the estimation procedure presented in Theorem 3, considering

Γ = diag

√δ̄1

d
, . . . ,

√
δ̄nθ

d

, (49)

assures that the controller K(α, β) stabilizes the system for

−δ̄i ≤ δi ≤ δ̄i.

Proof. According to the proof of Theorem 3, the update law (38) assures that the derivative
of the Lyapunov function V(t) = 1

2 θ̂(t)TΓ−1θ̂(t) is negative for all θ̂. On the other hand,
the ellipsoid Ω defined as

Ω =

{
θ̂ ∈ Rnθ : V(t) =

1
2

}
,

with Γ given by Equation (49), contains the set Ξ defined by

Ξ = [−δ̄1, δ̄1]× . . .× [−δ̄nθ
, δ̄nθ

].

The latter statement is valid since the equation defining the ellipsoid Ω, also given by

nθ

∑
i=1

δ2
i

d√
δ̄i

= 1, (50)

is satisfied for d resulting from Equation (48). Figure 1 illustrates the described sets.

!21 !7/1 0 7/1 21
/1(t)

!22

!7/2

0

7/2

22

/ 2
(t

)

% +

Y

Y
+

%

Figure 1. Representation of the sets described in the proof of Theorem 4.

The set Ω describes a positively invariant set in θ̂, since V̇(t) < 0, ∀θ̂ ∈ Ω [34].
Note, however, that it is possible to conceive a situation where θ̂ temporarily exits Ξ; thus,
it is not sufficient that the controller assure the stability only for the interval described
in Equation (46). Consequently, in order to guarantee that K(α, β) stabilizes the system
∀θ̂ ∈ Ω, it is necessary to design the controller to stabilize the system ∀θ̂ ∈ Υ, as illustrated
in Figure 1. From Equation (50), one has that

Υ = [−η1, η1]× . . .× [−ηnθ
, ηnθ

],

with ηi given by Equation (47), finishing the proof.

The following theorem states the conditions to ensure the stability of the gain-scheduling
controller K(θ̃) under the feedback action of the estimated states ˜̄x(t).
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Theorem 5. The control signal u(t) = −K(θ) ˜̄x(t), where ˜̄x(t) = z f (t) is the output of the
filter (21), stabilizes the LPV system (13) if γµ ≤ 1, where γ is the bound for the H∞ norm
from [e(t)Tw(t)T ]T to y(t) determined from Theorem 1 and µ is the generalized H2 norm from
[y(t)tw(t)T ] to e(t) resultant from Theorem 2.

Proof. According to the Small Gain Theorem [22], the robustness of the closed-loop system
G(θ), defined in (13), with the perturbed states stemming from the filter F from (21), is
achieved through the following condition:

||Gy,e(s, θ)||∞ < γ2 if, and only if, ||Fe,y(s)||∞ ≤
1

γ2 , (51)

where || · ||∞ is theH∞ norm, as defined in Section 2.1. Assuming that the state-feedback
controller K(θ) assures that the bound for theH∞ norm from [e(t)Tw(t)T ]T to y(t) is lower
than γ, the first condition of (51) is valid, since

γ2 > ||Gy,ew(s, θ)||∞ = sup
w(t),e(t)

||y(t)||2
||e(t)||2 + ||w(t)||2 > sup

e(t)

||y(t)||2
||e(t)||2 = ||Gy,e(s, θ)||2∞

Similarly, if the conditions of Theorem 2 are satisfied, then according to Theorem 1, the
filtered variables z f (t) verify

µ2 > sup ||e(t)||2 :
∫ ∞

0
w(τ)Tw(τ) + y(τ)Ty(τ) ≤ 1,

with the last expression being equivalent to

sup
||e(t)||2

||w(t)||2 + ||y(t)||2 .

Therefore,

µ2 > sup
w(t),y(t)

||e(t)||2
||w(t)||2 + ||y(t)||2 > sup

y(t)

||e(t)||2
||y(t)||2 = ||Fe,y(s)||2∞.

Thus, if µγ < 1, the second condition of (51) is also valid, finishing the proof.

In order to summarize the proposed methodology, Algorithm 1 shows the steps
necessary to obtain the parameter-dependent state-feedback controller and the filter matri-
ces. Figure 2 then presents a diagram that illustrates the filtering and control structures,
combined with the parametric estimation.

Figure 2. State-feedback control structure and its operation with the state and parameter estima-
tion procedures.
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Algorithm 1 (K(θ), A f , B f y, B f r, C f , D f y, Γ) = Synthesis (ξ1, ξ2, ξ3, λ1, λ2, λ3, λ4, ρ)

(Ā(α), B̄(α), B̄w, Br, C̄y, Dyw, C̄z(α))← Obtain system matrices
γ←Maximum value allowed for the considered system;
δi ← bounds for the additive parameters noises
(ηi, Γ)← Theorem 4 (δi)
finished← False
while Not finished do

K(α, β)← Theorem 1 (Ā(α), B̄(α), C̄z(α), ξ1, ξ2, ξ3, γ)
if Theorem 1 is feasible then

Acl(α, β)← Ā(α)− B̄(α)K(α, β)
(A f , B f y, B f r, C f , D f y, µ)← Theorem 2 (Acl(α, β), B̄w, Br, C̄y, Dyw, C̃z, λ1, λ2, λ3, λ4, ρ)
if γµ ≤ 1 then

finished← True
else

Reduce γ
end if

else
return Infeasible problem

end if
end while
Convert K(α, β) to K(θ)
return K(θ), A f , B f y, B f r, C f , D f y, Γ

5. Experimental Results

In this section, two experiments are presented to illustrate the operation and validity
of the proposed methodology. In Experiment 1, a third-order system dependent on two
parameters is considered, allowing a deep analysis on the obtained results. Experiment 2
depicts the implementation of the control approach in a physical system, which is important
to verify the implementability of the technique in a real-time situation. The routines
are implemented in Matlab R2017a, using the packages YALMIP [36] and ROLMIP [37],
alongside the solver Mosek [38] with an Academic License.

5.1. Experiment 1

Consider the parameter-dependent system given by

ẋ(t) =

0 1 0
0 0 1
1 −2 + θ1 −3 + θ2

x(t) +

0
0
1

u(t) +

0
0
1

w(t)

y(t) =
[

1 0 0
0 1 0

]
x(t) + 0.1w(t)

, (52)

with θ1 and θ2 varying within [2, 6]. System (52) represents a typical linear system in the
controllable canonical form [39,40], chosen to better depict the proposed methodology.
The outputs are the first state and its derivative, which is a common occurrence in physical
systems, for instance. Note that the open loop system is unstable for all θ1 and θ2 in the
given interval, thus being nontrivial to properly estimating the necessary variables in order
to determine a stabilizing control law u(t).

For gain-scheduling state-feedback synthesis, it is desired in this experiment that the
state x1(t) follows an exogenous reference signal r(t), using a controller robust to noises in
the interval δ̄i ∈ [−1, 1], for both parameters. Thus, according to Theorem 4, the synthesis
condition must consider the parameters noises ηi ∈ [−

√
2,
√

2]. Theorem 1 is, therefore,
applied with ξ1 = 100 and ξ2 = ξ3 = 0, considering the augmented matrix resultant from
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the inclusion of the integrator q̇(t) = r(t)− x1(t) and γ = 0.3, resulting in the stabilizing
state-feedback gain given by

K(θ) =
[
147.05 127.60 23.62 −51.38

]
+ θ1

[
33.36 29.69 6.22 −11.80

]
+ θ2

[
26.87 23.36 4.61 −9.52

]
.

(53)

For comparison purposes, the following robust static gain Kst is also synthesized:

Kst =
[
81.76 75.88 16.71 −26.80

]
. (54)

The filter (21) is then synthesized through the application of Theorem 2, considering
λi = 1 and ρ = 10. In order to satisfy the conditions of Theorem 5, assuring a proper state
estimation from the filter, the generalizedH2 norm is set to µ = 3.33.

The controlled system is then simulated along with the adaptive estimation procedure
depicted in Theorem 3, with Γ = 2I, as determined through Theorem 4 and ℓ = 10.
The initial states for the system and the filter are set as zero, and the initial estimated
parameter values θ̃i are initially set as 4.

Figure 3 presents the controlled state x1(t) resulting from considering both the gain-
scheduling controller (53) and the static one (54), obtained by setting θ1 = 3 and θ2 = 5.
Note that the gain-scheduling controller presented slightly improved behavior when com-
pared to the static controller, being capable of arriving faster to the reference value, illus-
trating the capability of achieving better results due to its parameter-varying structure.
Specifically to the results obtained from K(θ), Figures 4 and 5 show, respectively, the esti-
mation error of the states and of the parameters. Note that the estimation procedure was
successful in computing approximate values for both the states and the parameters.

0 5 10 15 20

t [s]

!5

0

5

x
1
(t

)

K(3)
Kst

Figure 3. Trajectories x1(t) from Experiment 1 obtained using the gain-scheduling controller K(θ)
(blue) and the static gain Kst (red), aiming to follow the reference signal r(t) (black).

In order to illustrate the validity of the estimation procedure in a global situation,
Figure 6 depicts the estimation errors for several different simulations, with each one
considering different values for the parameters and their initial estimated values. A total
of 20 distinct initial values for θ1 and θ2 have been simulated, and tn for n = 0, . . . , 20,
represent each respective trajectory. The sets Ξ, Ω, and Υ from Theorem 4 are also included
in the figure. Note that the errors are always within the positively invariant ellipsoid set Ω,
as stated in the theorem, justifying the necessity of designing the state-feedback controllers
to be robust to estimation errors in Υ.
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Figure 4. Estimation errors resultant from the filtering procedure in Experiment 1.
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Figure 5. Parameter estimation errors in Experiment 1.
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Figure 6. Evolution of θ̃(t) for Experiment 1, considering different values for θ.

Finally, Figure 7 shows the parameter estimation when the actual values of θ1 and θ2
change during the simulation. Although the technique supposes that such parameters are
time-invariant, the results indicate that the proposed technique can be further improved,
in future works, to tackle temporal variations.
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Figure 7. Parameter estimation errors in Experiment 1, when both parameters change their actual values.

5.2. Experiment 2

The present experiment consists of the implementation of the proposed control
technique in the 2 DoF Torsional Control System plant produced by ECP Systems [41],
model 205a, depicted in Figure 8. This plant consists of two disks connected by a flexible
beam, a DC motor actuating on the lower one, and two encoders for reading the angular
position of both disks. Two masses of 0.5 Kg each are positioned over the two disks, chang-
ing their moment of inertia. In this experiment, the masses of the lower disk are placed
at 9 cm of distance from the center, and for the upper disk, the distance of the masses can
vary from 7 cm to 9 cm, with such a distance being the parameter to be estimated from
the adaptive procedure. Also, the angular speeds are supposed to be the estimated state
variables from the robust filter (21). Figure 9 represents the experimental configuration,
which includes the integration of the torsional model (Equation (55)), Algorithm 1, and the
physical torsional system (Figure 8).

Brushless 
servo 
motor

Encoder #1

Encoder #2

Inertial disc with 
adjustable mass #2

Inertial disc 
with adjustable 

mass #1

Shaft

Drive Eletronics 
and data 

acquisition board

(a) (b)

Figure 8. Torsional system used in Experiment 2. The inertial moment of the upper disk can
be changed by moving the masses. (a) Physical torsional system used in the experiment and its
conceptual representation. (b) Description of the elements composing the torsional system.



Mathematics 2024, 12, 1941 19 of 24

Theoretical Torsional
2-DoF Model (55)

Obtain K(θ) by applying
the Algorithm 1

Setpoint

Control structure

DSP controllerSimulink® model I/O electronics

Torsional 2-DoF plant

Figure 9. Configuration diagram considered for Experiment 2.

The mathematical model of the torsional system is given by

ẋ(t) =


0 1 0 0
− k

J1
− c1

J1
k
J1

0
0 0 0 1
k
J2

0 − k
J2
− c2

J2

x(t) +


0
1
J1
0
0

u(t) +


0

0.1
0
0

w(t)

y(t) =
[

1 0 0 0
0 0 1 0

]
x(t),

(55)

where x1(t) and x3(t) are the angular positions of, respectively, the lower and upper disks,
and x2(t) and x4(t) are their respective angular speeds. The values of the elastic constant k
of the flexible beam connecting both disks, the viscous friction coefficients c1 and c2, and the
inertia moments J1 and J2 are detailed in Table 1.

Table 1. Torsional system coefficients.

Coefficient Value

k 1.37

c1 0.007

J1 0.0108 Kg ·m2

c2 0.001

J2 [0.0071 0.0103] Kg ·m2

The uncertainty on J2, caused by the variation of the masses on the upper disk, is
modeled as

1
J2

= 140.8451− 43.7577θ, (56)

where θ = 1 refers to the masses at a distance d = 7 cm from the center and θ = 0 maps to
d = 9 cm. The objective of the control system is to guarantee that the angular position of
the upper disk follows an external reference signal.

For the controller synthesis, the parameter estimation error is considered to be δ̄ = 1.
The controller u(t) = −K(θ)x(t) is obtained from the application of Theorem 1, with
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ξ1 = 100, ξ2 = ξ3 = 0, and γ = 0.3, on the system augmented with an integrator to assure
reference tracking properties, resulting in

K(θ) =
[
−0.7884 0.1453 1.1496 0.0463 −0.1757

]
+ θ
[
−0.0310 −0.0006 0.0320 0.0009 −0.0001

]
.

(57)

Note that, since one parameter is considered, Γ = 1 is yielded from Theorem 4. Since
γ = 0.3, the filter from Theorem 2 is computed by assuring that µ ≤ 3.33. The scalars
λi = 1 and ρ = 10 are also considered for the filter synthesis.

The proposed approach is then applied to the torsional physical system, considering
ℓ = 20 for the adaptive estimation procedure. Three executions are performed, setting
d = 7 cm, d = 8 cm, and d = 9 cm. Figure 10 depicts the controlled angular position
of the upper disk for the three cases. Note that the control system is capable of follow-
ing the reference signal with similar performances, independent of the masses position.
Figures 11 and 12 present, respectively, the control signal u(t) and the actual angular speed
of the disks, obtained from the derivation of the angular position, as well as the corre-
sponding variable resulting from the filter. Only the signals for d = 7 cm are shown in both
figures, but the results for other configurations are similar. Figure 12 also shows the errors
between the filtered and actual variables. One can see that the filter is capable of recon-
structing the angular speeds without resorting to any direct derivation procedure, which is
important for real-time applications since derivatives tend to increase noisy artifacts.
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Figure 10. Controlled output of the torsional system in Experiment 2, obtained by setting
d ∈ {7, 8, 9} cm, aiming to follow the reference signal r(t) (black).
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Figure 11. Control signal applied to the torsional system in Experiment 2 for the case d = 7 cm.
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Figure 12. The top figures show the filtered (blue) and measured (red) angular speeds resulting from
the filter applied in Experiment 2, obtained by setting d = 7 cm. The errors between the filtered and
measured speeds are detailed in the bottom figures.

Finally, Figure 13 shows the estimated parameters θ̃ for the three considered configu-
rations. Although the curves present a different behavior from the expected results, one
can see that, after some time, the estimated parameters are considerably distinct for each
case. Nevertheless, the control system is successful in tracking the desired reference for
all configurations.
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~ 3(
t)
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Figure 13. Estimated values θ̃ for d = 7 cm (blue), d = 8 cm (red), and d = 9 cm (yellow).

5.3. Comparison of Results with Previous Works

In order to emphasize the advantages of the proposed method and its main char-
acteristics, a comprehensive overview and comparison is provided. The comparison is
summarized in Table 2 and provides the closest recent works related to this paper’s pro-
posal. The comparison is developed and commented on in terms of each method’s technical
characteristics and does not intend to compare performance and/or numerical behavior.

In Table 2, the related LPV robust control techniques and their applications are pre-
sented, where N/A stands for “not apply”. It is possible to notice that the standard
procedure found in literature—and mentioned in this comparison—considers the state
vector to be usually available, while this work provides results using an estimated state
vector with guaranteed convergence. Some works, such as Hanif et al. [11], perform a
deterministic calculation of the required parameters, while this work uses a least mean
squares procedure, adequate for more general cases and dynamics. Considering the main
characteristics and differences between the methods, one can notice that the main advan-
tage of this paper is the joint use of both state and parameter estimation procedures, with an
innovative convergence analysis, ensuring its performance.
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Table 2. Comprehensive overview and comparison of related works.

Control Method Robustness Analysis θ
Estim. θ Estim. Method x(t)

Estim.
x(t) Estim.

Method

de Souza
et al. [1]

Gain-scheduled
state-feedback

gain

Parameter-dependent
Lyapunov–Krasovskii

function
✗ N/A ✗ N/A

Campos
et al. [5]

Adaptive gain
scheduling

Parameter-dependent
Lyapunov function ✓

Adaptive
Lyapunov-based ✗ N/A

Tasoujian
et al. [8]

Time-delay LPV
control

Parameter-dependent
Lyapunov–Krasovskii

function
✓

Bayesian-based
multiple-model

square-root cubature
Kalman filtering

✗ N/A

Hanif et al.
[11]

LPV-based
observer +
controller

Parameter-dependent
Lyapunov function N/A Deterministic ✓

Robust LPV
observer

This work
State-feedback

gain
H2 andH∞ to exogenous

input w(t) ✓ Least Mean Squares ✓

Robust
filtering
(H2)

The θ symbol relates to parameter estimation procedures, while x(t) refers to the method to perform the state
estimation. The symbols ✓ and ✗ indicate, respectively, the presence or not of the respective procedure, and N/A
stands for “Not Apply”.

6. Conclusions

In this paper, a framework for the synthesis of parameter-dependent controllers for
LPV systems is proposed, considering that both the states and exogenous parameters
are unavailable and need to be estimated. The control system is composed by a gain-
scheduling controller, which depends on the estimated states yielded by a robust filter,
developed in this paper, and on the estimated exogenous parameters, resultant from
an estimation procedure, which are also a contribution of the present work. Each of
the three elements (controller, filter, and estimator) is synthesized separately, and the
complete framework converges to the desired behavior if a series of conditions are valid.
Two experimental results, one numerical and one implemented in a physical system, are
presented to illustrate and validate the methodology. The obtained results show that the
proposed framework is capable of stabilizing complex LPV systems based only on the
available outputs, through the estimation of both the states and the parameters. Such a
result, to the authors’ knowledge, is a novel and important contribution to the area.

The presented techniques open some possibilities for future improvements. The incor-
poration of performance criteria into the control gain synthesis is of main interest, as it could
improve the system performance and allow the implementation of the proposed framework
even in restricted cases. Concerning the estimation procedure, the simulations presented
satisfactory results; however, the implemented solution yielded a slower convergence rate
than desired. Nevertheless, the different test situations yielded coherent behaviors for
the estimated parameters, indicating the validity of the procedure, but improvements on
the convergence rate, mainly through enhancing the estimation law, are also important to
be considered in future works. An important improvement for further researches is the
possibility to consider time-varying parameters. The current methodology supposes that
the parameters are time-invariant, with such a requirement being necessary for the applied
estimation procedure. The experiments show that even time-varying parameters could be
properly estimated, thus indicating the potential for improving the techniques to formally
deal with such cases. Further investigation of time-varying parameters and estimation
performance indexes are suggested to be performed in future researches.
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