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Abstract: While comprehensive knowledge networks can be instrumental in finding solutions to
complex problems or supporting the development of detailed simulation models, their large number
of nodes and edges can become a hindrance. When the representation of a network becomes opaque,
they stop fulfilling their role as a shared representation of a system between participants and modelers;
hence, participants are less engaged in the model-building process. Combating the information
overload created by large conceptual models is not merely a matter of changing formats: shifting
from an unwieldy diagram to enormous amounts of text does not promote engagement. Rather, we
posit that participants need an environment that provides details on demand and where interactions
with a model rely primarily on a familiar format (i.e., text). In this study, we developed a visual
analytics environment where linked visualizations allow participants to interact with large conceptual
models, as shown in a case study with hundreds of nodes and almost a thousand relationships. Our
environment leverages several advances in generative AI to automatically transform (i) a conceptual
model into detailed paragraphs, (ii) detailed text into an executive summary of a model, (iii) prompts
about the model into a safe version that avoids sensitive topics, and (iv) a description of the model
into a complementary illustration. By releasing our work open source along with a video of our case
study, we encourage other modelers to use this approach with their participants. Their feedback and
future usability studies are key to respond to the needs of participants by improving our environment
given individual preferences, models, and application domains.

Keywords: causal map; details-on-demand; image generation; information overload; natural language
generation

MSC: 68U10; 68T50; 68T30; 90-04

1. Introduction

The developments in generative artificial intelligence (AI) build on advances in applied
mathematics and statistics, along with the computational resources to train models with
billion parameters on massive datasets. Generative AI is now ubiquitous, with applications
ranging from analyzing and creating text (i.e., natural language processing and natural
language generation) to creating images (e.g., text-to-image generation). The tension be-
tween potentially transformative impacts (e.g., as intelligent assistants [1]) and inaccuracy
(e.g., hallucination, biases) or improper use (e.g., plagiarism [2]) is one of the most press-
ing research questions of our times. For example, well-known tools such as ChatGPT
and GPT-4 can be helpful mathematical assistants, with a level currently equivalent to an
undergraduate student on several tasks [3], but they can lose focus when prompted repeat-
edly, and they still make frequent mistakes on seemingly simple tasks such as identifying
whether some numbers are contained within a given interval [4].

In this study, we developed and used generative AI solutions in the context of modeling
and simulation (M&S), which is an interdisciplinary area at the confluence of applied mathe-
matics, computer science, and systems engineering. Generative AI can be used throughout
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the life cycle of M&S (Figure 1), starting with the creation of a conceptual model (i.e., a ‘sketch’
or ‘diagram’), then moving to a mathematical or formal model (e.g., using a language for
specification such as SysML), implementing the specification as a computational model via
computer code (e.g., NetLogo), and performing simulations to generate insights that are
shared with end- users and/or analyzed to suggest revisions in the conceptual model [5–7].
Our focus was on conceptual modeling, which has been the subject of several studies in
generative AI either to create models from text [8–10] or to explain models as text [11].

Figure 1. Generative AI can be used across stages of modeling and simulation. A large language
model can explain the structure of a model (graph-to-text) at the conceptual stage [12] or synthesize
specifications into a formal model at a later stage [13]. At the implementation stage, code can be
produced automatically in a target language [14], which produces experimental results that can be
explained via text to end users [15].

A conceptual model is the cornerstone of an M&S study. It provides a roadmap for
modelers during the implementation stage and an important reference document during
verification or later maintenance. Intuitively, engaging in an M&S study without a con-
ceptual model would be akin to improvising the plumbing of a house without a diagram,
trying to remember whether to connect a tap to the sewer or the water line. A conceptual
model is also a boundary object, as it represents a shared understanding between modelers
and stakeholders by clearly stating the constructs that must be included in the model along
with their relationships. Given this role, Robinson stressed that a conceptual model must
be in a format that is usable by both modelers and stakeholders [16]. There is thus a multitude of
formats depending on the audience.

Regardless of whether stakeholders are domain experts or lay participants, formats
that support participatory modeling efforts include causal maps [17]. They consist of
a directed, labeled, typed network that specifies cause-and-effect relationships between
concepts. The example in Figure 2a shows how smoking bans can lead to a decrease in
heart attacks [18]. Positive and negative relationships are represented with “+” and “−”,
respectively. Note that positive and negative do not mean that a causal effect is ‘good’ or
‘bad’; they encode quantitative relationships: one concept drives another one up (+) or
down (−). For instance, smoking and smoking exposure increase the chances of someone
having a heart attack; hence, the relationship is typed +.

While the minimal representation constraints of causal maps make them suitable
when modeling with diverse participants, some models can have many cause-and-effect
relationships. The Foresight Obesity Map is a case in point, as it had 108 nodes and
was derided as “[looking] more like a spilled plate of spaghetti than anything of use to
policymakers” [19]—an enduring criticism echoed for over ten years [20]. This map is not
an isolated case, as comprehensive models of complex socioenvironmental problems often
yield large maps. Other causal maps of obesity have 98 [21] or 114 [22] factors and more
than 100 relationships. Although conceptual models ought to be in a format usable by
modelers and stakeholders, both would struggle to extract information from such large
models. This can be a particularly frustrating experience for participants (e.g., subject
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matter experts) who spend time to contribute to a project but cannot benefit from the
current visualization of the model other than stating the domain looks very complex.

There have been attempts to address the information overload problem [23], for instance,
via visualization software for causal maps that start with a high-level view of the system
and only show details on demand. However, a usability assessment noted that users needed
a long time to complete tasks with such software, as a primary reliance on interacting with
node-and-link diagrams is unusual for the target audience [24]. Narratives can be a powerful
alternative to understanding conceptual models. For example, experiments showed that
regular employees were better able to make sense of the relationships in a model when
they were narrated, even if the narratives were noticeably longer (e.g., two sentences)
than the shorthand notation (e.g., single word or symbol) [25]. While the advances in
generative AI mentioned above have made it possible to transform a causal map into text,
transforming the whole map would shift from a ‘visual’ information overload to a ‘textual’
overload, thus displacing the problem instead of fully addressing it. Environments for
visual analytics suggest that a potential way forward is to combine text display including
overlaid formatting (e.g., informative highlights) with linked visualizations [26]. So far,
no environment has allowed users to interact with causal maps by combining text with
visual representations.

(a) (b)
Figure 2. Causal map examples of smoking and suicide in youth. (a) Mooney’s example of a simple
causal map, showing how smoking bans in a population can lead to a decrease in heart attacks [18].
(b) High-definition causal map of suicide in relation to Adverse Childhood Experiences (ACEs) [27].
The ineffective yet classical visualization illustrates the challenge of exploring a large model.

In this study, we investigatee two research questions:

(Q1) How can a user interact with large, complex conceptual models using generative AI?
(Q2) Does the inclusion of generative AI into visual analytics support precise investigations

into a conceptual model?

To address these questions, the main contribution of this study is providing a new
environment to explore and explain causal maps by integrating generative AI (natural
language generation and text-to-image generation) and visual analytics. Our environment
combats the information overload problem by using details on demand to explore parts
of the model, along with automatically generated narratives and illustrations. This ap-
proach allows users to simplify the information display while retaining all aspects of the
original map.

The remainder of this paper is organized as follows: We provide the mathematical
foundations of the technologies that support our work in Section 2, covering text em-
beddings, natural language generation, and text-to-image generation. This overview for
applied mathematicians and statisticians complements other recent introductions to gen-
erative AI, such as [28]. Section 3 focuses on related works, including how large causal
maps are developed, as well as defining common aims in visual analytics environments.
In Section 4, we define how our data were preprocessed and present features of our ap-
plication, including how they were implemented. In Section 5, we provide a case study
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of suicide in youth to demonstrate how one may answer research questions using our
application. The case study invovled a previously released causal model of suicide in
youth (Figure 2b), containing 361 nodes and 946 relationships, and thus illustrating the
challenges caused by large conceptual models [27]. Lastly, in Section 6, we describe areas
of future work where our application and study may be improved upon. The video of the
case study and the open-source environment can be accessed on a third-party repository at
https://doi.org/10.5281/zenodo.10578610 (last accessed on 21 May 2024).

2. Mathematical Foundations
2.1. Text Embeddings

Measuring the distance between two text segments is an important operation un-
derlying a variety of applications. Searching or model building requires information
retrieval operations in which candidate text segments are ranked with respect to another
text segment (e.g., a user’s search query, a model’s existing terms) [29]. Clustering consists
of creating groups in which distances between elements of the group are smaller than
distances with elements assigned to other groups. Instead of comparing words, transfor-
mations are applied to obtain a vector space model [29], which assigns specific weights to
indexed terms. In the 2000s to the 2010s, a common process started with text preprocessing
(e.g., convert to lower case, tokenize, remove uninformative ‘stop’ words, obtain the roof
form by stemming or lemmatization), obtained a real-valued vector via t f − id f , and then
vectors were compared by cosine similarity [30]. t f − id f computes a weight for each term
as follows [31]:

wi,j = t fi,j × log(
N
d fi

), (1)

where i is a term, j is a document within a collection/corpus of size N, t fi,j is the frequency
of term i within j, and d fi is the document frequency of term i within the collection.
Although the process does have parameters, we omit them for the sake of simplicity here;
their use can be illustrated in studies such as [32]. The cosine similarity computes the angle
between two t f − id f vectors v1 and v2 as:

cosθ =
v1 × v2

||v1|| × ||v2||
(2)

Since the t f − id f vectors are strictly positive, and the angle θ ranges from 0 to 90; hence,
the cosine value ranges from 0 to 1.

Techniques such as t f − id f have been described as ‘traditional’ [33] or ‘non-contextual’,
since the same word in different contexts would yield the same vector. In the early 2010s,
techniques to produce more contextualized vector spaces such as Word2vec models were
developed by using small neural networks. In the late 2010s, BERT (which has 12 layers in
its base version) became a common baseline for NLP. To understand the mathematical foun-
dations of BERT, consider that a language model focuses on the autoregressive probability of
a sequence of tokens X1:T , as expressed by [34]

log p(X1:T) =
T

∑
t=1

log p(xt|x1:T−1) (3)

BERT focuses on a masked language model to reconstruct a sequence from noise:

p(x̄|x̂) =
T

∑
t=1

mt p(xt|x̂), (4)

where x̄ is a corrupted sequence, x̂ are masked tokens, and mt is the mask (i.e., mt = 1 if xt
is masked and 0 otherwise). As we previously described when using BERT [35],

https://doi.org/10.5281/zenodo.10578610
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[...] the text first undergoes an embedding process (24 to 36 million parameters
depending on the model), followed by transformers (each of which adds 7 or
12.5 million parameters depending on the model), ending with a pooling layer
(0.5 or 1 million more parameters depending on the model).

Most recently, emerging solution providers such as OpenAI have provided embeddings
as a service, such as the second-generation text-embedding-ada-002 (ADA-002) used in
GPT 3.5. This embedding is specifically recommended for text similarity, where it achieves
a higher score than the first-generation embedding text-similarity-davinci-001. This
is a proprietary solution; thus, the training data and specific architecture are not disclosed.
The results are primarily analyzed with respect to intrinsic characteristics (e.g., vector space
of 1536 dimensions) or performance on specific tasks. The findings clearly show that BERT
and ADA-002 outperform the traditional tf-idf method [36]. The results are more mixed
in comparing BERT and ADA-002, with some applications finding BERT to be slightly
superior [36], while others found that ADA-002 is superior both to BERT (and variants
thereof) [37] and to open-source alternatives [38].

2.2. Natural Language Generation

Historically, the generation of text relied on hand-crafted rules or templates orches-
trated around several modules such as discourse planning (to order sentences and para-
graphs) or lexicalization (identifying the right words and phrases to convey relations and
concepts) [39]. The results were satisfactory, but constructing and maintaining language
resources were notoriously time-consuming efforts; thus, the shift to machine learning was
of particular interest [40]. Research in intelligent tutoring system spearheaded development
efforts in NLG, given the evidence that improvements in NLG could translate to improved
learning outcomes for students [41]. Many studies in the 2010s developed artificial neural
networks to create more effective intelligent tutoring systems [42]. As an example, recurrent
neural networks (RNNs) were used to predict the probability of the next word, given the
words that have occurred so far. Formally, consider a text input sequence formed of T
words, w = {w1, · · · , wT}. The input layer of the network at the next step t is calculated
as [43]:

x(t) = w(t) + h(t − 1), (5)

where h is the hidden state, expressed as

h(t) = σ(Wx(t) + Uh(t − 1)), (6)

where W is the input weight, U is the recurrent connection weight vector, and σ is the
sigmoid activation function. A final output layer commonly consists of a softmax function.
While learning the weights that define a language is less time consuming than manually
defining all the rules, it can introduce three problems: First, the output can diverge from the
source document, which is known as a hallucination. Note that it covers two phenomena:
intrinsic hallucinations are errors where the output contradicts the source (e.g., A ‘no
longer’ causes B, or an event happened on a different date than specified), while extrinsic
hallucinations augment the output using background information (leveraging the network’s
knowledge model) that is not necessarily erroneous and can be harder to verify [44]. Second,
if the network always produces the output with highest probability, then the text may
become very repetitive [43]. Third, context is very important when generating text, and
there may be important relationships (or ‘dependencies’) between words that are far apart
in the text.

Several architectures have been proposed to address these problems. In particular, the
(sequence-to-sequence) transformer architecture (which is not a recurrent neural network)
underlies highly efficient solutions such as Generative Pretrained Transformer (GPT) and
Bidirectional Encoder Representations from Transformers (BERT). Rather than a sigmoid,
transformer architectures tend to use activation functions such as ReLU or a smoother
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alternative known as Gaussian Error Linear Units (GeLUs) and used in GPT or BART
(Figure 3), defined by [45]

GELU(x) = xP(X ≤ x) = x · 1
2
(1 + er f (

x√
2
)) ≈ 0.5x(1 + tanh(

√
2

π
× (x + 0.044715x2))), (7)

where er f is the Gauss error function.

Figure 3. Differences between the architectures of three commonly used transformers: (1) BERT,
(2) GPT, and (3) BART. Adapted from [46].

The core components of a transformer architecture include an embedding layer to
obtain a vector representation (see Section 2.1), followed by a stack of transformer layers,
which consist of alternating multihead self-attention sublayers and position-wise feed-
forward sublayers. Intuitively, the attention mechanism processes a query Q with respect to
a dictionary of key K and value V pairs. It is defined by the following three equations [47]:

Multihead(Q, K, V) = Concat(head1, . . . , headH)WO (8)

headk = Attention(QWQ
k , KWK

k , VWV
k ) (9)

Attention(Q, K, V) = so f tmax(
QKT

√
dmodel

)× V, (10)

where dmodel is the dimensionality of the hidden representations; WQ
k , WK

k , and WV
k are

parameter matrices; H is the number of heads; dK and dV are the dimensionalities of keys
and values.

Early versions of these architectures had small windows that could only handle a
limited sequence of tokens (e.g., 512 tokens); thus, they missed contextual dependencies
between words far apart. As context windows are now much larger, we speak of ‘long-
range context modeling’ or long-range transformers. For example, GPT-4 Turbo and GPT-4o
have a context length of 128k tokens.

2.3. Text-to-Image Generation

As summarized by Ding et al. [48], text-to-image generation is subject to several chal-
lenging expectations that include understanding an input text (e.g., “A researcher typing
a paper. The faculty has a red hat.”), disentangling the properties of objects (e.g., shape
and color of a hat, gesture of typing), aligning the objects with words and their context-
dependent variation (e.g., faculty = researcher = image of a person), and ultimately creating
a composite view of these objects (e.g., hat on head, hands on a keyboard). Achieving
these expectations has been made possible through rapid advances in neural network
architectures over the last decade, such as generative adversarial networks (GANs) in the
2010s [49]. The 2020s have seen the emergence of powerful sampling-based approaches
such as autoregressive generative models or diffusion processes, building on architectures such
as transformers with several billion parameters (e.g., to learn a probability density function
over pixels of an image) and variational autoencoders (VAEs), whose compression techniques
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allow the scaling of computations over large images [50]. As well-known models in the
text-to-image space continue to be updated, their architectures can change. For example,
DALL-E uses a transformer and VAE, while DALL-E 2 switches to a diffusion transformer.

Diffusion processes are now accessed by a broad array of users, via midjourney or
stable diffusion. These processes gradually distort training images by adding noise,
thus erasing details until the image becomes unrecognizable. The model is then trained to
reverse this process, by gradually eliminating noise to produce an image. For the sake of
efficiency, latent diffusion performs the process in a lower-dimensional space, i.e., the latent
space. The user sends a text request (i.e., a prompt) such as “A researcher typing a paper.
The faculty has a red hat”. The prompt is tokenized and transformed into text embeddings
by a text encoder using contrastive language-image pretraining (CLIP), such as CLIP ViT-L
or OpenCLIP ViT-bigG. A random number (‘seed’) is used to generate the random noise,
which is the starting point for the image [51]. A convolutional neural network (e.g., U-Net)
takes in the image along with the text embeddings and works alongside a scheduling
algorithm to iteratively denoise the image. As the last step, the image is processed by
an autoencoder (VAE) to generate the final output (Figure 4). Note that variations in
this process (e.g., Stable Diffusion XL) use a second noising–denoising process, which is
known as the ‘refinement stage’ and specializes in enhancing local details [52]. In order
to understand the mathematical underpinnings of the crucial denoising step, we follow
the notation from Song et al. [53], who introduced the denoising diffusion implicit model
(DDIM) scheduling algorithm. A denoising model takes the following form:

pparams(x0) =
∫

pparams(x0:T)dx1:T , (11)

where

pparams(x0:T) := pparams(xT)
T

∏
t=1

p(t)params(xt−1|xt) (12)

where x1, . . . , xT are latent variables. The parameters are learned to fit the samples from
a data distribution. The forward process ranges from x0 to xT ; it gradually adds noise to
the observation x0. In contrast, pparams(x0:T) is a reverse process because it samples from
xT to x0 by gradually removing noise (it can be viewed as a form of gradual decoding).
Approximating the reverse process is the core step, with different algorithms trying to
strike a balance between processing speed and image quality. For a detailed discussion on
the equations involved in iteratively refining noise, we refer the reader to [54].

The training set can also be improved not only in quantity (i.e., more pairs of images
and captions) but also in quality, as human-annotated data may be incorrect or include
key characteristics that viewers consider obvious ‘by default’ (e.g., water in a pool, table
and chair in an office) or seemingly unimportant (e.g., location of some objects in a scene).
Improving captions can be its own machine learning task, as shown in DALL-E 3, which
was trained on 5% ground-truth (human-annotated) captions and 95% long and highly de-
scriptive (synthetic/generated) captions created by an image captioner [55]. Since generative
models may underperform when sampled out of their distribution, training a model on
long captions could be a problem for users who write shorter prompts; this is addressed
by using GPT-4 to expand (or ‘upsample’) a user’s caption and disambiguate terms. As
pointed out by the authors, the weaknesses of the image captioner become the weaknesses
of the text-to-image generator, for instance, the captioner struggles with spatial awareness
(e.g., above, next to), so DALL-E 3 is also less reliable with positional information in a
prompt. Note that the inclusion of an LLM as part of text-to-image generation is found
in other models, such as RPG, which uses an LLM to extend the user’s prompt into more
detailed descriptions (i.e., recaption) and uses an LLM to plan the composition of the
image [56].
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Figure 4. (a) High-level overview of the steps involved in text-to-image generation. (b) A minimal
Comfy workflow including parameter values and specific algorithms. The workflow shows that
prompts can be further divided into positives (desired features) and negatives (features to avoid).
Details can be viewed by zooming into the high-resolution figure. A more detailed architecture can be
interactively explored via tools such as https://ai.google.dev/edge/model-explorer, accessed on 19 June 2024.

3. Background
3.1. From Large Causal Maps to Text
3.1.1. Why Causal Maps Become Large: Elicitation and Aggregation

In participatory modeling, conceptual models are created in collaboration with facili-
tators and participants such as Subject Matter Experts (SMEs) [27]. Facilitators interview
participants of different backgrounds, where each interview creates an independent causal
map. For example, in Figure 2a, the facilitator could ask several follow-up questions to
continue building the model, such as “why do people smoke?” or “what happens after
someone has a heart attack?” While asking many questions is beneficial to fully compre-
hend the problem space (and grow closer to a complete causal map [57]), this means that
an individual map may have several dozen nodes and edges. Furthermore, SMEs come
from different backgrounds with various experiences. Thus, even if each interview uses
the same questions, the models would have differences. For example, a policymaker may
understand steps on how to promote policies regarding the use of tobacco or nicotine,
while a cardiologist may know of other effects that smoking or smoking exposure can cause.
There may also be differences in terminology, e.g., one Subject Matter Expert (SME) might
use the term “smoking”, while another expert uses “tobacco use”. To obtain the final map,
different terminologies are mapped onto one form, and an aggregate algorithm is applied
(Figure 5). The nodes and edges shared across participants provide a form of validity, while
rare constructs may be filtered out [58].

https://ai.google.dev/edge/model-explorer
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Figure 5. A high-level illustration of the facilitation process to develop causal maps for complex problems.

3.1.2. Preprocessing: Preparing Two Levels of Text and Subgraphs

One of the first studies in natural language generation for causal maps decomposed a
map into a set of small acyclic components and generated sentences for each component [12].
A causal map thus became a long set of sentences. We made two key changes in our recent
work [59]. First, a report must be formed of paragraphs with a topic and flow. We used
the LPAM community detection [60] method to balance the size of each community, avoid
any loss in nodes or edges, and provide overlapping communities. We traversed the
map by organizing communities thanks to their overlap to ensure that one paragraph
pivots to the next based on a shared construct. Each GPT-generated paragraph narrates
a portion of the causal map (i.e., subgraph), and the union of these paragraphs provides
the same information as in the whole map. However, a sizable causal map leads to
many paragraphs, which shifts the information overload of seeing a large graph into the
information overload of reading masses of text. Our second change was running the
detailed text through a summarization model (using BART [46]) to generate our ‘summary
text’. The visual analytics environment presented here serves to relate the summary text
to the detailed paragraphs and corresponding subgraph. The input to the environment is
thus the causal map, along with the detailed text and summary text obtained from prior
works. To streamline the user experience, it is possible to only ask for the causal map and
automatically create the detailed and summary text; however, creating the text every time
a causal map is selected would consume many tokens on OpenAI; we thus recommend
dissociating the preprocessing from the visual analytics environment by computing the
text just once and saving it.

3.1.3. Leveraging AI to Enable Transformations

The use of generative AI (particularly OpenAI’s GPT) has aided with converting
causal maps into a textual representation. Our work builds on a prior open-source solu-
tion [6,12]. First, note that text is read left-to-right, but causal maps may have loops. For
instance, trauma may increase suicidal thoughts, leading to a suicide attempt, which is
itself a traumatic event. A graph-to-text solution starts by decomposing causal maps into
acyclic subgraphs. Subgraphs are identified via community detection to ensure that the
corresponding paragraph has a logical theme. A community detection algorithm takes
a graph as input, consisting in our case of a causal map. It divides the graph into parts,
consisting of groups of nodes and edges. These parts are called communities. Intuitively,
nodes in one community should be more tightly linked to each other than to nodes outside
the community.

The subgraphs are ordered through a graph traversal process, so that paragraphs
have a flow from one to the next. Generative AI naturally involves randomness to ensure
flexible and robust outputs while also giving users options to find satisfactory parameter
values [61]. We thus cannot guarantee that the text is identical to the original map due to
the possibility of missing information or when the information that the Large Language
Model (LLM) has injected does not exist in the map, which are known as hallucinations [62].
This issue is one of many ongoing errors with Large Language Models (LLMs) [63,64].
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3.2. Combating Information Overload with Visual Analytics

Information overload refers to an overwhelming amount of data being presented to
a user at a time. It can be caused by displaying irrelevant data, as well as processing or
presenting data in an unsuitable manner [23], resulting in a lack of transparency where
users may miss substantial information. In Figure 2b, a node’s size and color depend on its
centrality, as demonstrated by the two largest nodes being ACEs and suicide ideation. It is
already arduous to identify the relationships with either of these nodes, which would be
even harder if all nodes were the same size. To mitigate information overload, we turn to
visual analytics to organize our data, and we display some information to the user (i.e., on
the front-end) while maintaining all the model’s information (i.e., on the back-end).

Visual analytics aim to ensure transparency of information, while also presenting
information in an organized manner [65]. Specifically, these environments have three main
features: a visual representation of the data, interactivity to provide details on demand, and
a search or filter to focus on specific data points. For each environment, the primary feature
for displaying a large amount of data is visual representation. These visuals typically
take the shape of a graph to represent the dataset in its entirety [66]. There may be other
methods to represent the same information, such as a textual representation of the map. The
visualization features aim to maximize the amount of information shown while presenting
it in a minimalistic manner [66].

Simplifying a large amount of data improves the usability of an application. ItThis-
could be achieved by removing the information or by hiding it temporarily. Under the
approach of ‘details-on-demand’, a summarized data point is an interactive object that can
provide further information (e.g., a sentence is expanded into a paragraph). Therefore,
while the visual representation of data is simplified, the overall amount of data is preserved
and remains hidden until the user requests further information [66]. This allows a large
amount of data to be digested at a rate that is more manageable for users instead of dis-
playing all the information at once. For example, we can observe Dowling et al.’s Cosmos
application, which combines visual analytics with text analytics to plot documents on a
two-dimensional plane [66]. Each plot represents all of the text in a document. The plots
can be interacted with to provide the details of the desired document. Thus, the application
successfully holds all original information until the user needs to expand on specific points.

Document corpora can vary in size with respect to the number of documents and the
amount of total text within the corpus. Furthermore, various topics may be relevant in
a field but not necessary for a user’s case. Therefore, having a filtering feature aids with
further reducing the amount of data to a select number of items, such that the user can
seek further details on few items rather than every possible item. This can be observed
in TRIVIR [65]. An initial query is specified by the user, and further keywords may
be used for filtering until the user is satisfied with the number of keywords or with
the number of documents being displayed. Having a search feature in an environment
significantly improves a user’s speed of traversing a corpus, rather than sequentially
reading all documents in such corpus.

4. Methods
4.1. Overview: A User’s Workflow

The user starts by opening their file, consisting of the causal map and two levels of text
generated by GPT (summary and details), as described in Section 3.1.2. The high-level text
is displayed in a scrollable panel, giving the user access to an executive summary about
the model. Linked visualizations are essential for visual analytics, and our environment
supports several such linkages. By selecting a topical paragraph, the user updates the
other three views to provide details on demand (Figure 6). The detailed text appears in
its own scrollable panel, an illustration from the summary is created on the fly, and the
corresponding subgraph is displayed. These visualizations combine OpenAI’s GPT and
DALL-E, as discussed in Section 4.2. By selecting a node in the subgraph or searching
for nodes or phrases via the search bar, the user triggers a highlighting mechanism to
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reveal related sentences. Given that GPT produces outputs that are pleasant due in part
to variations in language, we cannot expect matches to be identical or simple inflections
(e.g., eat/ate, paper/papers). Rather, we use OpenAI embeddings to detect similar terms,
as shown in Section 4.3.

Figure 6. Our application consists of a menu (top bar) and four visualizations (two texts, graph,
illustration). Selecting a summary paragraph updates the other three visualizations, providing details
on demand. Selecting or searching for a node triggers highlight in the text.

4.2. Visualization

To develop our environment, we combined the Tkinter framework and CustomTkinter
for the user interface (UI), the Chromium Embedded Framework (CEF) and Pyvis for graph
visualization (bottom-right component in Figures 6 and 7), and OpenAI’s API. All were run
on Python 3.9. All packages and their versions used are listed in https://doi.org/10.5281/
zenodo.10578610 (last accessed on 21 May 2024).

Figure 7. Screenshot of the user interface, with the data focusing on suicide in youth.

https://doi.org/10.5281/zenodo.10578610
https://doi.org/10.5281/zenodo.10578610
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While interactive graph visualizations and linked visualizations are well-known tools,
an innovation of our environment is tge automatical illustration of the summary paragraph
selected by the user. This illustration seeks to reinforce the concepts of the paragraph. To
generate the image with OpenAI’s DALL-E 3, we must ensure that our prompt does not
violate any of OpenAI’s content policies. However, these policies can easily be violated
when the causal map deals with sensitive or triggering subjects, as shown in our case study
on suicide in youth. It would be impossible to hardcode every single potential violation
that a user may trigger with their model. Consequently, we pass our summary text through
GPT to automatically create a safe version of a prompt. We engineered the prompt by
assigning a role to GPT and teaching it about triggering subjects through examples, as
shown below. We used a temperature setting (which governs the ‘creativity’ of GPT) of
0.5, as a nonzero temperature is needed to potentially transform the summary text (if it
contains triggers), but a temperature of 1 may deviate too much from the original content
and yield an unrelated image. Once the image is generated, the image is cached on the
user’s machine for the duration that the application is running. Images are cached to avoid
redundant calls to DALL-E 3, hence minimizing the consumption of OpenAI tokens.

Turning the user’s summary paragraph into a safe prompt for image generation

“You are a helpful assistant that takes unsafe inputs for DALL-E and makes them
safe. The prompt should be appropriate for ages 5+, but still have meaning of the
original text. You shall not generate anything stating you have an output, only the
resulting text. Some (but not all) trigger words that need replaced are ‘bias’, ‘blood’,
‘depression’, ‘trauma’, ‘self-harm’, ‘suicide’, and any medical terminology relating to
the body.” Generate a safe scene which visually exemplifies the following: «SUMMARY
PARAGRAPH»

4.3. Interactive Environment

Along with the visualization of summaries, details, and maps, we also provide various
interactive features for the user to keep track of their current information and suggest
where the user may visit next. As the user hovers over the text, it becomes highlighted
in cyan to monitor the user’s current location. When the user selects a textual item, it is
highlighted in dark grey.

The causal map is the unaltered specification of the conceptual model, provided by
the user. The detailed text is generated from the causal map, and the summary is generated
from the detailed text. As mentioned in Section 3, generative AI involves randomness;
hence, information is transformed as it passes through generative AI (Figure 8). The trans-
formations thus prevent us from conducting a verbatim match between nodes and words
in sentences. Rather, we need to automatically detect similar constructs. Therefore, we use
OpenAI’s text embeddings to vectorize words and sentences, and the cosine similarity is
computed [67]. The similarity ranges from 0 (no similarity) to 1.0 (identical), and we set a
default threshold of 0.825.

Figure 8. Transformation of a large causal map into two levels of text: detailed and summary. The
resulting JSON file can be reused in our visual analytics environment, without having to recom-
pute the text. The file contains a list of paragraphs, consisting of the subgraph, detailed text, and
summary text.
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Our environment allows matching in either direction: from sentences to nodes or
from nodes to sentences. When a sentence is selected, similar nodes are highlighted, while
all other nodes and edges are greyed out (Figure 7). If highlighted nodes are connected,
their edge is also highlighted. Conversely, when a node is selected, we highlight sentences
based on their similarity (i.e., higher opacity indicates higher similarity). To facilitate
the understanding of the local context of the selected node, we also highlight its direct
neighbors and the edges involved. Note that the user can select multiple nodes (by holding
CTRL) or search for nodes.

5. Case Study: Suicide and Adverse Childhood Experiences (ACEs) in Youth

In the U.S., suicide is the second-leading cause of death of those aged 10–14 and
25–34, and the third leading cause of death for those aged 15–24 [68]. The U.S. recorded
nearly 46,000 deaths by suicide in 2020 [68], which rose to 48,183 deaths in 2021, along
with 1.7 million suicide attempts [69]. There is thus a strong interest in suicide prevention
in youth, while noting that it is a complex endeavor since suicide ideation, attempt, and
death rarely stem from a single risk factor [68]. For example, suicide ideation is impacted
by many risk factors (e.g., ACEs, historical trauma, substance abuse, access to lethal means)
and protective factors (e.g., access to healthcare, connectedness). Our case study used a
causal map openly released by the Centers for Disease Control and Prevention (CDC),
focusing on suicide and ACEs in youth [27]. The map was built through a participatory
modeling process as described in Section 3.1.1. Specifically, after interviewing SMEs, the
aggregate map (Figure 2b) contained 361 nodes and nearly 946 relationships. Our case
study assumed that an analyst opens this map (along with the generated summary and
detailed text) to understand suicide and ACEs. The case study described in this section
is also provided as a video available at https://doi.org/10.5281/zenodo.10578610 (last
accessed on 21 May 2024).

In this case study, our user is an analyst who wishes to understand two aspects of
the complexity of suicide. This case study exemplifies that our system is intended for
professionals who have some familiarity with the domain of the causal map, but need
additional support due to its complexity. Analysts have specific tasks to accomplish, as
they are motivated by practical questions. In our case study, the first question is: how
do stressors in the parents ultimately become risk factors in their children? This is an
important aspect, related to the intergenerational impact of suicide on children and families.
Second, suicide is not just a simple chain of causes-and-effects: it is embedded in a complex
system that includes loops. The analyst thus also seeks to identify some of these loops,
with an emphasis on the relation between parents and their children.

The analyst starts by inputing an OpenAI key, since all of our applied AI models run
through OpenAI’s API. The analyst then imports the desired file, which initially displays
only the summary text (Figure 9a). The analyst can interact with a summary, update the
threshold, or search for specific concepts. In our case, the analyst searches for “stress in
parents and families” (Figure 9b). The first paragraph has the most opaque background
color, thus it is the most relevant and the analyst selects it accordingly. Once the paragraph
is selected, the searched phrase carries over to the detailed text and graph, highlighting
relevant sentences and nodes (Figure 9c). From this summary, an image is also generated
portraying different household environments (Figure 10a).

https://doi.org/10.5281/zenodo.10578610
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(a) (b)

(c) (d)

(e) (f)
Figure 9. A step-by-step example showing features of the visual analytics environment. (a) The state
of the application after entering an OpenAI key and importing the JSON file. Only the summarized
text is visible. (b) The user then searches for summaries related to “stress in parents and families”.
(c) After selecting the first summary, the corresponding detailed text and causal map are displayed,
while an image based on the summary is then generated. The search also carries over, highlighting
the most relevant sentences and nodes. (d) Selecting the first detailed sentence removes the search
format and highlights nodes relating to the sentence. (e) The node of parental stress is selected,
highlighting similar summaries and detailed sentences. (f) Multiple nodes are selected by holding
the CTRL key, ending after selecting ‘Parental Burden’.

The analyst noted that the first sentence is about parental stress in families, which is
highly related to the question of interest. After the analyst selected this sentence, related
nodes and edges are highlighted, while others are hidden (Figure 9d). Among those
highlighted are ACEs, child risk factors, parental burden, parental stress, and parental risk
factors. Within a few steps, the analyst thus already identified several of the constructs that
link parental stress to risk factors in their children. The analyst focused on the construct of
‘parental stress’ by selecting it for inspection (Figure 9e). Some summary texts and detailed
sentences were highlighted, showing their significance in specific sections. We could also
observe parental risk factors and parental burden having an impact on parental stress,
which can lead to household challenges, parental perpetration of ACEs, or directly affect
ACEs. Having identified a very important construct, the analyst now formed a cluster
(Figure 9f) by selecting all nodes directly related to parental stress, except for ACEs (as it
has too many relationships and would bloat the analysis). By selecting parental stress along
with four connected constructs, the analyst found loops: parental stress causes household
challenges, which may increase risk factors, leading to more parental stress. In addition, all
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nodes connected to parental stress except for parental burden can also cause more ACEs,
while parental burden may be caused by impulsivity, mental health disorders, and a lower
quality of health. By continuing, the analyst would visit other summary texts and discover
more relationships relating to parental burden or parental stress.

(a) (b) (c)
Figure 10. DALL-E 3 images generated by summary prompts (explained in Section 4.2). (a) When
parents face more challenges, this increases the likelihood of their children experiencing difficult
childhood experiences (DCEs) and parental stress. DCEs can have negative effects on a child’s ways
of handling emotions, brain development, and exposure to tough situations. Unhealthy ways of
handling emotions can lead to expressing feelings in a negative way, parental disagreements, and
substance misuse. Having more difficult experiences can make a person more likely to feel really
sad and think about hurting themselves. (b) When parents face difficult challenges, it increases the
chances of their children having tough experiences during childhood and feeling stressed. These
tough experiences can have negative effects on a child’s ways of dealing with things, how their brain
grows, and how much tough stuff they have to face. Unhealthy ways of dealing with things can lead
to acting out when feeling upset, problems between parents, and using harmful substances. Having
more difficult experiences can make a person more likely to have sad thoughts. (c) An increase
in challenges in the wider world means that there are more things that can potentially affect us
negatively. If there is a growing family history of difficult times, it means that more family members
have faced tough situations in the past. This can lead to exposure to difficult experiences, parental
loss, and other factors that may arise from living in a single-parent household.

6. Discussion

Multiple position papers have recently discussed the potential of leveraging rapid
advances in generative AI to support modeling and simulation [6,70], ranging from tasks
such as conceptual modeling to verification and explainability. While several studies are
gradually enacting this potential to create models or convert them into code [10,14,71], this
paper is the first that shows how to weave generative AI into a visual analytics environment
to interact with conceptual models (Q1). Since this use of generative AI for simulation is
unprecedented, we cannot demonstrate that our environment integrates AI in a better way
than an alternative environment. Our case study focused on using data from automatic text
generation and summarization, which is error-prone for leaving out significant information
as well as including false information (i.e., hallucinations). The text generation component
can be evaluated if users manually wrote an executive summary and detailed text to
serve as ground truth. Users could import their own detailed text and summaries in our
environment as long as it matches the JSON format. However, it would be very time
consuming to manually write sentences to account for every node and edge (recall that
our case study map in Section 5 contained 946 edges). By releasing this work open source,
we encourage the simulation community to evaluate the tool with their own participants
and to make changes in response to their specific needs. Our case study demonstrates
how a user who is familiar with causal maps may use the application (Q2), but we did
not evaluate their performance or record the user’s satisfaction. Collecting data on how
participants engage with models via text is an important step to know whether we have
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achieved successful transparency of information or to discover more ways to improve
the process.

We focused on using generative AI through text and image generation to provide
an automatic and robust way of quickly obtaining details on demand. An evaluation of
identifying the ideal generative AI models to use was beyond the scope of this paper, but it is
important to generate and display the best data possible. In our models, we utilized GPT-3
and GPT-3.5 to convert causal maps into text [12], BART for text summarization [46], DALL-
E 3 for image generation [55], and OpenAI embeddings [67]. Other LLMs, e.g., Llama 3 [72]
(which now comes with either 8 or 70 billion parameters), Claude, Mistral, and PaLM [73]
(used in Google’s Bard), may be tested, as well as other text summarization models e.g.,
Llama, PaLM, GPT, Longformer [74], and T5 [75]. The modular nature of our architecture
and its open-source release make it simple for others to swap one LLM for another; for
example, we performed additional assessments on our text-to-image prompts using GPT-4o
(released in mid-May 2024) and found that the results were equivalent (Figure 11).

Image generation and diffusion models drastically vary in results (even between
DALL-E 2 and DALL-E 3), so other diffusion models and applications may be used such
as Craiyon and Midjourney [76]. We considered the possibility of using Stable Diffusion
compared to DALL-E, particularly as many of the images (Figures 12 and 13) created by
DALL-E can be described as ‘allegories’ (personifications of abstract ideas) whereas Stable
Diffusion can provide illustrations or photorealistic renderings. The main versions are
Stable Diffusion 1.5 (850 M parameters), Stable Diffusion 2.0 (865 M parameters), and SDXL
(2.6 B parameters). We performed complementary experiments using the latest available
version (SDXL), as of mid-May 2024, which offers the best performance [52], but the results
did not reflect the prompt as comprehensively as DALL-E 3 (Figure 14).

Our visual analytics environment is one step toward inclusive conceptual modeling, as
details on demand and the use of text can broaden access to conceptual models. However,
Lukyanenko et al. noted that “to cultivate inclusive conceptual modeling, the language in
which conceptual modeling activities is couched must be sensitive to the needs of diverse
people” [77]. At present, generative AI for simulation can adapt the output based on the
content (e.g., as shown by our prompt reformulation to avoid trigger words) but is not
yet based on individual needs and preferences. While there has been progress in probing
human preferences to guide generative AI [78], a new study showed that GPT responds
more negatively to opinion-minority groups [79]—a result of being trained to find patterns
with broad support in the training data. Additional studies are thus needed to ensure that
the inclusion of user preferences does not backfire by resulting in a worse experience.
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Figure 11. The modular architecture of our solution allows users to generate prompts for image-to-
text generation using other LLMs. In this example, we used GPT-4o. Results remain satisfactory:
(a) illustrates how “talking about your tough feelings with others can help ensure that things which
could cause harm are removed” (shown as being put in a box), (b) shows the justice system and
being ignored by family members, (c) portrays the abstract notions of ‘broader environment’ and
‘difficult times’, (d) evokes loneliness and planning (for a suicide attempt), (e) emphasizes a ‘strong
support system’ and connectedness, and (f) shows the challenges facing African American people in,
for example, the justice system.
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Figure 12. (a) was generated from a text on sadness, substance misuse, parental disagreements,
and parents facing more challenges. The allegory shows burdened parents climbing a hill with their
children as ‘facing challenges’. (b) was generated based on exposure to tough times and feeling sad.
(c) suggests that sad thoughts in parents are connected to the experiences of the children. (d) evokes
the risks of “feeling very sad and wanting to be alone” and the protective effects of “feeling connected
to others”. (e) shows “growing up in a family that doesn’t acknowledge their feelings” as a child
facing mannequins. (f) portrays the effect of exposure to tough situations onto brain development.
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Figure 13. (a) used the same prompt as Figure 12a on parents facing challenges. (b) illustrates that
“people of African American [may] have interactions with the justice system, have parents who are
incarcerated”. (c) personifies how “challenging childhood experiences and parental stress [impact
brain development”. (d) shows how “connected individuals feel in their families and communities” .
(e) echoes parental stress and disagreements, substance misuse, and children feeling sad. (f) shows
parents facing multiple challenges.
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Figure 14. We considered several diffusion (SDXL) models for text-to-image generation as alternatives
to DALL-E 3: (a) Aetherverse, (b) CyberRealistic, and (c) Fluently. All of them portrayed fewer aspects
of the prompt than DALL-E 3.

7. Conclusions

In this paper, we proposed a new solution to explore large conceptual models while
minimizing information overload, such that users may discover details that would oth-
erwise have been overlooked or would have required a much longer investigation. We
described how the environment and its features were developed, and the environment
was used for suicide in youth as a case study for a complex conceptual model. By using
generative AI, our environment made the information contained in conceptual models
more accessible to participants, which is a way of giving back to community members and
experts that help build these models.

Author Contributions: Conceptualization, T.J.G. and P.J.G.; methodology, T.J.G. and P.J.G.; software,
T.J.G. and S.C.G.; investigation, T.J.G.; resources, T.J.G. and P.J.G.; writing—original draft preparation,
T.J.G. and S.C.G., and P.J.G.; writing—review and editing, P.J.G.; writing—revisions, P.J.G.; visualiza-
tion, T.J.G. and S.C.G.; supervision, P.J.G.; project administration, P.J.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Our software is provided open source and can be accessed without
registration via a permanent DOI identifier on a third-party repository at https://doi.org/10.5281/
zenodo.10578610, accessed on 21 May 2024. A video demonstrating the use of the software is provided
at the same URL. For convenience, we also provide a version with GPT-4o at https://osf.io/98kmy/,
accessed on 21 May 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pretrained Transformer
LLM Large Language Model
LPAM Label Propagation Algorithm

References
1. Gill, S.S.; Xu, M.; Patros, P.; Wu, H.; Kaur, R.; Kaur, K.; Fuller, S.; Singh, M.; Arora, P.; Parlikad, A.K.; et al. Transformative effects

of ChatGPT on modern education: Emerging Era of AI Chatbots. Internet Things-Cyber-Phys. Syst. 2024, 4, 19–23. [CrossRef]
2. Perkins, M.; Roe, J.; Postma, D.; McGaughran, J.; Hickerson, D. Detection of GPT-4 generated text in higher education: Combining

academic judgement and software to identify generative AI tool misuse. J. Acad. Ethics 2024, 22, 89–113. [CrossRef]
3. Frieder, S.; Pinchetti, L.; Griffiths, R.R.; Salvatori, T.; Lukasiewicz, T.; Petersen, P.; Berner, J. Mathematical capabilities of chatgpt.

Adv. Neural Inf. Process. Syst. 2024, 36.

https://doi.org/10.5281/zenodo.10578610
https://doi.org/10.5281/zenodo.10578610
https://osf.io/98kmy/
http://doi.org/10.1016/j.iotcps.2023.06.002
http://dx.doi.org/10.1007/s10805-023-09492-6


Mathematics 2024, 12, 1946 21 of 23

4. Gandolfi, A. GPT-4 in Education: Evaluating Aptness, Reliability, and Loss of Coherence in Solving Calculus Problems and
Grading Submissions. Int. J. Artif. Intell. Educ. 2024, 1–31. [CrossRef]

5. Alshareef, A.; Keller, N.; Carbo, P.; Zeigler, B.P. Generative AI with Modeling and Simulation of Activity and Flow-Based
Diagrams. In Proceedings of the International Conference on Simulation Tools and Techniques, Seville, Spain, 14–15 December
2023; Springer: Cham, Switzerland, 2023; pp. 95–109.

6. Giabbanelli, P.J. GPT-Based Models Meet Simulation: How to Efficiently use Large-Scale Pre-Trained Language Models Across
Simulation Tasks. In Proceedings of the 2023 Winter Simulation Conference (WSC), San Antonio, TX, USA, 10–13 December 2023;
pp. 2920–2931.

7. Akhavan, A.; Jalali, M.S. Generative AI and simulation modeling: How should you (not) use large language models like ChatGPT.
Syst. Dyn. Rev. 2023. [CrossRef]

8. Hosseinichimeh, N.; Majumdar, A.; Williams, R.; Ghaffarzadegan, N. From Text to Map: A System Dynamics Bot for Constructing
Causal Loop Diagrams. arXiv 2024, arXiv:2402.11400.

9. Jalali, M.S.; Akhavan, A. Integrating AI Language Models in Qualitative Research: Replicating Interview Data Analysis with
ChatGPT. Syst. Dyn. Rev. 2024. [CrossRef]

10. Giabbanelli, P.; Witkowicz, N. Generative AI for Systems Thinking: Can a GPT Question-Answering System Turn Text into the
Causal Maps Produced by Human Readers? In Proceedings of the 57th Hawaii International Conference on System Sciences,
Waikiki Beach, HI, USA, 3–6 January 2024; pp. 7540–7549.

11. Phatak, A.; Mago, V.K.; Agrawal, A.; Inbasekaran, A.; Giabbanelli, P.J. Narrating Causal Graphs with Large Language Models. In
Proceedings of the Hawaii International Conference on System Sciences (HICSS), Waikiki Beach, HI, USA, 3–6 January 2024.

12. Shrestha, A.; Mielke, K.; Nguyen, T.A.; Giabbanelli, P.J. Automatically Explaining a Model: Using Deep Neural Networks
to Generate Text From Causal Maps. In Proceedings of the Winter Simulation Conference, Singapore, 11–14 December 2022;
pp. 2629–2640.

13. Apvrille, L.; Sultan, B. System Architects Are not Alone Anymore: Automatic System Modeling with AI. In Proceedings of the
12th Internaitonal Conference on Model-Based Software and Systems Engineering (INSTICC), Rome, Italy, 21–23 February 2024;
pp. 27–38.

14. Frydenlund, E.; Martínez, J.; Padilla, J.J.; Palacio, K.; Shuttleworth, D. Modeler in a box: How can large language models aid in
the simulation modeling process? Simulation 2024, 00375497241239360. [CrossRef]

15. Feleki, A.; Apostolopoulos, I.D.; Moustakidis, S.; Papageorgiou, E.I.; Papathanasiou, N.; Apostolopoulos, D.; Papandrianos,
N. Explainable Deep Fuzzy Cognitive Map Diagnosis of Coronary Artery Disease: Integrating Myocardial Perfusion Imaging,
Clinical Data, and Natural Language Insights. Appl. Sci. 2023, 13, 11953. [CrossRef]

16. Robinson, S.; Arbez, G.; Birta, L.G.; Tolk, A.; Wagner, G. Conceptual modeling: Definition, purpose and benefits. In Proceedings
of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 2812–2826.

17. Voinov, A.; Jenni, K.; Gray, S.; Kolagani, N.; Glynn, P.D.; Bommel, P.; Prell, C.; Zellner, M.; Paolisso, M.; Jordan, R.; et al. Tools and
methods in participatory modeling: Selecting the right tool for the job. Environ. Model. Softw. 2018, 109, 232–255. [CrossRef]

18. Mooney, S.J. Systems thinking in population health research and policy. In Systems Science and Population Health; Oxford
University Press: Oxford, UK, 2017; pp. 49–60.

19. Jack, A. Foresight report on obesity–Author’s reply. Lancet 2007, 370, 1755. [CrossRef]
20. Grant, S.; Soltani Panah, A.; McCosker, A. Weight-Biased Language across 30 Years of Australian News Reporting on Obesity:

Associations with Public Health Policy. Obesities 2022, 2, 103–114. [CrossRef]
21. Drasic, L.; Giabbanelli, P.J. Exploring the interactions between physical well-being, and obesity. Can. J. Diabetes 2015, 39, S12–S13.

[CrossRef]
22. McGlashan, J.; Hayward, J.; Brown, A.; Owen, B.; Millar, L.; Johnstone, M.; Creighton, D.; Allender, S. Comparing complex

perspectives on obesity drivers: Action-driven communities and evidence-oriented experts. Obes. Sci. Pract. 2018, 4, 575–581.
[CrossRef] [PubMed]

23. Keim, D.; Andrienko, G.; Fekete, J.D.; Gorg, C.; Kohlhammer, J.; Melançon, G. Visual analytics: Definition, process, and challenges.
Lect. Notes Comput. Sci. 2008, 4950, 154–176.

24. Giabbanelli, P.J.; Vesuvala, C.X. Human Factors in Leveraging Systems Science to Shape Public Policy for Obesity: A Usability
Study. Information 2023, 14, 196. [CrossRef]

25. Hvalshagen, M.; Lukyanenko, R.; Samuel, B.M. Empowering users with narratives: Examining the efficacy of narratives for
understanding data-oriented conceptual models. Inf. Syst. Res. 2023, 34, 890–909. [CrossRef]

26. Chandrasegaran, S.; Badam, S.K.; Kisselburgh, L.; Ramani, K.; Elmqvist, N. Integrating visual analytics support for grounded
theory practice in qualitative text analysis. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2017; Volume 36,
pp. 201–212.

27. Giabbanelli, P.J.; Rice, K.L.; Galgoczy, M.C.; Nataraj, N.; Brown, M.M.; Harper, C.R.; Nguyen, M.D.; Foy, R. Pathways to suicide or
collections of vicious cycles? Understanding the complexity of suicide through causal mapping. Soc. Netw. Anal. Min. 2022,
12, 60. [CrossRef]

28. Higham, C.F.; Higham, D.J.; Grindrod, P. Diffusion Models for Generative Artificial Intelligence: An Introduction for Applied
Mathematicians. arXiv 2023, arXiv:2312.14977.

29. Berry, M.W.; Drmac, Z.; Jessup, E.R. Matrices, vector spaces, and information retrieval. SIAM Rev. 1999, 41, 335–362. [CrossRef]

http://dx.doi.org/10.1007/s40593-024-00403-3
http://dx.doi.org/10.2139/ssrn.4675409
http://dx.doi.org/10.1002/sdr.1772
http://dx.doi.org/10.1177/00375497241239360
http://dx.doi.org/10.3390/app132111953
http://dx.doi.org/10.1016/j.envsoft.2018.08.028
http://dx.doi.org/10.1016/S0140-6736(07)61741-3
http://dx.doi.org/10.3390/obesities2010010
http://dx.doi.org/10.1016/j.jcjd.2015.01.058
http://dx.doi.org/10.1002/osp4.306
http://www.ncbi.nlm.nih.gov/pubmed/30574350
http://dx.doi.org/10.3390/info14030196
http://dx.doi.org/10.1287/isre.2022.1141
http://dx.doi.org/10.1007/s13278-022-00886-9
http://dx.doi.org/10.1137/S0036144598347035


Mathematics 2024, 12, 1946 22 of 23

30. Zhai, C. Statistical language models for information retrieval a critical review. Found. Trends® Inf. Retr. 2008, 2, 137–213.
[CrossRef]

31. Zhang, W.; Yoshida, T.; Tang, X. A comparative study of TF* IDF, LSI and multi-words for text classification. Expert Syst. Appl.
2011, 38, 2758–2765. [CrossRef]

32. Pillutla, V.S.; Tawfik, A.A.; Giabbanelli, P.J. Detecting the depth and progression of learning in massive open online courses by
mining discussion data. Technol. Knowl. Learn. 2020, 25, 881–898. [CrossRef]

33. Selva Birunda, S.; Kanniga Devi, R. A review on word embedding techniques for text classification. In Innovative Data
Communication Technologies and Application: Proceedings of the ICIDCA 2020, Coimbatore, India, 3–4 September 2020; Springer:
Singapore, 2021; pp. 267–281.

34. Li, B.; Zhou, H.; He, J.; Wang, M.; Yang, Y.; Li, L. On the sentence embeddings from pre-trained language models. arXiv 2020,
arXiv:2011.05864.

35. Galgoczy, M.C.; Phatak, A.; Vinson, D.; Mago, V.K.; Giabbanelli, P.J. (Re) shaping online narratives: When bots promote the
message of President Trump during his first impeachment. PeerJ Comput. Sci. 2022, 8, e947. [CrossRef] [PubMed]

36. Patil, A.; Han, K.; Jadon, A. A Comparative Analysis of Text Embedding Models for Bug Report Semantic Similarity. In
Proceedings of the 2024 11th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 21–22
March 2024; pp. 262–267.

37. Li, X.; Henriksson, A.; Duneld, M.; Nouri, J.; Wu, Y. Evaluating Embeddings from Pre-Trained Language Models and Knowledge
Graphs for Educational Content Recommendation. Future Internet 2023, 16, 12. [CrossRef]

38. Aperdannier, R.; Koeppel, M.; Unger, T.; Schacht, S.; Barkur, S.K. Systematic Evaluation of Different Approaches on Embedding
Search. In Advances in Information and Communication, Proceedings of the Future of Information and Communication Conference, Berlin,
Germany, 4–5 April 2024; Springer: Cham, Switzerland, 2024; pp. 526–536.

39. Reiter, E.; Dale, R. Building applied natural language generation systems. Nat. Lang. Eng. 1997, 3, 57–87. [CrossRef]
40. Dimitromanolaki, A. Learning to Order Facts for Discourse Planning in Natural Language. In Proceedings of the 10th Conference

of The European Chapter, Budapest, Hungary, 12–17 April 2003; p. 23.
41. Di Eugenio, B.; Fossati, D.; Yu, D.; Haller, S.; Glass, M. Aggregation improves learning: Experiments in natural language

generation for intelligent tutoring systems. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), Ann Arbor, MI, USA, 25–30 June 2005; pp. 50–57.

42. AlShaikh, F.; Hewahi, N. Ai and machine learning techniques in the development of Intelligent Tutoring System: A review. In
Proceedings of the 2021 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies
(3ICT), Zallaq, Bahrain, 29–30 September 2021; pp. 403–410.

43. Dai, K. Multi-Context Dependent Natural Text Generation for More Robust NPC Dialogue. Bachelor’s Thesis, Harvard University,
Cambridge, MA, USA, 2020.

44. Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of hallucination in natural
language generation. ACM Comput. Surv. 2023, 55, 1–38. [CrossRef]

45. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
46. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising

Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880.

47. Lu, Y.; Li, Z.; He, D.; Sun, Z.; Dong, B.; Qin, T.; Wang, L.; Liu, T.Y. Understanding and improving transformer from a multi-particle
dynamic system point of view. arXiv 2019, arXiv:1906.02762.

48. Ding, M.; Yang, Z.; Hong, W.; Zheng, W.; Zhou, C.; Yin, D.; Lin, J.; Zou, X.; Shao, Z.; Yang, H.; et al. Cogview: Mastering
text-to-image generation via transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 19822–19835.

49. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. In Proceedings of
The 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1060–1069.

50. Zhao, Z.; Ye, J.C.; Bresler, Y. Generative Models for Inverse Imaging Problems: From mathematical foundations to physics-driven
applications. IEEE Signal Process. Mag. 2023, 40, 148–163. [CrossRef]

51. Fatkhulin, T.; Leokhin, Y.; Mentus, M.; Kulikova, A.; Alshawi, R. Analysis of the Basic Image Generation Methods by Neural
Networks. In Proceedings of the 2023 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex
(TIRVED), Moscow, Russia, 15–17 November 2023; pp. 1–7.

52. Podell, D.; English, Z.; Lacey, K.; Blattmann, A.; Dockhorn, T.; Müller, J.; Penna, J.; Rombach, R. Sdxl: Improving latent diffusion
models for high-resolution image synthesis. arXiv 2023, arXiv:2307.01952.

53. Song, J.; Meng, C.; Ermon, S. Denoising diffusion implicit models. arXiv 2020, arXiv:2010.02502.
54. Fang, S. A Survey of Data-Driven 2D Diffusion Models for Generating Images from Text. EAI Endorsed Trans. AI Robot. 2024, 3.

[CrossRef]
55. Betker, J.; Goh, G.; Jing, L.; Brooks, T.; Wang, J.; Li, L.; Ouyang, L.; Zhuang, J.; Lee, J.; Guo, Y.; et al. Improving Image Generation

with Better Captions. 2023. Available online: https://cdn.openai.com/papers/dall-e-3.pdf (accessed on 21 May 2024).
56. Yang, L.; Yu, Z.; Meng, C.; Xu, M.; Ermon, S.; Cui, B. Mastering text-to-image diffusion: Recaptioning, planning, and generating

with multimodal llms. arXiv 2024, arXiv:2401.11708.

http://dx.doi.org/10.1561/1500000008
http://dx.doi.org/10.1016/j.eswa.2010.08.066
http://dx.doi.org/10.1007/s10758-020-09434-w
http://dx.doi.org/10.7717/peerj-cs.947
http://www.ncbi.nlm.nih.gov/pubmed/35494820
http://dx.doi.org/10.3390/fi16010012
http://dx.doi.org/10.1017/S1351324997001502
http://dx.doi.org/10.1145/3571730
http://dx.doi.org/10.1109/MSP.2022.3215282
http://dx.doi.org/10.4108/airo.5453
https://cdn.openai.com/papers/dall-e-3.pdf


Mathematics 2024, 12, 1946 23 of 23

57. Pinho, H.D. Generation of systems maps. In Systems Science and Population Health; Oxford University Press: Oxford, UK, 2017;
pp. 61–76.

58. Schuerkamp, R.; Giabbanelli, P.; Grandi, U.; Doutre, S. How to Combine Models? Principles and Mechanisms to Aggregate Fuzzy
Cognitive Maps. In Proceedings of the Winter Simulation Conference (WSC 2023), San Antonio, TX, USA, 10–13 December 2023.

59. Gandee, T.J. natural language generation: Improving the Accessibility of Causal Modeling through Applied Deep Learning.
Master’s Thesis, Miami University, Oxford, OH, USA, 2024.

60. Ponomarenko, A.; Pitsoulis, L.; Shamshetdinov, M. Overlapping community detection in networks based on link partitioning
and partitioning around medoids. PLoS ONE 2021, 16, e0255717. [CrossRef]

61. Weisz, J.D.; Muller, M.; He, J.; Houde, S. Toward general design principles for generative AI applications. arXiv 2023,
arXiv:2301.05578.

62. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of
artificial general intelligence: Early experiments with gpt-4. arXiv 2023, arXiv:2303.12712.

63. Ganguli, D.; Hernandez, D.; Lovitt, L.; Askell, A.; Bai, Y.; Chen, A.; Conerly, T.; Dassarma, N.; Drain, D.; Elhage, N.; et al.
Predictability and surprise in large generative models. In Proceedings of the ACM Conference on Fairness, Accountability, and
Transparency, Seoul, Republic of Korea, 21–24 June 2022; pp. 1747–1764.

64. Guerreiro, N.M.; Alves, D.M.; Waldendorf, J.; Haddow, B.; Birch, A.; Colombo, P.; Martins, A.F. Hallucinations in large
multilingual translation models. Trans. Assoc. Comput. Linguist. 2023, 11, 1500–1517. [CrossRef]

65. da Silva, S.A.; Milios, E.E.; de Oliveira, M.C.F. Evaluating visual analytics for text information retrieval. In Proceedings of the XX
Brazilian Symposium on Human Factors in Computing Systems, Virtual, 18–22 October 2021; pp. 1–11.

66. Dowling, M.; Wycoff, N.; Mayer, B.; Wenskovitch, J.; House, L.; Polys, N.; North, C.; Hauck, P. Interactive visual analytics for
sensemaking with big text. Big Data Res. 2019, 16, 49–58. [CrossRef]

67. Neelakantan, A.; Xu, T.; Puri, R.; Radford, A.; Han, J.M.; Tworek, J.; Yuan, Q.; Tezak, N.; Kim, J.W.; Hallacy, C.; et al. Text and
code embeddings by contrastive pre-training. arXiv 2022, arXiv:2201.10005.

68. Centers for Disease Control and Prevention. Suicide Prevention Resource for Action: A Compilation of the Best Available Evidence;
Technical Report; National Center for Injury Prevention and Control: Atlanta, GA, USA, 2022.

69. Centers for Disease Control and Prevention. National Vital Statistics System, Mortality 2018–2021 on CDC WONDER Online
Database. 2023. Available online: http://wonder.cdc.gov/mcd-icd10-expanded.html (accessed on 10 January 2024).

70. Scherer, W.; Tolk, A.; Loper, M.; Barry, P.; Rabadi, G.; Yilmaz, L. Chances and challenges of CHATGPT and similar models for
education in M&S. Authorea Prepr. 2023. [CrossRef]

71. du Plooy, C.; Oosthuizen, R. AI usefulness in systems modelling and simulation: Gpt-4 application. S. Afr. J. Ind. Eng. 2023,
34, 286–303. [CrossRef]

72. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288.

73. Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al.
Palm: Scaling language modeling with pathways. J. Mach. Learn. Res. 2023, 24, 1–113.

74. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150.
75. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer

Learning With a Unified Text-To-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67.
76. Reviriego, P.; Merino-Gómez, E. Text to image generation: Leaving no language behind. arXiv 2022, arXiv:2208.09333.
77. Lukyanenko, R.; Bork, D.; Storey, V.C.; Parsons, J.; Pastor, O. Inclusive conceptual modeling: Diversity, equity, involvement, and

belonging in conceptual modeling. In ER Forum; CEUR Workshop Proceedings, RWTH Aachen University: Aachen, Germany,
2023; pp. 1–4.

78. Hu, Y.; Song, K.; Cho, S.; Wang, X.; Foroosh, H.; Liu, F. DecipherPref: Analyzing Influential Factors in Human Preference
Judgments via GPT-4. In Proceedings of the 2023 Conference on Empirical Methods in natural language processing, Singapore,
6–10 December 2023; pp. 8344–8357.

79. Chen, K.; Shao, A.; Burapacheep, J.; Li, Y. Conversational AI and equity through assessing GPT-3’s communication with diverse
social groups on contentious topics. Sci. Rep. 2024, 14, 1561. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0255717
http://dx.doi.org/10.1162/tacl_a_00615
http://dx.doi.org/10.1016/j.bdr.2019.04.003
http://wonder.cdc.gov/mcd-icd10-expanded.html
http://dx.doi.org/10.1109/WSC60868.2023.10408241
http://dx.doi.org/10.7166/34-3-2944
http://dx.doi.org/10.1038/s41598-024-51969-w

	Introduction
	Mathematical Foundations
	Text Embeddings
	Natural Language Generation
	Text-to-Image Generation

	Background
	From Large Causal Maps to Text
	Why Causal Maps Become Large: Elicitation and Aggregation
	Preprocessing: Preparing Two Levels of Text and Subgraphs
	Leveraging AI to Enable Transformations

	Combating Information Overload with Visual Analytics

	Methods
	Overview: A User's Workflow
	Visualization
	Interactive Environment

	Case Study: Suicide and Adverse Childhood Experiences (ACEs) in Youth
	Discussion
	Conclusions
	References

