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Abstract: Three-way clustering uses core region and fringe region to describe a cluster, which divide
the dataset into three parts. The division helps identify the central core and outer sparse regions of
a cluster. One of the main challenges in three-way clustering is the meaningful construction of the
two sets. Aimed at handling high-dimensional data and improving the stability of clustering, this
paper proposes a novel three-way clustering method. The proposed method uses dimensionality
reduction techniques to reduce data dimensions and eliminate noise. Based on the reduced dataset,
random sampling and feature extraction are performed multiple times to introduce randomness and
diversity, enhancing the algorithm’s robustness. Ensemble strategies are applied on these subsets,
and the k-means algorithm is utilized to obtain multiple clustering results. Based on these results,
we obtain co-association frequency between different samples and fused clustering result using the
single-linkage method of hierarchical clustering. In order to describe the core region and fringe region
of each cluster, the similar class of each sample is defined by co-association frequency. The lower
and upper approximations of each cluster are obtained based on similar class. The samples in the
lower approximation of each cluster belong to the core region of the cluster. The differences between
lower and upper approximations of each cluster are defined as fringe region. Therefore, a three-way
explanation of each cluster is naturally formed. By employing various UC Irvine Machine Learning
Repository (UCI) datasets and comparing different clustering metrics such as Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI), and Accuracy (ACC), the experimental results show
that the proposed strategy is effective in improving the structure of clustering results.

Keywords: three-way clustering; co-association frequency; dimension reduction; similar classes

MSC: 68T37; 62A86

1. Introduction

As an unsupervised technique in data mining and machine learning, cluster analysis
is widely used in various areas such as attribute reduction [1–4], feature selection [5–7],
image processing [8,9], information granulation [10–12], and graph convolutional neural
networks [13–15]. The primary objective of clustering is to organize heterogeneous data
into meaningful groups based on their similarities, revealing the inherent structures and
patterns within the dataset. To achieve this, various clustering algorithms [16] have been
developed. However, it has been accepted that a single clustering algorithm cannot handle
all types of data distribution effectively. Different algorithms or different parameters for an
algorithm may lead to different clustering results. To enhance the robustness and stability
of clustering algorithms, researchers have proposed ensemble clustering methods. In
comparison to single clustering methods, ensemble clustering methods [17–22] integrate
results from multiple foundational clustering algorithms, yielding more stable, robust,
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and accurate clustering solutions. Nevertheless, existing ensemble clustering methods
typically adopt a hard clustering strategy, where an element can belong to only one cluster
or none, and clear boundaries exist between different clusters. However, in situations with
insufficient information on data samples, hard clustering algorithms often lead to higher
decision risks.

To address this issue, three-way decision theory [23,24] was introduced to describe
uncertainties in information. This method divides the sample universe into three mutually
exclusive regions and adopts different decision strategies for each region [25,26]. The
three-way decision framework can be integrated with various computational models for
learning uncertainty, such as rough set theory [27–29], Bayesian networks [30,31], and fuzzy
particle swarm optimization [32,33]. Inspired by the idea of three-way decision, Yu [34]
presented the framework of three-way clustering by using core and the fringe regions
to character a cluster. These two sets partition the sample space into three parts, which
capture three kinds of relationships between objects and a cluster, namely, belonging to,
partially belonging to, and not belonging to [35–38].

Recently, three-way clustering [39] has garnered widespread research interest, leading
to the development of various three-way clustering algorithms within this theoretical
framework. Wang and Yao [40] proposed a three-way clustering framework called CE3,
derived from mathematical morphology’s erosion and dilation concepts. Li et al. [41]
introduced sample’s stability to identify and establish relationships in ensemble clustering.
Yu et al. [42] proposed an efficient three-way clustering algorithm based on the idea of
universal gravitation. Jia et al. [43] developed an automatic three-way clustering approach
by combining the proposed threshold selection and the cluster number selection method.
Wang et al. [44] proposed a three-way adaptive density peak clustering (3W-ADPC) method
by integrating natural nearest neighbors with DPC.

Most of the existing three-way clustering algorithms are based on the original dataset,
which is not suitable for high-dimensional datasets. The processing of high-dimensional
data poses a fundamental yet highly challenging problem in the current field of data science.
The purpose of dimensionality reduction is to decrease the data’s dimensionality while
retaining the most significant aspects of its characteristics. By reducing the data’s dimen-
sionality, we can simplify the complexity of data analysis, enhance model training speed,
reduce storage requirements, and facilitate a clearer understanding and interpretation of
the model’s results. Various dimensionality reduction techniques are commonly employed
to address this challenge, including Principal Component Analysis (PCA) [45–47], spectral
clustering [48,49], factor analysis [50], and multidimensional scaling [51].

By integrating dimensionality reduction into three-way clustering, this paper presents
an ensemble three-way clustering algorithm based on dimensionality reduction. The
proposed method uses dimensionality reduction techniques to reduce data dimensions and
eliminate noise. Based on the reduced dataset, random sampling and feature extraction are
performed multiple times to introduce randomness and diversity, enhancing the algorithm’s
robustness. Ensemble strategies are applied on these subsets, and the k-means algorithm
is utilized to obtain multiple clustering results. Based on these results, the frequency of
different data points being assigned to the same cluster is calculated to derive the co-
occurrence frequency. If the co-occurrence frequency between data points exceeds a certain
threshold, they are defined as similar classes. Finally, a three-way clustering approach was
introduced by using the proposed similar relations. The main contributions of this research
are as follows:

(1) Ensemble three-way clustering framework based on dimensionality reduction.

We introduce a novel ensemble three-way clustering framework that combines dimen-
sionality reduction techniques with clustering ensemble methods. This framework reduces
data dimensions, eliminates noise, and enhances clustering stability. By leveraging multiple
clustering results, the method enhances the algorithm’s robustness through randomness
and diversity.

(2) Integration of co-occurrence frequency, hierarchical clustering, and lifecycle analysis:
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The proposed method calculates the co-occurrence frequency of data points being in
the same cluster, aiding in accurately defining similar classes. It employs a single-linkage
hierarchical clustering approach to fuse clustering results and constructs a dendrogram
based on these probabilities. By analyzing the lifecycle of clusters, we determine the most
stable clustering result, ensuring robustness and consistency.

These contributions collectively enhance the performance and applicability of three-
way clustering algorithms, especially for high-dimensional datasets, providing a more
accurate and stable clustering solution.

The remainder of this paper is organized as follows. In Section 2, we provide a com-
prehensive review of the concepts related to three-way clustering, the k-means algorithm,
PCA, and data integration strategies. Section 3 outlines the methodology and algorithmic
process employed in this study. The results and performance metrics obtained from the
proposed algorithm on the UCI dataset are presented in Section 4. Section 5 encompasses
the discussion of our findings and identifies areas for future improvement.

2. Related Work
2.1. Three-Way Clustering

Traditional hard clustering depicts a cluster by one set with a sharp boundary.
Only two relationships between the sample and cluster are considered, i.e., belonging
to and not belonging to. For the samples inside the cluster, they belong to this cluster,
and for the samples outsider the cluster, they are not the elements of this cluster.
Given a dataset X = {x1, x2, · · · , xn} with n samples and k clusters in traditional hard
clustering, the clustering results can be represented as C = {C1, C2, · · · , Ck}, where
Ci, i = 1, 2, · · · , k satisfies 

Ci ̸= , i = 1, · · · , k
k
∪

i=1
Ci = U

Ci ∩ Cj = , i ̸= j

.

In traditional clustering, each sample is unequivocally assigned to one cluster, and
there are clear boundaries between different clusters. This two-way description of a cluster
may not adequately show the uncertainty information in data. To address the limitation in
traditional clustering, Yu [34,52] proposed three-way clustering by defining three types of
membership relations between a sample and a cluster, namely, belonging to fully, belonging
to partially and not belonging to. Three-way clustering utilizes the core region Co(Ci)
and the fringe region Fr(Ci) to depict a cluster, and the universe is split by these two sets
into three sections, Co(Ci), Fr(Ci), and Tr(Ci) = U − Co(Ci) − Fr(Ci), which obey the
following conditions: 

Co(Ci) ∪ Tr(Ci) ∪ Fr(Ci) = U
Co(Ci) ∩ Tr(Ci) =
Co(Ci) ∩ Fr(Ci) =
Fr(Ci) ∩ Tr(Ci) =

.

Three-way clustering results of dataset X are expressed as

C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

2.2. PCA Dimensionality Reduction

As a powerful tool in the realm of data analysis, PCA [47] (Principal Component
Analysis) offers a systematic approach to reduce the dimensionality of data while retaining
the significant variance within the dataset. This not only makes data easier to visualize but
also enhances the efficiency of subsequent analytical techniques. The fundamental idea of
PCA involves a linear transformation that maps the original data onto a new coordinate
system. The selection of this new coordinate system aims to maximize the variance of the
data along specific axes. By choosing the first few principal components, the data can be
projected onto these components, achieving dimensionality reduction.
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In the computational process, the initial step involves calculating the covariance matrix
of the original data. Subsequently, through eigenvalue decomposition, the eigenvalues
and eigenvectors of the covariance matrix are obtained. Following this, a selection of the
top eigenvalue-ordered eigenvectors forms the new coordinate system, representing the
principal components. Finally, projecting the original data onto these principal components
yields the reduced-dimensional data. Figure 1 illustrates the fundamental principle of PCA
for dimensionality reduction. In Figure 1, the original distribution of the dataset is given on
the plane, where the red and black dots represents different classes. Through PCA, these
points are projected onto the principal component directions in the reduced-dimensional
space, resulting in a new distribution of data. This process allows for the mapping of
high-dimensional data into a lower-dimensional space while retaining the essential features
of the original data, thus reducing dimensionality.
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Figure 1. Illustration of Dimensionality Reduction by PCA.

The application of PCA for dimensionality reduction offers the advantage of
preserving the crucial features of the data while reducing their dimensionality. This en-
hances computational efficiency for subsequent analyses, providing robust support for
research endeavors.

2.3. K-Means Algorithm

K-means algorithm [53] is a widely used clustering method with the goal of partition-
ing a dataset into k clusters, such that samples in the same cluster have high similarity,
and samples in distinct clusters have low similarity. The main idea of k-means algorithm
involves determining the positions of cluster centers by minimizing a loss function, which
incorporates the Euclidean distance between sample and cluster centers. Specifically, the
algorithm initiates by randomly selecting k sample points as initial cluster centers. It it-
eratively performs two key steps, i.e., assigning each sample point to the closest cluster
center in Euclidean distance, and updating the position of each cluster’s center based
on the samples assigned to it. This process repeats until the cluster centers no longer
undergo significant changes, signifying convergence of the loss function. The mathematical
formulation of the loss function is given by

J =
n

∑
i=1

k

∑
j=1

wij
∥∥χi − µj

∥∥2

, (1)

where wij is the indicator function, indicating whether the sample χi is assigned to cluster
µj. By minimizing this loss function, k-means algorithm efficiently identifies optimal cluster
center positions, facilitating effective data clustering.
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2.4. Hierarchical Clustering

Hierarchical clustering builds a tree-like structure (dendrogram) to represent the
nested grouping of data points. It can be divided into agglomerative and divisive
methods [54]. Agglomerative hierarchical clustering starts with each data point as an
individual cluster and iteratively merges the closest pairs of clusters until a single cluster
is formed. Conversely, divisive hierarchical clustering starts with the whole dataset as a
single cluster and recursively splits it into smaller clusters. A well-known variation is the
single-linkage method, which defines the distance between two clusters as the minimum
distance between any pair of points from the two clusters. This method is effective in
identifying clusters with irregular shapes.

2.5. Clustering Ensemble and Co-Association Frequency

Although there are many clustering methods, it has been accepted that there is not
one clustering method that can identify all kinds of data structure distribution. In order to
solve this problem, Strehl and Ghosh [16] proposed the cluster ensemble algorithm, which
combines multiple clustering results of a set of objects into one clustering result without
accessing the original features of the objects. The framework of clustering ensemble can be
depicted by Figure 2.
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The aim of clustering ensemble [55] is to consolidate multiple independent clustering
results into a comprehensive outcome, aiming to overcome potential biases introduced by
different clustering algorithms. Moreover, the rise of clustering ensemble has given birth to
various clustering ensemble methods, such as the voting–merging approach proposed by
Hornik [56]. This method leverages clustering ensemble algorithms to achieve more reliable
and stable clustering results. It utilizes an unsupervised voting mechanism to amalgamate
within the ensemble clustering, ultimately merging to derive the final clustering outcome.
For family clustering results of a dataset, there are three types of relationships between two
samples by qualitative observation. They may be always assigned to the same cluster, or
they are assigned to the same cluster occasionally. The last circumstance is not assigned to
the same group completely. In order to quantify a sample’s tendency of changing groups
quantitatively, Li et al. [41] introduced a measurement named as co-association frequency
by using the results of a family clustering.

Given a dataset X = {x1, x2, · · · , xn} with n samples and C1, C2, · · · , CL are family
clustering results on U, we use Cl(xi) to indicate the label of xi induced by clustering result
Cl . The co-association frequency pij, which represents that two samples xi and xj appear in
the same cluster, is calculated by

pij =
1
L

L

∑
l=1

∏
(

Cl(xi), Cl(xj
))

, (2)

where

∏
(

Cl(xi), Cl(xj
))

=

{
1 Cl(xi) = Cl(xj)

0 Cl(xi) ̸= Cl(xj)
.

We use an example to illustrate pij. Figure 3 is a dataset X with 6 samples and four
clustering results C1, C2, C3, C4 of X. The samples x1 and x2 consistently remain in the
same cluster across all results, indicating that co-association frequency p12 = 1. On the
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other hand, x1 and x3 are assigned to the same cluster only in C1 and C2, showing that
co-association frequency p13 = 0.5. The samples x1 and x5 are grouped into different
clusters across all four clustering results, indicating that co-association frequency p15 = 0.
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According to the above definition, we can obtain the co-association matrix of Figure 3
as Table 1.

Table 1. The co-association frequency matrix of Figure 3.

pij x1 x2 x3 x4 x5 x6

x1 1 1 0.5 0.25 0 0
x2 1 1 0.5 0.25 0 0
x3 0.5 0.5 1 0.75 0.25 0.25
x4 0.25 0.25 0.75 1 0.5 0.25
x5 0 0 0.25 0.5 1 1
x6 0 0 0.25 0.25 1 1

Co-association frequency [57,58] is to measure the probability that two data samples
are assigned to the same cluster in multiple clustering results. Specifically, if two samples
are consistently assigned to the same cluster across multiple clustering results, their co-
association frequency is 1. If two samples are not assigned to the same group completely,
their co-association frequency is 0. By calculating the co-occurrence probability for all data
points, a co-association frequency matrix is obtained. This matrix provides information
about the similarity of data points. By setting a threshold for co-association frequency,
samples with frequencies above the threshold are grouped into the same similarity class.
This approach integrates information from multiple clustering runs, not relying solely
on a single clustering result, thereby enhancing a comprehensive understanding of the
data structure.

3. Similarity-Based Three-Way Clustering by Using Dimensionality Reduction

In this section, we propose a similarity theory [43,59] based on data dimensionality
reduction and similarity-based three-way clustering. In contrast to traditional algorithms,
our approach first employs the PCA algorithm for data preprocessing, transforming high-
dimensional data into low-dimensional data. It incorporates an ensemble strategy by
randomly extracting subsets of features from the samples in multiple iterations, generating
diverse basic clustering results using the traditional k-means clustering algorithm. Sub-
sequently, we calculate the co-association frequency between samples to derive similarity
classes. By extracting only partial features of the samples, we significantly reduce the com-
putational complexity compared to the existing traditional ensemble clustering methods.
The algorithm proposed in this paper involves three main steps: the generation of basic
clusters by using dimensionality-reduced data, the computation of co-association frequency
and similarity classes, and the integration of these results into three-way clustering.
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3.1. Dimensionality Reduction

In this study, we employed data dimensionality reduction techniques, specifically
utilizing Principal Component Analysis (PCA) to reduce the dimensions of the data. PCA
is a commonly used dimensionality reduction method, aiming to map the original data
onto a lower-dimensional subspace while retaining the maximum variance in the data.
Through PCA, we can transform high-dimensional data into lower-dimensional space,
thereby enhancing our understanding of the intrinsic structure of the data.

To begin with, consider a dataset comprising n samples and D features, represented by
matrix X, where each row corresponds to a sample, and each column represents a feature.
Our objective is to project this D-dimensional dataset onto a K-dimensional subspace
(where K < D) and obtain a new feature matrix Z. The specific steps of dimensionality
reduction by using PCA are as follows:

Step 1: Data normalization: The first step involves centralizing the original data by
subtracting the mean of each feature, resulting in the centered matrix X′.

Step 2: Covariance Matrix Computation: The covariance matrix represents the correla-
tions between data features, with the specific formula

Ω =
1
N

X′T•X′. (3)

Step 3: Eigenvalue and Eigenvector Computation: Eigenvalue decomposition is ap-
plied to the covariance matrix Ω, yielding eigenvalues λ1, λ2, · · · , λD and their correspond-
ing eigenvectors v1, v2, · · · , vD.

Ωv = λivi, i =1, 2, · · · , D. (4)

Step 4: Selection of Top K Eigenvectors: The eigenvectors corresponding to the top K
largest eigenvalues are chosen, forming the projection matrix V.

Step 5: Data Projection: The centered original data matrix X′ is projected onto the
selected K-dimensional subspace, resulting in the reduced feature matrix Z, where each row
represents a sample, and each column represents a reduced feature. The specific formula is

Z = X′V. (5)

Through the aforementioned steps, we obtain the reduced-dimensional data matrix.
In this low-dimensional space, we conduct fundamental clustering operations. This data-
driven foundational clustering method allows for clustering analysis in lower dimensions
while preserving the primary features of the data. The key advantage of this approach lies
in its ability to facilitate data visualization, reduce computational complexity, and enhance
clustering effectiveness through dimensionality reduction.

Next, we randomly select parts of the sample’s features to obtain different clustering
results. For a multidimensional dataset, different subsets of features try to describe the
dataset from different views. Thus, a set of diverse clustering results will be obtained when
distinguishing subsets of features are employed. Suppose that we randomly extract parts of
the features and apply the k-means clustering method to divide the dataset into k clusters.
This process is repeated L times, yielding multiple clustering results C1, C2, · · · , CL. The
process of foundational clustering based on data dimensionality reduction is outlined in
Algorithm 1.
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Algorithm 1: Foundational Clustering Based on Data Dimensionality Reduction
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From multiple clustering iterations, we obtain basic clustering results 1 2C ,C , ,C L

. Subsequently, we present a method for integrating the basic clustering results by using 
the co-occurrence frequency matrix. The aim is to employ the single-link method of hier-
archical clustering to generate a more robust clustering result. 

For a dataset 1 2{ , , , }=  nX x x x   with n   samples and 1 2C ,C , ,C L   are family 
clustering results of X , we can construct an n n×  co-association frequency matrix P , 
whose elements ijp  represents the frequency that two samples ix  and jx  are simul-
taneously assigned to the same cluster. 

3.2. Clustering Ensemble

From multiple clustering iterations, we obtain basic clustering results C1, C2, · · · , CL.
Subsequently, we present a method for integrating the basic clustering results by using the
co-occurrence frequency matrix. The aim is to employ the single-link method of hierarchical
clustering to generate a more robust clustering result.

For a dataset X = {x1, x2, · · · , xn} with n samples and C1, C2, · · · , CL are family clus-
tering results of X, we can construct an n × n co-association frequency matrix P, whose
elements pij represents the frequency that two samples xi and xj are simultaneously as-
signed to the same cluster.

We view pij as the similarity between samples and utilize the single-linkage of hier-
archical clustering to obtain an ensemble clustering result. In the process of clustering,
each data sample is treated as an independent cluster, and then gradually the most similar
cluster is merged based on their co-association frequencies. Clusters with the highest
similarity are merged to form a new cluster node. This process iterates until the cluster
result with the highest lifetime is chosen as the final merged result.

The schematic representation of the single-linkage clustering dendrogram is illustrated
in Figure 4. Different colors in Figure 4 represent different clusters at present, and each
color represents a set of samples with high similarity. This bottom-up merging strategy
ensures that we fully consider the degree of association between samples, resulting in
more accurate clustering results. By measuring the similarity between different clusters
and visualizing them as a dendrogram, we could intuitively observe the structure and
hierarchy of the clustering results. In the dendrogram, higher connecting points represented
stronger associations between clusters with higher co-occurrence frequencies. These results
were relatively stable and less susceptible to noise or changes in the data. Therefore, such
clustering results were more reliable and better able to reflect the true structure and patterns
of the data.

By constructing a single-linkage clustering dendrogram using co-association frequen-
cies and selecting the clustering result with the highest lifetime as the final fusion result, we
obtain more stable clustering results, thereby enhancing our understanding of the features
and inherent structure of the dataset. The process of ensemble clustering is outlined in
Algorithm 2.
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Algorithm 2: Ensemble Clustering Results

Input: Reduced data matrix C1, C2, · · · , CL

Output: C1, C2, · · · , CL
1 Compute the co-occurrence frequency matrix P by (2).
2 Obtain the single-linkage dendrogram of P.
3 Achieve ensemble clustering results C with the highest lifetime.
4 Return ensemble clustering results C = (C1, C2, · · · , Ck).
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3.3. Similar Classes Based on Co-Association Frequency

This section introduces three-way clustering models based on the co-occurrence fre-
quency derived from clustering ensemble, proposing a similarity relationship under the
framework of co-association frequency. Firstly, we give the definition of similar relation
between xi and xj.

Definition 1. For a dataset X = {x1, x2, · · · , xn} with n samples and C1, C2, · · · , CL are family
clustering results of X, pij is the co-association frequency between samples xi and xj. The similarity
relation Simθ(xi, xj) based on a threshold θ is defined as:

Simθ(xi, xj) =
{
(xi, xj) ∈ X × X

∣∣pij ≥ θ
}

, (6)

where 0 ≤ θ ≤ 1 is a pre-defined parameter. For xi ∈ X, the similar class is computed by:

Simθ(xi) =
{

xj ∈ X
∣∣pij ≥ θ

}
. (7)

We still use Figure 3 as an example. If we take θ = 0.7, then Simθ(x1) = {x1, x2},
Simθ(x2) = {x1, x2}, Simθ(x3) = {x3, x4}, Simθ(x4) = {x3, x4}, Simθ(x5) = {x5, x6},
and Simθ(x6) = {x5, x6}.

From the above definition, we can find that the similar class Simθ(xi) has the
following properties:

1 xi ∈ Simθ(xi) ; (8)

2 if xj ∈ Simθ(xi), then xi ∈ Simθ(xj); (9)

3
n
∪

i=1
Simθ(xi) = X. (10)

Clearly, the set of similar classes {Simθ(xi)|{xi ∈ X} forms a covering of dataset X.
For any subset C ⊆ X, 0 ≤ θ ≤ 1, the lower and upper approximations based on the
co-association frequency are defined as follows:
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Aprθ(C) = {xi ∈ X|Simθ(xi) ⊆ C}; (11)

Aprθ(C) = {xi ∈ X|Simθ(xi) ∩ C ̸= }. (12)

Furthermore, we can use the positive region Posθ(C) and the fringe region Bndθ(C) to
describe the objective subset C. So, we define Posθ(C) and Bndθ(C), of C as

Posθ(C) = Aprθ(C) (13)

Bndθ(C) = Aprθ(C)− Aprθ(C) (14)

Usually, the positive region Posθ(C) contains the samples that belong to C definitely,
and the fringe region Bndθ(C) contains the samples that belong to C possibly. Based
on the definitions and properties of Posθ(C) and Bndθ(C), for any cluster Ci ⊆ X, it is
straightforward to obtain the core region Co(Ci) and the fringe region Fr(Ci) by

Co(Ci)= Posθ(Ci), (15)

Fr(Ci)= Bndθ(Ci). (16)

Algorithm 3 illustrates the calculation of core region Co(Ci) and the fringe region
Fr(Ci) based on co-association frequency.

Algorithm 3: Finding core region and fringe region
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In this framework, we first generate a set of base clustering results by employing 
dimensionality reduction techniques (Algorithm 1). Subsequently, by calculating co-asso-
ciation frequencies, we utilize the single-linkage of hierarchical clustering to obtain en-
semble clustering results (Algorithm 2). Finally, by defining the similar classes of each 
sample, we derive the core and fringe regions, further adjusting the clustering structure 
to yield more accurate and representative three-way clustering outcomes. 

3.4. Similarity-Based Three-Way Clustering by Using Dimensionality Reduction

The stepwise execution of Algorithms 1–3 forms the framework of the proposed
similarity-based three-way clustering by using dimensionality reduction, as illustrated
in Algorithm 4.
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Algorithm 4: Similarity-based three-way clustering algorithm

Input: Original data matrix X = {x1, x2, · · · , xn}, Number of iteratiber of clusters L
Dimensionality reduction method (PCA), Threshold θ
Output: C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}

1 Initialize:←Algorithm 1; Return C1, C2, · · · , CL;
2 Ensemble:←Algorithm 2; Return C1, C2, · · · , Ck;
3 Identify Core and Fringe Regions:←Algorithm 3;
4 Return C = {(Co(C1), Fr(C1)), (Co(C2), Fr(C2)), · · · , (Co(Ck), Fr(Ck))}.

In this framework, we first generate a set of base clustering results by employing
dimensionality reduction techniques (Algorithm 1). Subsequently, by calculating co-
association frequencies, we utilize the single-linkage of hierarchical clustering to obtain
ensemble clustering results (Algorithm 2). Finally, by defining the similar classes of each
sample, we derive the core and fringe regions, further adjusting the clustering structure to
yield more accurate and representative three-way clustering outcomes.

The uniqueness of this framework lies in its integration of data dimensionality reduc-
tion, co-association frequency computation, and definition of similar classes, providing a
comprehensive revelation of the intrinsic structure during the clustering ensemble process.
Algorithm 4 outlines the overall process of the three-way clustering framework, demon-
strating how optimized clustering results are generated through multiple iterations to
better reflect the characteristics of the original data.

The proposed approach offers a powerful tool for clustering ensemble, aiding in the
precise capture of complex relationships and distribution patterns in clustering analysis.
The three-way clustering framework provides valuable insights seeking to uncover intricate
structures within their datasets.

4. Experimental Analyses
4.1. Data Descriptions

In this section, we conduct some experiments to evaluate the effectiveness of the
proposed algorithm. We employ datasets from 13 UCI machine learning repositories [60],
spanning diverse domains such as biology, medicine, and finance. The detailed informa-
tion about these datasets is presented in Table 2, including the number of clusters and
other relevant details. The software used for implementation includes MATLAB2019a
for statistical and matrix computations and Python 3.9 with libraries such as NumPy,
SciPy, and scikit-learn for data processing and machine learning tasks, ensuring robust and
efficient analysis.

Table 2. Datasets Used in Experiments.

ID Datasets Numbers Dimensions Categories

1 Seeds 270 7 3
2 Credit 1493 9 3
3 Ionosphere 351 34 2
4 Libras 360 90 15
5 Ecoil 210 7 3
6 Segmentation 2310 19 7
7 Thyroid 215 9 3
8 Wdbc 569 30 2
9 Wine 178 13 3

10 Waveform 5000 40 3
11 Iris 150 4 3
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Table 2. Cont.

ID Datasets Numbers Dimensions Categories

12 Yeast 1484 8 10
13 Dermatology 366 34 6

4.2. Evaluation Indices

(1) Adjusted Rand Index (ARI) [61,62] serves as a prominent external metric for assessing
clustering performance in comparison to ground truth labels. The ARI, an extension
of the Rand Index (RI), is designed to overcome the limitations of the RI by adjusting
for chance agreements.

ARI adjusts the RI using the following formula:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (17)

where E[RI] represents the expected Rand Index under random conditions. The Rand
Index (RI) is calculated by the formula:

RI =
a + b

a + b + c + d
. (18)

a: the number of sample pairs that belong to the same cluster in both the ground truth
and clustering results.

b: the number of sample pairs that belong to different clusters in both the ground truth
and clustering results.

c: the number of sample pairs that belong to the same cluster in the ground truth but
to different clusters in the results.

d: the number of sample pairs that belong to different clusters in the ground truth but
to the same cluster in the results.

ARI values provide insights into the agreement between clustering results and ground
truth labels, with 1 indicating perfect agreement, 0 suggesting performance no better than
random assignment, and negative values indicating worse than random allocation. The
introduction of ARI offers a comprehensive and objective means for evaluating clustering
algorithms, facilitating a more accurate understanding of their performance.

(2) Adjusted Mutual Information (AMI) [63,64] is an internal metric commonly used to
assess the performance of clustering results. It is designed to measure the similarity
between clustering results and a ground truth (typically, actual labels) by quantifying
the information gain between two distributions.

The computation of AMI involves the following formula:

AMI(U, V) =
MI(U, V)− E[MI(U, V)]

max(H(U), H(V))− E[MI(U, V)]
, (19)

where MI(U, V) represents the mutual information between U and V. E[MI(U, V)] is the
expected mutual information under random conditions. H(U) and H(V) are the entropies
of U and V, respectively.

The numerator of AMI is an adjusted value of mutual information, while the denomi-
nator is an adjusted value of entropy. The values of AMI range from [0, 1], where 1 indicates
a perfect match, 0 denotes random matching, and negative values signify matching below
random levels.

(3) Accuracy (ACC) [65] is a common metric used to assess the performance of a clas-
sification model. It measures the proportion of samples that the model correctly
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classifies and serves as a simple and intuitive performance indicator. The formula for
calculating ACC is as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (20)

where TP (True Positives) represents the number of samples correctly classified as the
positive class, TN (True Negatives) represents the number of samples correctly classified as
the negative class, FP (False Positives) represents the number of samples actually belonging
to the negative class but misclassified as the positive class, FN (False Negatives) represents
the number of samples actually belonging to the positive class but misclassified as the
negative class.

The range of ACC is [0, 1], where 1 indicates perfect classification and 0 indicates
classification failure. While ACC is an intuitive and easy-to-understand metric, it may have
limitations when dealing with class imbalance.

4.3. Experimental Performances

Firstly, the PCA dimensionality reduction method is applied to high-dimensional
datasets to obtain processed low-dimensional data. Subsequently, a clustering ensemble
strategy is employed for the low-dimensional data. This involves randomly sampling
subsets of data and features and running the traditional k-means clustering strategy for
50 iterations on all datasets. Then, an automatic hierarchical clustering method is used to
form the clustering structure, and the merged results can be visualized using a dendrogram.
Finally, the upper and lower approximations of similar classes are derived, and the core
and fringe regions of each cluster are determined. Additionally, similarity threshold θ is 0.7
in the experiments.

Because NMI, ARI, and ACC are only adopted to the hard clustering results, three-way
clustering results cannot calculate these values directly. In order to present the performances
of our proposed algorithm, this study uses the core regions to form a clustering result, then
calculate the NMI, ARI, and ACC by using the core region to represent the corresponding
cluster. The clustering ensemble strategy is executed 50 times on all datasets, with an
ensemble size of 50, to calculate the average NMI, ARI, and ACC values. The performances
of the proposed algorithm on these three indicators are displayed in Table 3 and Figures 5–7.
To compare clustering effects, the performances of k-means, FCM, and DBSCAN are also
presented in Table 3 and Figures 5–7. The best performances for each dataset are highlighted
in bold.

Table 3. The performances of different algorithms.

Datasets Algorithm ARI AMI ACC

Seeds

K-means 0.7500 0.7054 0.9095
FCM 0.7161 0.6915 0.8952

DBSCAN 0.7021 0.4396 0.3667
Ours 0.8198 0.7685 0.9356

Credit

K-means 0.0091 0.032 0.3741
FCM 0.0272 0.0317 0.3917

DBSCAN 0.0110 0.0006 0.389
Ours 0.1116 0.1073 0.3987

Ionosphere

K-means 0.011 0.0006 0.5783
FCM 0.1713 0.1272 0.7094

DBSCAN 0.2174 0.1426 0.3932
Ours 0.2500 0.2017 0.7833
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Table 3. Cont.

Datasets Algorithm ARI AMI ACC

Libras

K-means 0.1837 0.1842 0.3389
FCM 0.0597 0.33 0.1778

DBSCAN 0.0025 0.2215 0.1000
Ours 0.5193 0.7144 0.6182

Ecoil

K-means 0.4542 0.5709 0.5565
FCM 0.3679 0.5619 0.497

DBSCAN 0.0080 0.005 0.4256
Ours 0.3937 0.4999 0.6100

Segmentation

K-means 0.0331 0.0736 0.2455
FCM 0.3875 0.5062 0.6100

DBSCAN 0.1067 0.3301 0.2939
Ours 0.5501 0.6996 0.6720

Thyroid

K-means 0.2145 0.3911 0.5721
FCM 0.4294 0.176 0.786

DBSCAN 0.3123 0.0356 0.4465
Ours 0.5964 0.5628 0.8950

Wdbc

K-means 0.0019 0.0052 0.5202
FCM 0.7299 0.6138 0.9279

DBSCAN 0.0274 0.0145 0.6098
Ours 0.6441 0.5295 0.9320

Wine

K-means 0.4483 0.4485 0.6461
FCM 0.3492 0.4075 0.6854

DBSCAN 0.2700 0.3137 0.5169
Ours 0.5831 0.6674 0.8118
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Through a comparative analysis of the data presented in Table 3 and Figures 5–7, the
following conclusions can be drawn:

(1). By comparing the performance of our proposed three-way clustering algorithm with
traditional clustering methods, such as k-means, FCM (Fuzzy C-Means), and DBSCAN
(Density-Based Spatial Clustering of Applications with Noise), on AMI, ARI, and ACC,
it can be found that our proposed algorithm demonstrates significant advantages on
most datasets. Taking the Libras dataset as an example, after running the proposed
algorithm, the resulting AMI, ARI, and ACC values are 0.5193, 0.7144, and 0.6182,
respectively. In contrast, the AMI, ARI, and ACC values for the traditional k-means
algorithm are only 0.1837, 0.1842, and 0.3389, respectively. This improvement is
attributed to the dimensionality reduction of original high-dimensional data, mapping
it to a lower-dimensional space, thus reducing data complexity. The introduction of co-
occurrence probability enables more precise delineation of similar classes, allocating
data points to core and fringe regions, better capturing the inherent structure of
the data.

(2). By comparing the proposed three-way clustering algorithm with other algorithms in
terms of AMI, ARI, and ACC, we observed significant improvements in the proposed
algorithm relative to others. Specifically, across all datasets, the proposed algorithm
exhibited an average improvement of approximately 20% to 30% in ARI and ACC,



Mathematics 2024, 12, 1951 16 of 19

and an average increase of about 15% to 35% in AMI. There are several potential
reasons behind these improvements. Firstly, the proposed three-way clustering al-
gorithm adopts an ensemble strategy, integrating concepts of data dimensionality
reduction, co-occurrence frequencies, and similarity classes, thereby offering a more
comprehensive consideration of the inherent structure of the data. Secondly, lever-
aging the single-linkage method of hierarchical clustering, the proposed three-way
clustering algorithm effectively captures the degree of correlation among data points,
resulting in more precise classification of data points into clusters. Additionally, by
selecting the clustering result with the highest lifetime as the final merged result, the
proposed three-way algorithm ensures the stability and consistency of the clustering
results, rendering it more suitable for various data types and complex structures. The
suboptimal performance on the Wdbc dataset may be due to algorithm sensitivity
to different parameter settings, and parameter selection may vary across different
datasets. Although our proposed algorithm shows significant improvements, cer-
tain algorithms may perform better under specific conditions due to their inherent
characteristics. For example, algorithms like DBSCAN are particularly effective for
datasets with noise and density variations, while hierarchical clustering can capture
nested cluster structures. By comparing the actual runtime with the computational
time complexity, it is concluded that the proposed algorithm strikes a balance between
accuracy and computational efficiency. Although it is not the fastest, its robustness
and ability to handle high-dimensional and noisy data make it a valuable tool in
practical applications.

In summary, the proposed three-way clustering algorithm amalgamates ideas from
data dimensionality reduction, co-occurrence frequency calculation, and similar class
partitioning. Compared to traditional clustering algorithms, it demonstrates advantages in
more nuanced data analysis and accurate clustering results, making it more feasible and
effective in practical applications.

5. Conclusions

The theoretical contribution of this paper lies in the proposal of a novel three-way
clustering framework that integrates dimensionality reduction, co-occurrence frequencies,
and similarity classes with three-way clustering. The objective is to efficiently cluster
heterogeneous data from multiple sources by leveraging inherent structural information.
Initially, we employ principal component analysis (PCA) to reduce the dimensionality of
the data, mapping high-dimensional data into a lower-dimensional space. This not only
decreases computational complexity but also enhances clustering efficiency.

Subsequently, we introduce the concept of co-occurrence frequencies, considering the
co-occurrence relationships between samples. By applying a threshold to the co-occurrence
probability, samples are classified into similar classes, combined with the division into core
and fringe regions. This ensures that the proposed algorithm not only accurately describes
the intrinsic structure of the data but also exhibits robustness. The experimental results
show that the proposed algorithm can improve clustering accuracy, particularly when
dealing with complex data structures and significant noise interference. To further enhance
the clustering process, we integrate these co-occurrence probabilities with a single-linkage
hierarchical clustering method. This fusion enables us to construct a dendrogram that
captures the similarity between different clusters. Lifecycle analysis is then employed to
select the most stable clustering result, ensuring consistency and robustness.

The practical contribution of this paper is the improvement in clustering accuracy.
Experimental results demonstrate that the proposed algorithm significantly enhances clus-
tering precision, especially when handling complex data structures and substantial noise
interference. This proves its practical effectiveness in various real-world scenarios. The
method shows significant advantages across multiple datasets, highlighting its versatility
and robustness in dealing with diverse and high-dimensional data. This adaptability makes
it suitable for a wide range of applications, from bioinformatics to market segmentation.
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Although the algorithm demonstrates significant advantages across multiple datasets
during experimental validation, it does not consistently exhibit the expected improvements
on certain specific datasets. This discrepancy may arise due to a partial mismatch between
data characteristics and algorithm design, necessitating further exploration and refinement.

In future research, we will focus on the following aspects:

(1). Adaptability of parameter selection:

The subjective nature of parameter thresholds in the algorithm may impact the stability
of experimental results. To enhance algorithm robustness, considering more objective and
adaptive parameter selection methods to accommodate different dataset requirements and
application scenarios is essential.

(2). Improving the Quality of Base Clustering:

The generation of base clustering using different feature subsets may lead to poor-
quality results, negatively affecting the final ensemble clustering outcome. To enhance the
quality of base clustering, we can employ automatic evaluation mechanisms based on the
data’s intrinsic structure or utilize advanced clustering performance metrics. Additionally,
introducing other methods such as setting evaluation functions will help eliminate the
impact of low-quality base clustering, effectively improving the overall performance of
ensemble clustering.

(3). Adaptation Improvements for Specific Datasets:

The observation that the algorithm did not consistently exhibit expected improve-
ments on specific datasets suggests a potential mismatch between data characteristics and
algorithm design. Further work can include adapting the algorithm specifically for certain
datasets, enhancing its generality and adaptability.
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