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Abstract: Developing efficient energy conservation and strategies is relevant in the context of climate
change and rising energy demands. The objective of this study is to model and predict the electrical
power consumption patterns in Brazilian households, considering the thresholds for energy use.
Our methodology utilizes advanced machine learning methods, such as agglomerative hierarchical
clustering, k-means clustering, and self-organizing maps, to identify such patterns. Gradient boosting,
chosen for its robustness and accuracy, is used as a benchmark to evaluate the performance of these
methods. Our methodology reveals consumption patterns from the perspectives of both users
and energy providers, assessing the corresponding effectiveness according to stakeholder needs.
Consequently, the methodology provides a comprehensive empirical framework that supports
strategic decision making in the management of energy consumption. Our findings demonstrate that
k-means clustering outperforms other methods, offering a more precise classification of consumption
patterns. This finding aids in the development of targeted energy policies and enhances resource
management strategies. The present research shows the applicability of advanced analytical methods
in specific contexts, showing their potential to shape future energy policies and practices.

Keywords: artificial intelligence; consumption profiles; energy management; multi-class classification;
pattern recognition; residential energy use

MSC: 68T10; 68T05

1. Introduction

In the current digital era, the revolution of data has transformed numerous sectors.
This revolution has driven not only technological advancements but also spurred a critical
need for extracting valuable information [1,2]. Consequently, sophisticated methods of
data analytics have emerged as a result of such a revolution. These methods are applied
in fields ranging from medical and educational studies [3–5] to the optimization of indus-
trial processes and global supply chains [6]. Such technological advancements enhance
infrastructure reliability through defect detection and data privacy [7,8].

Machine learning methods have played a crucial role in healthcare by providing
predictive insights that can save lives and improve treatment efficacy [9,10]. Additionally,
methods such as smart meter data-based algorithms for optimal phase load balancing
highly improve operational efficiency in distribution networks [11], reflecting broader
trends in energy systems optimization [12,13].

Detecting energy consumption patterns is vital for developing efficient energy manage-
ment strategies and designing future-oriented energy network architectures. This detection
becomes more pressing in light of climate change and the continuous increase in energy
demand [14].
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Understanding the consumption profiles of both electrical power consumers and
suppliers is relevant to achieving energy efficiency. This understanding facilitates the
identification of opportunities to reduce unnecessary consumption and optimize the use
of energy, leading to a sustainable management of energy resources [15]. The study
presented in [16] demonstrated how detailed data analytics can facilitate the transition
to sustainable and efficient energy systems. In the Brazilian context, marked by a strong
economy and considerable demographic diversity, the aforementioned understanding of
the consumption profiles is exacerbated. Specific policies, such as legal consumption limits
for billing purposes, add complexity to the analysis of energy consumption in Brazil.

Clustering is effective for grouping variables identifying patterns that are used in
various fields. In the study of energy consumption patterns, clustering has been effec-
tive [17–20]. However, the application of clustering methods requires adaptation to local
contexts, which can present challenges and opportunities. The Brazilian scenario, with
its diverse demography and economy, offers a distinct context where traditional methods
may need tailoring for accurate analysis. Despite the extensive body of research in the
field, important gaps persist, particularly in the application of clustering methods to spe-
cific contexts such as Brazilian households. These gaps highlight the need for research
that is not only context-specific but also adaptable to the unique challenges presented by
different cultures, economies, and geographies worldwide. Our study addresses these
gaps. Therefore, the objective of the present study is to model and predict the electrical
power consumption patterns in Brazilian households, considering the thresholds for energy
use. We utilize machine learning methods particularly focused on clustering for energy
consumption analysis considering gradient boosting (GB) as a benchmarking tool [21,22].

We select GB for its robustness in handling heterogeneous data and ability to capture
complex interactions, making it a reliable benchmark for evaluating the performance of
clustering algorithms. This selection ensures a comparison and validation of clustering
methods, establishing a foundation for identifying consumption patterns. GB is suited
for our study due to strategic reasons. Firstly, its versatility and predictive performance
allow it to model complex relationships within the data, which is crucial for benchmarking
algorithms that need to uncover subtle patterns. Also, GB incorporates methods that
prevent overfitting, ensuring that the benchmark remains reliable even with complex and
noisy datasets, thereby maintaining the validity of our clustering performance comparisons.
Furthermore, GB is highly scalable and can efficiently handle large datasets, making it an
ideal choice for comprehensive evaluations without prohibitive computational costs.

While other methods such as K-nearest neighbors, neural networks, random forests
(RFs), and support vector machines (SVM) have their strengths, they were not used for
specific reasons. RF handles diverse data and avoids overfitting, but GB improves model
performance, making it more effective for our needs. SVM, utilized for supervised clas-
sification, could benchmark clustering effectiveness, but its use in classification makes it
less appropriate for the unsupervised nature of clustering compared to GB. Neural net-
works, although capable of modelling complex patterns, are computationally intensive
and challenging to interpret, adding overhead to the benchmarking process compared to
GB. K-nearest neighbors could validate clustering results by comparing the proximity of
data points to their nearest neighbors and evaluating cluster cohesion, but its susceptibility
to noise and outliers makes it less robust compared to GB. These methods serve distinct
roles, but GB is selected for its precision and reliability in benchmarking. This selection
ensures that the benchmark is both robust and effective in validating clustering algorithms,
providing us with confidence to identify accurate consumption patterns.

Tailored to Brazilian households, our research employes a methodology with various
algorithms, including agglomerative hierarchical clustering (AHC), k-means (KM), and
self-organizing maps (SOM), alongside advanced preprocessing techniques. By applying
this methodology to a dataset of monthly electricity consumption from a random sample of
Brazilian households over a year, we aim to uncover underlying consumption patterns. In
our data analytics, we also use principal component analysis (PCA) and silhouette analysis.



Mathematics 2024, 12, 1961 3 of 33

PCA is helpful for dimensionality reduction and might serve to reduce the data to
key components and then apply clustering on this reduced space [23]. Silhouette analysis
is utilized as an internal metric for cluster quality, measuring cohesion and separation of
the clusters.

Clustering identifies distinct patterns of energy use, categorizing households into
low, medium, and high consumption groups. Our main conclusion is that KM offers
the most accurate results for energy management, improving the precision of energy
policies. Our methodology provides insights into energy management within Brazilian
homes and contributes to the literature on clustering in energy consumption analysis. Our
contribution goes beyond the specific context of Brazil. By successfully applying and
evaluating clustering methods in this context, our study serves as a model that can be
adapted and applied to other regions, each with their distinct challenges.

The rest of this article is organized as follows. Section 2 describes the clustering
methods employed in our analysis, namely AHC, KM, and SOM. Then, in Section 3, we
outline our data collection process and specify the preprocessing techniques utilized to
prepare data for clustering. In Section 4, the clustering methods are used to show their
respective results. This section discusses the load profiles obtained through each clustering
method, along with their pros and cons. Section 5 concludes the article with our key
findings and their implications, providing directions for potential future research.

2. Methodology

In this section, we discuss our methodology for generating and analyzing residential
electrical load profiles, focusing on three clustering algorithms: AHC, KM, and SOM.
Additionally, as mentioned, GB is used to benchmark the performance and robustness
of these algorithms, following advanced benchmarking principles [24]. Each algorithm,
including GB, is detailed with its operational principles, strengths, and limitations.

2.1. Background on Clusters Algorithm for Profile Classification

Clustering [25] is an unsupervised machine learning method that classifies data based
on shared attributes, revealing inherent structures within complex datasets. In analysis of
profiles, clustering categorizes them into distinct groups, where a cluster contains profiles
with high similarity, whereas profiles in different clusters display low similarity.

When analyzing profile data, clustering methods are classified as: partition-based,
hierarchy-based, and model-based. Partition-based methods produce clusters with a central
point, minimizing the distance between data points and this center [26]. Hierarchical
methods deal each data point as a single cluster and progressively merge the closest
clusters, leading to a dendrogram of clusters [27]. Model-based methods select a specific
structure—grounded in statistical or neural network methods—and tailor the data to best
fit this model [28].

Cluster validity indices gauge the effectiveness of clustering algorithms by evaluating
their robustness [29]. Depending on the clustering method used, the optimal number of
clusters can differ. Determining the number of clusters may require subjective judgment,
aligning with the objectives or needs of the stakeholders [30].

Within the energy consumption research and data mining domain, clustering methods
were introduced for discerning energy consumption patterns. However, a universal best-
practice algorithm for energy consumption analysis remains elusive. Noteworthy among
these methods are AHC, KM clustering, and SOM [31], which are relevant for energy
consumption analysis due to their ability to uncover hidden patterns in complex data
without requiring predefined categories. The simplicity and efficiency of KM in handling
large datasets make it ideal for initial segmentation. The unique topological structure of
SOM offers intuitive visualizations of energy consumption, facilitating deeper insights. The
hierarchical approach of AHC is invaluable for understanding the relationships between
consumption patterns, offering a detailed cluster hierarchy.
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The distinction between supervised and unsupervised methods is crucial in the present
context. Energy consumption data often lack clear labels, making unsupervised methods
like KM, SOM, and AHC more suited for identifying structures within the data. This iden-
tification allows for the discovery of natural groupings based on consumption behaviors,
which can inform effective energy management strategies. In contrast, supervised methods
would require predefined categories based on known outcomes, limiting their utility in
scenarios where one wishes to explore and understand unknown patterns. Thus, the
utilization of unsupervised methods is a strategic choice for advancing our comprehension
of energy usage dynamics, laying the groundwork for adaptive energy solutions.

2.2. k-Means Clustering

This article focuses on a widely used partition-based or flat clustering algorithm
that uses centroids named KM. The KM algorithm employs an expectation-maximization
approach and its number of clusters, represented by k, is predetermined. In the expectation
step, each data point is assigned to the nearest centroid forming clusters, with these
centroids being initially chosen at random. Following this, in the maximization step,
centroids are recalibrated by averaging all the data points within the corresponding cluster.
These two steps are iterated until the algorithm converges, signified when centroids retain
their positions from one iteration to the next. The KM algorithm stands out due to its
simplicity and efficiency, finding applications in various clustering scenarios and big-data
[25,32]. It gauges similarity by measuring clustering distances; that is, when two entities
are closer, they are more similar. As highlighted in [33], the KM algorithm has the capability
to distinguish distinct electricity consumption patterns and of identifying households with
analogous consumption. This capability renders KM especially suitable for mining insights
from smart meter datasets.

Upon initiation, the KM algorithm establishes a preset number of clusters, k say. The
dataset is represented as X, consisting of N data vectors xi, with i ranging from 1 to N, each
of dimension p. Having randomized the centroid positions, the algorithm then calculates
the Euclidean distance (ED) between each data vector xi and generic centroid vector cj,
which is also p-dimensional. Each point xi is affiliated with generic cluster Cj that is closest
to centroid cj. Next, the centroid of each cluster cj is updated by computing the average of
m data points xi belonging to cluster Cj. This centroid is formulated as

cj =
1
m

m

∑
i=1

xi, xi ∈ Cj, j ∈ {1, . . . , N}, m ∈ {1, . . . , M}.

After obtaining centroid cj, the distances between each data point xi and the newly
adjusted centroids are recalculated, leading to potential reassignments of data points to
clusters. This recalculation iterates until the clustering is stable, meaning no data point
switches its cluster membership between consecutive iterations, or until an iteration limit is
reached. A challenge with the KM algorithm is ascertaining the best number of clusters, k
say [25]. The Elbow method, which is widely used for determining the optimal number of
clusters, involves visualizing the total within-cluster sum of squared errors (SSE) given by

SSE =
k

∑
j=1

∑
xi∈Cj

∥ xi − cj ∥2 . (1)

The SSE expressed in (1) is plotted against a range of cluster numbers to identify the point
where increasing the number of clusters no longer provides important gains in reducing
the SSE. At first, as the cluster count grows, SSE witnesses a marked decrease. Nonetheless,
as the number of clusters continues to rise, the rate of SSE decline slows, leading to the
formation of an “elbow”. This “elbow” point is typically considered the optimal number of
clusters [25]. The process of how clusters are formed and centroids adjusted is described in
Algorithm 1.
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Algorithm 1 KM clustering method.

Require: Dataset X, number of clusters k
Ensure: Clustered data

1: Select k initial centroids randomly from X.
2: while centroids change do
3: for each point xi ∈ X do
4: Assign xi to nearest centroid cj.
5: end for
6: for each centroid cj do
7: Update cj to be the mean of all points assigned to Cj.
8: end for
9: end while

10: Form clusters Cj after centroids are adjusted.

While the KM method is renowned for its simplicity and broad applicability, making
it a popular choice for various applications requiring quick and straightforward clustering
solutions, AHC adopts a fundamentally different and more intricate approach. AHC builds
clusters by starting from individual data points and progressively merging them into larger
nested structures, offering a deep dive into the data-inherent hierarchies.

2.3. Agglomerative Hierarchical Clustering

AHC stands out by its approach to cluster formation, where observations are combined
into nested clusters, visualized through a dendrogram. This tree-like diagram illustrates the
step-by-step clustering process and highlights the similarity levels at which observations
merge [34]. One key distinction of AHC compared to partitioning methods like KM lies in
its flexibility regarding the number of clusters. Unlike KM, which requires presetting this
number, AHC allows users to cut the dendrogram at different levels, offering adaptability in
defining the number of clusters. Such adaptability is beneficial in electrical load clustering,
where the optimal number of clusters might not be evident beforehand [35]. The mentioned
flexibility positions AHC as an alternative to KM in scenarios requiring hierarchical insights
into data structures [34,35]. The AHC algorithm commences by viewing each observation as
an individual cluster and then progressively merges these clusters based on their similarities.
In determining which clusters to merge, the AHC algorithm frequently employs the Ward
minimum variance method, due to its simplicity, which seeks to minimize the total within-
cluster variance [36]. Unlike other linkage methods that might focus on the distances
between cluster centroids or furthermost points, the Ward linkage method emphasizes
the minimization of variance within clusters. According to [37], the total within-cluster
variance is analogous to the loss of information incurred when grouping objects into
clusters. The AHC algorithm aims to minimize this loss when forming clusters.

The AHC algorithm starts with the observation xi, for i ∈ {1, . . . , N}, as an individual
cluster Cj. By using the Ward linkage method, the distance between clusters Cj and Cl is
calculated as

Dist(Cj, Cl) = SSE(Cj ∪ Cl)− SSE(Cj)− SSE(Cl), (2)

where Cj ∪ Cl denotes the union set of clusters Cj and Cl . Since each data point starts in its
own cluster, the initial distance is zero and gradually increases as clusters are merged. Note
that the distance defined in (2) can also be represented as the squared distance between the
centers of the two clusters, cj ∈ Cj and cl ∈ Cl , as

Dist(Cj, Cl) =

(
NCj NCl

NCj + NCl

)
∥cj − cl∥2,

where cj and cl are the centers or centroids of the respective clusters, NCj and NCl are the
numbers of elements in those clusters Cj and Cl , respectively, and ∥ · ∥ denotes the norm of
the vector.
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An N × N distance matrix is defined to represent the inter-cluster similarities. Each
element of the matrix corresponds to the distance between two clusters stated as

H =


0 Dist(C1, C2) . . . Dist(C1, CN)

Dist(C2, C1) 0 . . . Dist(C2, CN)
...

...
. . .

...
Dist(CN , C1) Dist(CN , C2) . . . 0

.

The two clusters with the smallest distance are then merged. Hence, the distance matrix is
updated, and the process of merging continues iteratively until a single cluster encompass-
ing all the data points is obtained. This iterative merging process of hierarchical clustering
provides a clear and structured approach to clustering, as described in Algorithm 2.

Algorithm 2 AHC method.
Require: Dataset X
Ensure: Dendrogram representing hierarchical clusters

1: Treat each data point in X as a single cluster.
2: Compute the pairwise distance matrix H for all clusters.
3: while there is more than one cluster do
4: for each cluster pair (Cj, Cl) do
5: Calculate Dist(Cj, Cl) using the Ward linkage method.
6: end for
7: Merge the two clusters with the smallest Dist(Cj, Cl).
8: Update the distance matrix H.
9: end while

10: Create a dendrogram from the cluster merging process.

Transitioning from traditional clustering methods to advanced neural network-based
approaches brings to the forefront another powerful tool: SOMs.

2.4. Self-Organizing Maps

SOMs are a type of artificial neural network that use unsupervised learning to trans-
form high-dimensional data into a low-dimensional discretized representation known as
a map [38]. Unlike hierarchical clustering, which relies on merging clusters based on dis-
tances, SOMs focus on learning from input patterns to produce a spatial representation that
maintains topological relationships. SOMs can identify the similarity relationships between
input variables, making them suitable for dimensionality reduction and clustering. In the
context of electrical load profiles, a SOM can identify and learn important features, patterns,
regularities, or correlations in the input load data and represent them in a topological
map [39]. The SOM algorithm uses a neighborhood structure among the clusters, where
data points close to each other are placed in the same or neighboring clusters [40].

The algorithm initializes with a grid of M artificial neurons, typically arranged in a
two-dimensional lattice corresponding to the SOM grid. Each neuron j in the SOM grid has
a weight vector wj associated with this neuron. The weight wj has the same dimensionality
p as the input data xi, where i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. The SOM algorithm
iteratively adjusts the weights of the neurons to match the input data. An input vector
xi is randomly selected from the dataset, and the neuron whose weight vector wj is most
similar to the input vector is identified as the best matching unit (BMU). This similarity is
measured using a distance metric named the BMU index and defined as

b = arg min
j

∥xi − wj∥. (3)

Once the BMU is identified, the weight vectors wj of neurons within a neighborhood S
around the BMU are updated to become more similar to the input vector.
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The update rule is given by

wj(t + 1) = wj(t) + ε(t)hjb(t)(xi − wj(t)), (4)

where ε(t) is the learning rate and hjb(t) is the neighborhood function, which determines
the degree of update and is defined as

hjb(t) = exp
(
−d(j, b)2

2σ(t)2

)
, (5)

where d(j, b) is the distance between neuron j and the BMU index b, with σ(t) being the
neighborhood radius. Note that d(j, b) measures the topological or geometric distance
between neuron j and b in the lattice structure. This distance is used to determine the
influence of the BMU on its neighboring neurons during the update process. The update
is strongest for the neuron that wins (that is, this neuron is the BMU) and decreases as
the distance from the BMU increases. This iterative process continues until a specified
number of iterations is reached or the algorithm converges. To allow gradual convergence,
both the learning rate and neighborhood function are reduced over time, expressed as
ε(t) = ε0 exp(−tλ) and σ(t) = σ0 exp(−tγ), where λ and γ represent the learning and
neighborhood decay rates, respectively. Hence, the SOM results in a low-dimensional map
where similar input vectors are positioned close to each other, and dissimilar vectors are
further apart. This map can be visually inspected and used as a powerful tool for data
exploration, clustering, and visualization. Algorithm 3 describes the steps of a SOM.

Algorithm 3 SOM method.
Require: Dataset X, grid size M
Ensure: Topological map of input data

1: Initialize a grid of M neurons with random weights.
2: for each iteration t do
3: Select an input vector xi from X randomly.
4: Determine the BMU b by using the formula presented in (3).
5: Define a neighborhood S around b.
6: for each neuron j in the neighborhood S do
7: Update the weight wj using the rule stated in (4) with the learning rate ε(t) and neighborhood

function given in (5).
8: end for
9: end for

10: Generate the topological map.

2.5. Gradient Boosting as a Benchmarking Tool

GB is a machine learning method primarily used for regression and classification tasks.
It builds models in a stage-wise fashion, optimizing for mean squared error. GB constructs
additive models by sequentially fitting a simple base model, typically a decision tree, to
the current pseudo-residuals [41,42]. Although GB is primarily used for classification
and regression, we employ it here as a benchmarking tool to evaluate the performance of
clustering algorithms, providing a reliable reference for comparison. As mentioned in the
introduction, we select GB for its robustness in handling heterogeneous data and its ability
to capture complex interactions. Its versatility and predictive performance allow it to model
complex relationships within the data, which is crucial for uncovering subtle patterns. Ad-
ditionally, it includes techniques to prevent overfitting, ensuring reliable benchmarks even
with complex and noisy datasets. Furthermore, it is scalable and efficiently handles large
datasets, making it ideal for comprehensive evaluations without prohibitive computational
costs. These attributes make GB a reliable benchmark for evaluating clustering algorithms.
Other benchmarking methods such as RF, SVM, and neural networks have their strengths
but were not chosen for specific reasons indicated below.
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RF handles diverse data and avoids overfitting, but GB gradient-based optimization
enhances model performance. SVM, suitable for supervised classification, is less appropri-
ate for the unsupervised nature of clustering. Neural networks, while capable of modeling
complex patterns, are computationally intensive and difficult to interpret. This strategic
selection ensures that the benchmark is both robust and highly effective in validating
clustering algorithms, providing confidence in identifying accurate consumption patterns.

The GB algorithm proceeds through several steps. In the following, F represents
the predictive function that is iteratively adjusted during the boosting process, xi is the
feature vector for observation i, and yi is the target value for observation i. The GB model
is initialized with a constant value calculated as

F0 = arg min
γ

N

∑
i=1

L(yi, γ), (6)

where L(yi, γ) is the loss function. In each iteration t ∈ {1, . . . , T}, residuals are stated as

rit = −
(

∂L(yi, Ft−1(xi))

∂F(xi)

)
F(x)=Ft−1(x)

, i ∈ {1, . . . , N}, (7)

for each data vector xi. Then, a base learner ht(x) is fitted to the residuals resulting in

ht(x) = arg min
h

N

∑
i=1

(rit − h(xi))
2. (8)

Next, the multiplier γt is determined by

γt = arg min
γ

N

∑
i=1

L(yi, Ft−1(xi) + γht(xi)). (9)

Lastly, the model is updated as

Ft(xi) = Ft−1(xi) + ηγtht(xi), (10)

where η is the learning rate. The performance of GB is influenced by several hyperparam-
eters, such as the number of boosting stages, tree depth, and learning rate. The proper
tuning of these hyperparameters is crucial to ensure the reliability and robustness of the
benchmarking results [43]. Algorithm 4 provides an overview of the GB process, illustrating
how these hyperparameters are utilized and adjusted.

Algorithm 4 GB method.

Require: Dataset D = {(x1, y1), . . . , (xN , yN)}, number of iterations T, learning rate η
Ensure: Predictive model F(x)

1: Initialize the model with a constant value stated as in (6).
2: for t = 1 to T do
3: Compute pseudo-residuals rit associated with each xi, for i ∈ {1, . . . , N}, as defined in (7).
4: Fit a base learner ht(x) to the calculated residuals by employing the expression given in (8).
5: Determine the multiplier γt as presented in (9).
6: Update the model Ft(xi) considering the formula established in (10).
7: end for
8: Formulate the predictive model.

To measure the performance of various clustering methods against the GB benchmark,
we use metrics like precision, recall, and silhouette scores. These metrics enable a thorough
evaluation of clustering quality, providing insights into the effectiveness and reliability of
the methods. By establishing a clear quantifiable standard for successful clustering, GB
enhances our understanding of the best methods for analyzing energy consumption data,
guiding future research and applications in the field [44,45].
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3. Data and Methods

This section outlines the methodologies and data employed in our analysis. It inte-
grates the clustering methods utilized with GB for benchmarking purposes. Additionally,
this section discusses the dataset comprising the energy consumption patterns of Brazilian
households, detailing in data collection, processing, and preparation for analysis. Em-
phasis is placed on ensuring data quality and relevance, facilitating a comprehensive
understanding of household energy consumption behaviors in Brazil.

3.1. Data

A survey was applied to N = 383 randomly selected households across Brazil, col-
lecting data on monthly electrical power consumption as well as characteristics of the
households and occupants. The period under study covered from January to December
2022 and this was specifically chosen to capture the evolving dynamics of household energy
consumption in the aftermath of the COVID-19 pandemic—a time marked by important
shifts in living and working habits that potentially altered energy use patterns. Deliber-
ately including all four seasons within this timeframe aimed to encapsulate the impact of
seasonal variations on energy consumption comprehensively. Although the analysis does
not segregate results by season, covering the entire year, it ensures that the study reflects
the influence of climatic changes, such as variations in temperature and daylight, which are
known to affect energy needs for heating, cooling, and lighting. By examining data from
2022, our study not only provides insights into post-pandemic consumption behaviors but
also accounts for the intrinsic seasonal factors that shape energy use, offering a holistic
view of the current state of household energy consumption in Brazil. The collected load
data represent the history of monthly energy consumption, expressed in kilowatt–hour
(kWh), over one year from January to December 2022, as mentioned. This results in a
dimensionality of twelve, with each dimension corresponding to each month, providing a
comprehensive view of household energy usage patterns across seasons and months.

The dataset under study consists of elements li,j, each representing a monthly consump-
tion data point in kWh for a household in row i and month in column j, with j ∈ {1, . . . , 12}.
Therefore, the consumption of household i is represented as a row matrix, and the con-
sumption of all households in month mj as a column matrix, given by di = [li,1, . . . , li,12]

and m⊤
j = [l1,j, . . . , lN,j], where m1 represents January (JAN), m2 represents February (FEB),

up to m12 for December (DEC). Eventually, the collected consumption for all 12 months for
the N = 383 households constitutes the load dataset as an N × 12 matrix given by

L =

 l1,1 . . . l1,12
...

. . .
...

lN,1 . . . lN,12

.

3.2. Preprocessing Stage

The analysis of the dataset reveals that monthly energy consumption distributions
generally exhibit a right-skewed non-normal pattern, as shown in the histogram of Figure 1.
This skewness, reflecting variability in household sizes and usage patterns, is a common
feature in household energy consumption data, highlighting the diverse range of energy
consumption behaviors among households. Similar patterns are observed in the yearly av-
erage consumption data, maintaining the right-skewed distribution. The analysis covered
thirteen scenarios: including each of the twelve months, mj say, and the yearly averages
of each dwelling, di namely. Monthly distributions for mj show a consistent right-skewed
non-normal pattern, characterized by a pronounced right tail. The yearly average consump-
tion for di reflects this skewness, maintaining the characteristic shape of the distribution.
Considering the distribution characteristics and nature of our data, we evaluate several
methods for handling missing data, including mean and median imputations, as well
as interpolation.
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Figure 1. Bar-plot of monthly Brazilian energy consumption (left) and histogram of average yearly
Brazilian energy consumption (right).

Given the skewness of the data distribution and presence of outliers, median imputa-
tion was selected as the most suitable method for maintaining the integrity of its central
tendency without the influence of extreme values. The imputation step involves apply-
ing dimensionality reduction, which streamlined the dataset for efficient processing and
analysis, as detailed in subsequent sections.

Rigorous preprocessing is fundamental for successful data analytics and the effective
application of machine learning algorithms. The preprocessing stage involves eliminating
anomalies and noise, calibrating the dataset to more accurately represent its inherent
structure. Such calibration is important, especially in scenarios where external factors or
regulatory constraints play an important role. One such external influence in the context
of our study arises from the Brazilian law. The legislation mandates that if measured
consumption falls below a certain legal threshold, energy companies must use this threshold
value for billing purposes. Specifically, for consumers on a single-phase system, the
threshold is set at 30 kWh, whereas for a three-phase system, this threshold is 100 kWh.

We recall the objective of our research is to model and predict the electrical power
consumption patterns in Brazilian households, considering the thresholds for energy use.
We must identify the factors influencing household energy consumption data. Then, it
becomes clear that such data can distort our findings. This is because such threshold values
do not genuinely represent household true energy consumption patterns, rendering them
irrelevance and noisy for our dataset. To address and identify such distortions, we calculate
two statistics: the average yearly consumption di for dwelling i across monthly load profile
li,j and its respective coefficients of variation (CV(di)), which are determined as

di =
1

12

12

∑
j=1

li,j, CV(di) =

√
1

11 ∑12
j=1(li,j − di)2

di
, i ∈ {1, . . . , N}.

Upon analyzing these statistics, it is evident that households with consumption equal to
the statutory values exhibit CV(di) = 0, indicating no consumption variability. Table 1
lists all households identified through CV(di) = 0, which is subsequently removed from
the dataset. We were able to identify potential duplicate data by recognizing pairs of
households with an identical CV. It is pertinent to note that such duplications often occur
when datasets from diverse sources are merged. As shown in Table 2, pairs of households
sharing the same CV were considered duplicates. To eliminate redundancy, one entry from
each pair of duplicates was removed from the dataset. Regarding outlier removal, in [46],
it is argued that a genuine data point can contain critical information, and so it should
not be discarded recklessly. Given that outliers may emerge in real-world load profiles,
some clustering methods demonstrating that robustness to asymmetrically distributed
data might temper their impact [35]. We discuss these methods in the subsequent sections,
particularly in the context of electrical load profile clustering research.
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Table 1. Households with identical electrical consumption in Brazil for the indicated month.

Household
Month

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

d27 100 100 100 100 100 100 100 100 100 100 100 100
d52 30 30 30 30 30 30 30 30 30 30 30 30
d54 30 30 30 30 30 30 30 30 30 30 30 30
d78 100 100 100 100 100 100 100 100 100 100 100 100
d350 30 30 30 30 30 30 30 30 30 30 30 30
d360 30 30 30 30 30 30 30 30 30 30 30 30
d362 30 30 30 30 30 30 30 30 30 30 30 30
d372 30 30 30 30 30 30 30 30 30 30 30 30

Table 2. Households with duplicated electrical consumption in Brazil for the indicated month.

Household
Month

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

d57 342 362 329 322 276 298 272 0 0 0 0 0
d58 342 362 329 322 276 298 272 0 0 0 0 0
d328 214 226 244 286 249 225 234 205 243 238 218 285
d329 214 226 244 286 249 225 234 205 243 238 218 285

3.3. Preprocessing Stage

Consequently, after eliminating 10 rows of inaccurate and duplicate data, the dataset
now comprises N = 373 rows. After addressing distortions in the consumption data, the
subsequent step involved handling missing data, a common issue within billing consump-
tion datasets due to record gaps from energy companies. In our dataset, comprising data
from 383 dwellings, missing data were identified in 40 dwellings (10.72%), accounting for
140 data points (3.13%) out of a total of 4476.

According to [47], missing data can be classified into three types: (i) missing completely
at random, when the missing observations are unrelated to both observed and unobserved
measurements; (ii) missing at random, when the probability of a missing value is only
related to the available data; and (iii) missing not at random, which depends both on
observed data and unobserved data. In this dataset, the missing data may be characterized
as missing at random since the absence of monthly load profiles can be related to the
observed and recorded load profiles.

To handle missing data, various imputation methods can be applied, including re-
placing the missing values with the mean, median, or inferred values [48]. Imputation
approaches based on inference methods have a relatively high chance of predicting missing
records close to their true values [49]. To determine the most suitable imputation method,
three different approaches were implemented, and missing data were filled using the
following methods: mean imputation, median imputation, and multivariate imputation by
chained equations (MICE). In the mean imputation method, dwelling di with all profiles
li,j = 0 is replaced by the average value li calculated using li = (1/r)∑12

j=1 li,j, for li,j ̸= 0,
where r represents the number of li,j ̸= 0. In the median imputation method, dwelling di
with all profiles li,j = 0 is replaced by the median value of the ordered monthly consump-
tion where li,j ̸= 0. Regarding the MICE method, it is worth noting that it operates under
the assumption that the missing data are at random, and the imputed values are based
on the observed data [50]. Initially, the algorithm assigns a single imputation, such as the
mean, to each row with missing values. Subsequent imputations are performed based on
random draws from the observed data, and this performance is repeated for a defined
number of iterations or until convergence is achieved [51].

To compare the different imputation methods, we created two subsets: one containing
only the dwellings with missing data (N = 40) and the other one comprising the complete
dataset (N = 373). The box-plots for these imputed datasets are shown in Figure 2. These
plots indicate that the dispersion among the methods within each group is quite similar,
suggesting that there are no important differences in the distribution of the methods.
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Figure 2. Box-plot for N = 40 (left) and N = 373 (right) dwellings with the listed method using Brazilian
electrical consumption, where diamonds indicate outliers and lines within box the data median.

To further analyze the data, we calculated the yearly average L and its respective
variance σ2 for di using the same imputation method described by

L =
1

373
1

12

373

∑
i=1

12

∑
j=1

li,j, σ2 =

(
1

372

373

∑
i=1

(
di − L

)2
)1/2

.

The descriptive statistics associated with each box-plot are detailed in Table 3. The analysis
of the descriptive statistics reveals similar performances among the methods for both
datasets (N = 40 and N = 373), with more notable differences observed in the medians of
the smaller subset (N = 40). To assess whether the imputation methods uniformly impact
the data, we applied the Friedman test, suitable for non-parametric data analysis.

Table 3. Descriptive statistics of the indicated imputation method, where Q1 and Q3 are the first and
third quartiles, respectively, for the data of electrical load power consumption in Brazil.

Method N L (σ2) CV dimin Q1 Median Q3 dimax

Mean 40 206.22 (136.44) 0.6616 28.90 117.94 170.50 273.08 751.44
373 221.32 (129.54) 0.5853 28.90 132.17 186.08 287.75 856.08

Median 40 206.27 (137.54) 0.6668 29.00 113.27 174.08 266.04 752.08
373 221.32 (129.65) 0.5858 29.00 132.17 184.42 287.75 856.08

MICE 40 204.44 (133.93) 0.6551 28.88 116.75 165.86 267.28 724.02
373 221.12 (129.28) 0.5846 28.89 132.17 185.35 287.75 856.08

The Friedman test is selected for its ability to handle data that does not follow a
normal distribution, comparing ranks instead of means. In this context, the null hypothesis
is that the imputation methods do not exhibit significant differences in their effects on
the data. The rejection of this hypothesis would indicate significant differences between
the methods. Statistical analysis yielded a p-value of 0.80 for both datasets (N = 40 and
N = 373), indicating the non-rejection of the null hypothesis and suggesting non-significant
differences at 5% in the effects of the imputation methods.

As a p-value of 0.80 was obtained for the subset with N = 40, this leads to the non-
rejection of the null hypothesis, implying that there is no significant difference in the effects
of the imputation methods at 5% level. The same conclusion applies to the set N = 373,
which also yielded a p-value of 0.80. Given the similar performance of the methods in terms
of average consumption di, an analysis of the impact of these imputation methods on the
monthly consumption series of household i is needed.

Figure 3 shows the influence of each method on the monthly household consumption
for selected samples. It becomes evident that the MICE method has a greater dispersion
compared to imputation with the mean or median. Additionally, imputation with the
mean or median, particularly with highly missing data, can create a misleading perception
of stability in monthly energy consumption, as repeated monthly consumption values
are atypical.
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Figure 3. Box-plots for residences d6 (left) and d299 (right) with the listed method using electrical
consumption in Brazil, where diamonds indicate outliers and lines within box the data median.

In the highly missing dataset, 44.77% of the dwellings have at least two equal monthly
consumption values, but never more than three. Even when equal monthly consumption
occurs within a yearly period, the data still exhibit a distribution with a similar dispersion
to that presented in the MICE method, as observed in the samples presented in Figure 4.

72

74

76

78

80

82

84

86

en
er

gy
 c

on
su

m
pt

io
n 

(in
 k

W
h)

200

220

240

260

280

300

en
er

gy
 c

on
su

m
pt

io
n 

(in
 k

W
h)

Figure 4. Box-plots for residences d339 (left) and d368 (right) using data of electrical consumption in
Brazil, where diamond indicates outliers and lines within box the data median.

Despite the similar performance of the three imputation methods in terms of average
household consumption di, the MICE method was chosen for its ability to preserve the
dispersion of the data distribution. This is particularly important for capturing the true
variability in energy consumption patterns. The time series of all 373 dwellings, post-
application of the MICE method, is shown in Figure 5, providing a comprehensive view of
the adjusted consumption data.

Figure 5. Time series plot of all 373 dwellings after applying the MICE method for data of electrical
load power consumption in Brazil, where each line in gray is the monthly consumption of a dwelling,
which for low consumptions are overlapping.
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Having addressed the missing data, our analysis now turns to the critical step of
reducing the data dimensionality. This step is essential to capture the main features of
the dataset in an efficient way, enabling an effective analysis without being hampered by
its volume or complexity. Reducing the dimensionality of data and extracting the main
features are key aspects of clustering in data mining, as emphasized in [52]. Although there
is no guarantee of preserving the cluster structure, PCA is an effective method for this
purpose, widely used in various applications [53]. PCA, a method prevalent in multivariate
statistics, transforms correlated variables into a smaller set of uncorrelated variables called
principal components (PCs), effectively retaining most of the original set variance [54]. In
PCA, the selection of PCs is based on their contribution to the dataset variance, with PC1
accounting for the most important variance and so on [55].

Our dataset includes twelve dimensions, mj, for j ∈ {1, . . . , 12}, each representing a
month of energy consumption over a year. The high-dimensional nature of this dataset
poses challenges for effective analysis and visualization. PCA is employed to streamline
the analysis by converting this high-dimensional dataset into a more manageable format,
enhancing the visualization of consumption trends and allowing for a more insightful
interpretation of the inherent patterns [52].

Before implementing PCA, we assessed correlations in monthly consumption data us-
ing the Pearson correlation coefficient, calculated between month pairs mj and ml . Figure 6
shows a heatmap of these correlations, providing a visual representation of the relationships
between different months.
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Figure 6. Heatmap of Pearson coefficients for Brazilian electrical consumptions in the listed months.

The Pearson coefficient ranges from −1 to 1, where −1 indicates a perfect negative
correlation, 0 no correlation, and 1 a perfect positive correlation. In our analysis, the Pearson
coefficient fall between 0.81 and 0.94, indicating strong correlations among the monthly
consumption data [56,57]. This supports the use of PCA to reduce the complexity of this
interrelated data and highlight the consumption patterns.

It is essential to standardize the data to ensure that, each month, each energy consump-
tion contributes equally to the analysis, regardless of its original scale or units. Variations
in consumption across different months can be substantial due to seasonal changes and
other factors. Without standardization, these variations could distort the PCA results, with
misleading interpretations. By standardizing the data to have zero mean and one variance,
we prevent any dimension from having a disproportionate effect on PCs. This ensures that
PCA captures the patterns in the data, reflecting the true relationships and variations across
the twelve dimensions of monthly energy consumption.
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Thus, load li,j is transformed to yield the standardized load Li,j = (li,j − mj)/σmj ,
where mj denotes the mean, while σmj stands for the standard deviation of the variable mj.
Subsequently, we calculate the covariance matrix C of these standardized data points as

C =

 cov(m1, m1) . . . cov(m1, m12)
...

. . .
...

cov(m12, m1) . . . cov(m12, m12)


The eigenvalues ϱ of the matrix and the corresponding eigenvectors v⃗ can be obtained using
|C − ϱI| = 0 and (C − ϱI )⃗v = 0, being I the identity matrix. Following this, we arrange the
eigenvalues ϱj and their associated eigenvectors v⃗j = [v1,j, . . . , v12,j] in descending order,
implying that ϱ1 > · · · > ϱ12.

Considering the data reduction from a twelve-dimensional space to a two-dimensional
one, the top two eigenvectors assist in data transformation, as shown in L1,1 . . . L1,12

...
. . .

...
L373,1 . . . L373,12


 v1,1 v1,2

...
...

v12,1 v12,2

 =

 x1,PC1 x1,PC2
...

...
x373,PC1 x373,PC2

.

Each dwelling in our study, di say, is represented by a coordinate pair (xi,PC1, xi,PC2)
after applying PCA. This analysis condenses the dataset into a two-dimensional space,
facilitating visualization and analysis. Figure 7 displays a scatterplot of the data points
represented by these PC coordinates.
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Figure 7. Scatter-plot of dwellings in the PCA-reduced space with two PCs for data on electrical load
power consumption in Brazil.

The variance captured by the first two PCs is important, with PC1 accounting for
89.22% and PC2 for 3.40% of the total variance, cumulatively representing 92.62% of the
dataset variance. This substantial accumulation is depicted in Figure 8(left), highlighting
the effectiveness of PCA for our study. The primary aim of PCA is to derive uncorrelated
PCs. The success of this objective is evidenced in the heatmap of the Pearson correlation
coefficients of the PCs, as shown in Figure 8(right). This heatmap confirms the reduction in
correlation among the newly derived PCs.
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Figure 8. Bar-plot of variance ratio captured by the indicated PC (left) and heatmap of Pearson
correlation among indicated PCs (right) for data of electrical load power consumption in Brazil.

With the completion of the dimensionality reduction through our PCA, we transition
to the application of clustering methods. We utilize the PCs derived from PCA to conduct a
clustering analysis on the reduced dataset. This analysis facilitates the efficient identification
and categorization of distinct energy consumption profiles in Brazilian households.

4. Cluster Analysis Applied to the Electrical Load Dataset

In this section, we apply three clustering algorithms—KM, AHC, and SOM—within
our Brazilian household electrical load dataset, using GB as a benchmark to assess their
effectiveness. The analysis covers relevant evaluation metrics for unsupervised learning
and highlights how these metrics apply to the chosen clustering method.

4.1. Background on Clustering Algorithms for Load Profile Classification

Cluster analysis is especially valuable in unsupervised learning scenarios, where data
lack labels, and its objective is to unveil latent structures or groups within the dataset.
Then, it is crucial to use an evaluation metric independent of observed labels to assess
the effectiveness of clustering algorithms. A widely used metric in this context is the
silhouette score, which evaluates the intra-cluster cohesion and inter-cluster separation of
data points [58,59]. This score, ranging from −1 to 1, indicates well-defined and compact
clusters when close to 1 [18]. The score for each data point is calculated using Sxi =
(ei − di)/max(di, ei), where di is the average distance between a data point xi and all other
points within the same cluster Cj, whereas ei represents the smallest average distance from
xi to all points in any other cluster Cl , of which xi is not a part. The expressions for di and
ei are defined as

di =
∑xs∈Cj , s ̸=i Dist(xi, xs)

NCj − 1
, ei = min

(
∑xs∈Cl , l ̸=s Dist(xi, xs)

NCl

)
,

where, as mentioned, NCj and NCl are the number of points in clusters Cl and Cl , respec-
tively. The silhouette score provides a means to evaluate the clustering quality in the
absence of observed labels. Data points with positive silhouette scores (Sxi > 0) are typi-
cally well clustered, with values close to one indicating well-defined and compact clusters,
and values close to zero indicating overlapping clusters. Negative scores (Sxi < 0) represent
possible misclustered points. The average silhouette width (ASW) is commonly utilized
to analyze and select the optimal number of clusters, k say. The ASW states the mean
silhouette score for all data points in the dataset, providing an overall measure of clustering
quality. By calculating the ASW for the different values of k, we can determine the number
of clusters that maximizes the ASW, so identifying the most appropriate clustering.
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4.2. Load Profiles Generated with the k-Means Algorithm

Determining the optimal number of clusters k is a crucial step in the clustering process,
as it affects the interpretability of the resulting clusters. For the KM algorithm, a combi-
nation of silhouette scores and the Elbow method can provide a more informed decision.
We implemented KM clustering using the scikit-learn package of Python [60]. It was
executed with the ED as a distance metric defined as

ED(xi, cj) =

(
p

∑
s=1

(
xi(s)− cj(s)

)2
)1/2

,

where p represents the total number of dimensions (or features) of the data and, as men-
tioned, cj is the centroid of cluster Cj.

As shown in Figure 9, the ASW decreases as the values of k increase. This decrease
occurs because, as the number of clusters increases, the clusters tend to become smaller
and less cohesive, often capturing more noise and less meaningful separation between data
points. The evaluation of the silhouette score suggests that the optimal value of k can be 2,
3, or 4. To visualize the silhouette coefficients for each sample on a per-cluster basis, the
Yellowbrick library [61] was used as a visual diagnostic tool to examine the density and
separation of the clusters.
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Figure 9. Plots of ASW for KM clustering with values of k varying from 2 to 10 for the data of electrical
load power consumption in Brazil.

Figure 10(left) shows the silhouette-plot for k = 2, illustrating the distribution of
silhouette coefficients within each cluster. Each bar represents a data point, with the width
indicating the silhouette score, which measures how similar a point is to its own cluster
compared to other clusters. The x-axis represents the silhouette scores, ranging from −1 to
1, and the y-axis indicates the cluster labels. The red dashed line represents the ASW for
all clusters, which is 0.6129 in this case. The ASW provides a single value indicating the
overall quality of the clustering for k = 2. Cluster 1 shows higher cohesion, with many
points above the ASW line, whereas Cluster 2 displays lower cohesion, with most points
below the ASW line. This suggests potential misclustering or a less clear definition in
Cluster 2. Observing Figure 11(left), the greater cohesion within Cluster 1 compared to
Cluster 2 observed becomes evident. This observation aligns with the findings from the
silhouette-plot. The plot highlights distinct groupings and their spatial distribution. The
PCA scatter-plot for k = 2 in Figure 11(left) reveals that the data in Cluster 1 (in black) are
mainly located to the left of PC1 = 0, with some points to the right, showing less dispersion
and symmetry around PC2 = 0. Conversely, the data points in Cluster 2 (in blue) are all
positioned to the right of PC1 = 1, with a wider dispersion, indicating high variability
within the cluster. This spatial distribution aligns with the silhouette-plot, confirming the
higher cohesion of Cluster 1 and the lower cohesion of Cluster 2.
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For k = 3, the results are shown in Figure 10(center), indicating an ASW of 0.5344,
which is less than the ASW for k = 2, but still suggests a reasonable clustering structure.
Notably, the silhouette scores for Clusters 1 and 2 are now predominantly above the ASW
line, indicating improved cluster cohesion and separation for these clusters. The PCA
scatter-plot for k = 3 in Figure 11(center) shows that data points in Cluster 1 (in black)
are more confined to the left of PC1 = 0, reporting higher cohesion. Cluster 2 (in blue)
shows moderate dispersion and is situated approximately between PC1 = −1 and PC1 = 4.
Cluster 3 (in green) is further to the right with higher dispersion, indicating less cohesion
compared to the other clusters. Observing PCA scatter-plots from Figure 11(left),(center),
it is evident that, as k increases, the separation between clusters becomes clearer. Cluster 1
loses some points to Cluster 2, while Cluster 2 gains points from Cluster 1 and loses some
to Cluster 3, reflecting the redistribution of points among the clusters.

Figure 10(right) illustrates silhouette scores for each sample within clusters using KM
clustering. Cluster 1 (in black) has the highest area, indicating high cohesion. Cluster 2 (in
blue) and Cluster 3 (in green) follow, with Cluster 4 (in orange) being the smallest. Thus,
for k = 4, as depicted in Figure 10(right), Cluster 1 retains a similar structure compared
to Cluster 1 from k = 3; see Figure 10(center). Clusters 3 and 4 emerge due to the split of
Cluster 3 from k = 3. The ASW is now 0.5246, continuing to decrease, but still suggesting
a reasonably good clustering structure. Most clusters have silhouette scores above the
average threshold, indicating reasonable cohesion and separation. However, it is important
to note that Cluster 4 is quite sparse, containing only a few data points, as shown in
Figure 10(right). This limited size can pose challenges for future predictions.

Figure 11(right) visualizes the spatial separation of clusters for k = 4. Cluster 1
(in black) is concentrated around PC1 = −1 with less dispersion. Cluster 2 (in blue) is
between PC1 = −1 and PC1 = 4 with moderate dispersion. Cluster 3 (in green) shows
greater dispersion further to the right, and Cluster 4 (in orange) has the highest dispersion,
extending even further right. This indicates a transfer of data points from Clusters 3 and 2.
This transfer shows how increasing the number of clusters results in a refined separation
and distribution of data among clusters. The dispersion patterns noted in the PCA plot
align with the silhouette scores, confirming the variations in cohesion and separation across
the clusters.
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Figure 10. Silhouette-plot for k = 2 (left: C1 in black and C2 in blue), k = 3 (center: C1 in black, C2 in
blue, and C3 in green), and k = 4 (right: C1 in black, C2 in blue, C3 in green, and C4 in orange) for
data of electrical load power consumption in Brazil, where the red dashed line represents the ASW.
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Figure 11. Scatter-plots of the PCs with k = 2 (left), k = 3 (center), and k = 4 (right) for the indicated
cluster using data of electrical load power consumption in Brazil.

The Elbow method, which leverages the SSE, also known as inertia and defined in
(1), determines the optimal number of clusters in the KM algorithm. As k increases, the
inertia typically decreases. The optimal value of k is identified where this decline becomes
pronounced, resembling an “elbow” [62].

A small range for values of k, such as k = 1 to k = 10, is chosen [63]. In our analysis,
an elbow emerges at k = 3, suggesting that the optimal value of k for this dataset is k = 3,
as shown in Figure 12. From this figure, we notice important inertia drops. For example,
moving from k = 2 to k = 3 results in a drop of 620, with inertia from 1550 to 930. Beyond
k = 4, reduction diminishes and inertia drops only by 190 between k = 4 and k = 5 (from
590 to 400). As this distance decrease, the data points are closer to each other within a
cluster. Therefore, both the Elbow method and silhouette score analysis suggest that the
optimal value of k for the KM algorithm applied to this dataset is k = 3 based on the inertia
decrease rate.

The clustering results, as displayed in Figure 13, show the dispersion of data points
in relation to their centroids, showing the relative positions and distances of data points
within each cluster. Clusters C2 and C3 display a broader dispersion, while data points in
Cluster C1 seem more closely packed around its centroid.

The dispersion pattern is also reflected in the time series data for monthly household
consumption. The time series for Cluster C1, shown in Figure 14(left), exhibits a generally
consistent temporal pattern interrupted by sporadic oscillations, showing consistent pat-
terns with occasional fluctuations. In contrast, the time series data for Clusters C2 and C3,
as depicted in Figure 14(center),(right), respectively, show more pronounced fluctuations
throughout the monthly consumption timeframe, with the variations in Cluster C3 being
particularly extensive. Figure 14(center) illustrates moderate variability in energy use over
time. Figure 14(right) depicts important fluctuations which are indicative of high variability
in energy consumption.

Analyzing the yearly average consumption of households, di, reveals distinct con-
sumption patterns across the clusters. The division becomes even more pronounced when
examining the scatter plot in Figure 13, which shows the dispersion of data points relative
to their centroids for each cluster. This visualization effectively highlights the distinct
energy consumption profiles among the clusters: a low consumption profile in C1, medium
in C2, and high in C3. The proximity of data points to their respective centroids in this
scatter plot offers insights into the cohesiveness of each cluster and the variability within
their consumption patterns, underscoring the diverse energy usage behaviors among
Brazilian households.
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Figure 12. Plot of Elbow method using SSE for the electrical load data in Brazil, where the solid black
line shows the SSE and the black dashed line the lowest SSE achieved at k = 3; whereas the gray
dashed line represents the fit time (in seconds), which is the computational time required to fit the
model for each number of clusters k.
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Figure 13. Scatter-plot of the indicated clusters and their centroids for the optimal value of k using
data of electrical load power consumption in Brazil.
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Figure 14. Time series for Clusters C1 (left), C2 (center), and C3 (right) with data of electrical load
power consumption in Brazil.

4.3. Load Profiles Using Agglomerative Hierarchical Clustering

The Ward linkage method, used in AHC, was conducted utilizing the scikit-learn
package of Python [60]. The corresponding dendrogram of the AHC process is shown
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in Figure 15 with the Ward linkage method. The x-axis denotes the data, while the y
-axis illustrates the distance between them. Each vertical line represents a merge between
clusters, with the height indicating the distance or dissimilarity at which this merge occurs.
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Figure 15. Dendrogram of the AHC process with the Ward linkage method for data of electrical load
power consumption in Brazil.

From Figure 15, we visualize that, as the distance of vertical lines in the dendrogram
increases, the distance between the corresponding clusters increases as well. This visualiza-
tion aids in identifying the optimal number of clusters by examining the distances at which
important merges occur, highlighting the hierarchical structure of data groupings.

At the first level, as shown in Figure 16(left), the dendrogram is divided into two
clusters: C1 in black on the right and C2 in green on the left. At this cutting level, the majority
of the data resides in a predominant Cluster C1 with 330 data points, while a smaller Cluster
C2 contains 43 data points. At the second level, as shown in Figure 16(center), the data
point division improves as only one cluster is split. Now, Cluster C1 has 184 data points,
C2 has 146, and C3 has 43 data points, showing a more balanced distribution. This level
demonstrates an improvement in the division of data points among clusters. However,
as shown in Figure 16(right), cutting at level 3 results in further division of the smallest
cluster. The division creates an imbalance, as instead of a cluster with 43 data points, there
is now a Cluster C3 in green with 38 data points and a new Cluster C4 in orange with only
five data points, while C1 and C2 continue to have 184 and 146 data points, respectively.
This level illustrates the effect of further segmentation on cluster balance, resulting in high
imbalance by splitting the smallest cluster from the previous level.
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Figure 16. Dendrograms with initial cuts into two clusters (left: C1 in black and C2 in green), three
clusters (center: C1 in black, C2 in blue, and C3 in green), and four clusters (right: C1 in black, C2 in
blue, C3 in green, and C4 in orange) for the data of electrical load power consumption in Brazil.

To determine the optimal dendrogram cut point, we analyze the cluster silhouette plots
shown in Figure 17. Each plot displays the silhouette coefficients of clusters, highlighting
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the optimal clustering structure at k = 3 and k = 4, with ASW values above a threshold
of 0.5, suggesting strong cluster cohesion and separation. The plots show that all clusters
are above the ASW line, and all ASW values are above the threshold of 0.5, with k = 3 and
k = 4 yielding 0.5067 and 0.5097, respectively. For k ≥ 5, all clusters result in poor ASW
values, falling below the threshold.
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Figure 17. Silhouette-plots for hierarchical clustering with Ward linkage for k = 2 (left: C1 in black
and C2 in blue), k = 3 (center: C1 in black, C2 in blue, and C3 in green), and k = 4 (right: C1 in black,
C2 in blue, C3 in green, and C4 in orange) for the data of electrical load power consumption in Brazil.

Upon analyzing the distribution of data points from Figure 17, it becomes evident that
k = 2 and k = 4 represent two extreme possibilities. While k = 2 exhibits a cluster with a
large concentration of data, k = 4 indicates a cluster with a small number of data points.
Thus, among the analyzed cut levels, the dendrogram for k = 3, using the Ward linkage,
presents better performance in terms of cluster distribution.

By examining the monthly consumption profiles obtained with k = 3, we can observe
in Figure 18(left) the time series in each cluster. In Cluster C1, we see an almost stable
monthly average, while in the other clusters, there are dispersion, with C3 being greater
than C2. This dispersion correlates with the number of data points and the compactness
of the cluster; that is, as the cluster becomes more compact, the number of data points
increases and the dispersion decreases.

The yearly average consumption presented in the box-plots of Figure 18(right) con-
firms that the variation observed in the monthly average is related to the compactness of
the clusters. Cluster C1, with more data points (NC1 = 184), exhibits an interquartile range
(IQR) of 50.15 kWh, while C2 has 146 data points and an IQR of 91.81 kWh, with C3 having
43 data points and an IQR of 95.54 kWh. Hence, as the number of data points decreases
within the clusters and the IQR increases, the dispersion tends to increase. Here, IQR was
used due to the potential presence of outliers.
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Figure 18. Plots of time series for monthly average consumption in each cluster with the Ward linkage
method using k = 3 (left) and box-plots of yearly average consumption for the clusters (right), where
diamonds indicate outliers and lines within the boxes the median of the data.
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Therefore, three distinct profiles were identified: a low consumption profile in the
first cluster C1, with a maximum yearly average consumption of 183.41 kWh; a medium
consumption profile in C2, with a maximum value of 380.08 kWh; and a high consumption
profile in C3, with a maximum of 856.08 kWh. Thus, Figure 18(right) reveals distinct energy
consumption profiles: low (Cluster C1), medium (Cluster C2), and high (Cluster C3), with
IQRs showing variability within clusters.

In summary, the AHC method utilizing the Ward linkage offered a comprehensive cat-
egorization of the data into discernible load profiles. This method has the ability to capture
distinct consumption behaviors, underscoring its utility and relevance in understanding
energy consumption patterns.

4.4. Load Profiles Using Self-Organizing Maps for Clustering

To cluster the load dataset using SOM, we begin by creating a neuron grid. According
to the estimation proposed in [64], the number of neurons on the grid can be determined
as approximately 5

√
N. With N = 373, we obtain approximately 97 neurons. Since the

grid is two-dimensional, we select a 10 × 10 neuron grid. The implementation of the SOM
algorithm is achieved using the MiniSom library of Python [65].

The weight vector of each neuron is initialized randomly, and the ED is used as the
distance metric between the neuron weight vector and the input vector. To determine the
appropriate number of clusters, we evaluate the ASW for different values of k. As shown in
Figure 19, the ASW values for k = 2 and k = 3 are above the threshold of 0.5, with values
of 0.6057 and 0.5071, respectively. Figure 19 highlights the optimal clustering performance
for k = 3 and k = 4, where all clusters surpass the threshold value of 0.5, indicating strong
internal cohesion and separation from other clusters.
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Figure 19. Plots of ASW for SOM clustering with k varying from 2 to 10 using the data of electrical
load power consumption in Brazil.

To visualize the evolution of distances between neurons in each iteration, we utilize
the U-matrix, which represents the distances between neurons by assigning colors to the
cells. Darker colors indicate larger distances, while lighter colors indicate closer weight
vectors. Initially, after the first iteration with the U-matrix, as shown in Figure 20(left),
the neurons are mixed and not properly clustered. However, as the iterations progress,
the weight vectors become more clustered, as displayed in Figure 20(right). The dark
regions suggest dissimilar data points, while lighter or warmer regions indicate similar
data points. Hence, in summary, Figure 20(left) illustrates initial neuron distances and
cluster formations. Darker colors represent larger distances, indicating loosely connected or
distinct clusters at the early stage of SOM training. Figure 20(right) shows a more defined
clustering structure. Lighter colors indicate closer neurons, suggesting a clearer delineation
of clusters as the SOM algorithm progresses.
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Figure 20. Plots of U-matrix after one iteration (left) and 4000 iterations (right) for the data of
electrical load power consumption in Brazil.

By visualizing the BMUs marked with colors, we can identify the clusters. After the
first iteration, as shown in Figure 21(left), the BMUs of each cluster exhibit distinct similarity
patterns. However, as more iterations occur, the weight vectors become increasingly
clustered, as displayed in Figure 21(right). This confirms the results obtained from the ASW
analysis, indicating that k = 3 provides a good representation of the clusters. In summary,
Figure 21(left) displays preliminary clustering patterns, while Figure 21(right) shows the
refinement and clear definition of clusters over time with the SOM algorithm.
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Figure 21. Plots of BMUs with cluster colors after one iteration (left) and 4000 iterations (right) for
the data of electrical load power consumption in Brazil, where green diamonds are used for Cluster
C3, blue squares for Cluster C2, and black dots for Cluster C1.

Assessing cluster quality through silhouette plots, as illustrated in Figure 22, reveals
that, for k = 2, the silhouette values in the second cluster (C2) fail to surpass the ASW
threshold, presenting a limitation. Conversely, when k = 3, the silhouette plot shows all
cluster silhouette values exceeding the threshold, suggesting an improved distribution of
data points across the clusters.
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Figure 22. Silhouette-plots for the indicated cluster with k = 2 (left: C1 in black and C2 in blue) and
k = 3 (right: C1 in black, C2 in blue, and C3 in green) using the SOM algorithm for data of electrical
load power consumption in Brazil.

By examining the monthly consumption profiles obtained with k = 3, we observe in
Figure 23(left) the time series in each cluster. In Cluster C1, we see an almost stable monthly
average, while in the other clusters, there is dispersion, with C3 being greater than C2. This
dispersion correlates with the number of data points and the compactness of the cluster;
that is, as the cluster becomes more compact, the number of data points increases and the
dispersion decreases.
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Figure 23. Plots of time series for monthly average consumption in each cluster with the Ward linkage
method (left) and box-plots of yearly average consumption for the clusters (right) with k = 3 for data
of electrical load power in Brazil, where diamonds indicate outliers and lines within the boxes the
median of the data.

Upon analyzing the clusters using the yearly average consumption, as shown in the
box-plots of Figure 23(right), we can identify three distinct consumption profiles:

• Cluster C1 represents a low consumption class with a mean consumption of 139.32 kWh
and a median consumption of 142.00 kWh.

• Cluster C2 shows a medium consumption profile with a mean consumption of 272.24 kWh
and a median consumption of 275.17 kWh.

• Cluster C3 states a high consumption profile with a mean consumption of 457.73 kWh
and a median consumption of 421.67 kWh.

Hence, Figure 23(right) illustrates the distribution within low, medium, and high
consumption profiles. The difference between mean and median in Cluster C3 is high,
underscoring the impact of outliers on the mean consumption. The important difference
between the mean and median in C3 stems from the inclusion of five data points with
consumption levels averaging between 600 kWh and 800 kWh, which impacts the mean
but has little effect on the median.
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In summary, employing SOM clustering with k = 3 yields distinct load profiles with
different consumption patterns. Therefore, Clusters C1, C2, and C3 represent low, medium,
and high consumption profiles, respectively. The analysis of yearly and monthly average
consumption further underscores the disparities among the clusters and provides valuable
insights into the load characteristics of each cluster.

4.5. Discussion about the Clustering Methods Results

To evaluate the effectiveness of our clustering methods, we employ an analytical
framework that integrates both unsupervised clustering methods and a supervised bench-
marking tool. Figure 24 provides a visual overview of our analytical process, from data
acquisition to the utilization of GB for benchmarking the clustering methods. This includes
critical steps such as data preprocessing, dimensionality reduction, application of clustering
algorithms, and rigorous performance evaluation against the GB benchmark.

Begin

Acquire data

Preprocess data Remove noisy data Handle missing data

Reduce dimensionality
(PCA)

Split data
into training and testing sets

Perform clustering analysis
(KM, AHC, SOM)

Evaluate clustering
performance with GB

End

Figure 24. Flowchart of the data analysis process incorporating GB for benchmarking.

In our study, we performed clustering analysis with the ACH, KM, and SOM methods
using GB as a performance baseline to enable a comprehensive comparison of these methods
against a standard of predictive performance [66]. The use of GB to evaluate performance
is based on its capability to handle heterogeneous data and capture complex interactions,
allowing us to assess the effectiveness of each clustering algorithm. This ensures accurate
billing for consumers and efficient resource management for energy providers.

To evaluate the clusters generated by KM, AHC, and SOM, we use precision (Prec)
and recall (Rec) as metrics, comparing them against the patterns predicted by GB. Despite
the challenges in defining true positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs) in unlabeled datasets, these metrics are crucial in our context.
Precision measures the proportion of TP predictions among all positive predictions, helping
to ensure that identified consumption patterns are accurate and not overestimated. Recall
measures the proportion of TP predictions among all TPs, ensuring that the algorithm
does not miss important consumption patterns. By using these metrics, we evaluate the
performance of each clustering algorithm, balancing the need for accurate detection of
consumption patterns with the risk of overestimation or underestimation, which is vital for
both consumer satisfaction and resource management.
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Specifically, precision and recall are defined, respectively, as Prec = TP/(TP + FP)
and Rec = TP/(TP + FN). While metrics like normalized mutual information (NMI) and
the rand index are well suited for evaluating unsupervised clustering methods, our choice
of precision and recall is also justified by GB being a supervised method, where these
metrics are highly relevant.

NMI measures similarity between predicted clusters and observed labels, considering
the mutual information shared between them, while the rand index evaluates accuracy by
examining all pairs of samples and determining how many pairs are correctly clustered
together or separately. These metrics complement our evaluation by providing additional
insights into clustering performance. Future work may explore the use of NMI and the
rand index to provide a more comprehensive understanding of clustering effectiveness.

To accurately assess the performance of the clustering algorithms, the monthly con-
sumption data from 373 dwellings were randomly split into two subsets: 70% forming
the training set and the remaining 30% forming the test set. To ensure that this split
maintained the proportionality of consumption categories—low (L), medium (M), and
high (H)—present in the original dataset, we employed stratified sampling. This method
guarantees that both subsets accurately reflect the variability of the complete dataset,
providing a balanced foundation for evaluation. We then examined the accuracy within
each consumption category to address the potential for aggregated accuracy metrics to
obscure class-specific performance in multi-class problems. Our analysis, conducted with
the Scikit-learn library and employing GB with a log-loss function, aims to clarify how
effectively each algorithm categorizes dwellings into these consumption profiles.

The comparison of clustering methods in terms of precision and recall is given in
Table 4, showing that the KM algorithm outperforms AHC and SOM, achieving a precision
and recall of 92%, compared to 91% for both AHC and SOM. Despite the slight difference,
this is important given the varying energy costs associated with different consumption
profiles. The distinction between low and high consumption profiles, which correspond to
lower and higher expenses, respectively, underscores the relevance of accurately categoriz-
ing dwellings. Such precision is not merely a technical achievement but has considerable
financial implications for both consumers and energy suppliers.

Table 4. Metrics and advantages/disadvantages of the indicated clustering method for the data of
electrical load power consumption in Brazil.

Method Precision
(Weighted Average)

Recall
(Weighted Average) Advantages Disadvantages

KM 0.92 0.92 It is simple and computationally
efficient.

It is sensitive to outliers and requires
pre-set number of clusters.

AHC 0.91 0.91
It does not need for pre-set num-
ber of clusters and is good for
small datasets.

it is computationally intensive and
less efficient for large datasets.

SOM 0.91 0.91 It captures non-linear structures
and has good visualization.

It needs careful parameter tuning
and is computationally intensive.

Table 5 details the performance metrics by consumption profile, highlighting the
precision and recall for each clustering method within the low, medium, and high consump-
tion profiles. This detailed breakdown is crucial for understanding how each algorithm
performs across different consumption levels.

The potential for cost discrepancies due to misclassification errors highlights the
necessity of closely examining FPs and FNs within each consumption profile. These
errors can result in incorrect billing and suboptimal energy management decisions. To
provide a detailed analysis of these misclassifications, confusion matrices for each clustering
algorithm are presented in Table 6. These matrices allow for an in-depth examination
of how effectively each algorithm assigns dwellings to the correct consumption profile,
emphasizing the practical impact of our study.
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Table 5. Performance metrics by the indicated consumption profile for data of electrical load power
consumption in Brazil.

Profile Method Precision Recall Comments

L KM 0.95 0.94 It has slightly higher precision and good recall.
AHC 0.92 1.00 It has perfect recall and slightly lower precision.
SOM 0.94 0.97 It has high precision and recall.

M KM 0.83 0.91 It has balanced performance.
AHC 0.88 0.88 It has balanced precision and recall.
SOM 0.83 0.86 It has consistent performance.

H KM 1.00 0.85 It has perfect precision and lower recall
AHC 1.00 0.64 It has perfect precision and highly lower recall.
SOM 0.93 0.76 It has high precision and moderate recall

Table 6. Confusion matrix of the indicated algorithm for data of electrical load power consumption
in Brazil.

KM AHC SOM

Predicted Predicted Predicted
L M H L M H L M H

Observed
L 63 4 0

Observed
L 55 0 0

Observed
L 65 2 0

M 3 29 0 M 5 38 0 M 3 24 1
H 0 2 11 H 0 5 9 H 1 3 13

Examining the algorithms from a consumer perspective yields valuable insights. The
SOM precision rate of 93% for high-profile dwellings implies that 7% of the dwellings
classified by SOM as high-profile were misclassified. This is evident from the confusion
matrix in Table 6, which shows a TP count of 13 and an FP count of 1 for SOM high-
profile classification. This means that, while the algorithm identified 14 dwellings as
high-profile, one of them was truly suited for the medium-profile. Similarly, evaluating the
KM algorithm for its low-profile classification reveals a recall rate of 94%, indicating that 6%
of the dwellings expected to be low-profile were incorrectly categorized as a higher profile.
The confusion matrix in Table 6 details this with a TP count of 63 and an FN count of 4 for
KM low-profile classification. Out of 67 dwellings expected to be in the low-profile, the
algorithm accurately identified 63 but misclassified 4 as belonging to the medium-profile.

From the perspective of an energy company, the performance metrics unveil a distinct
aspect. The AHC recall rate of 64% in classifying high-profile dwellings implies that 36% of
dwellings expected in this category were incorrectly assigned to a lower one, as evidenced
by the confusion matrix in Table 6. This misclassification, where 5 out of 14 high-profile
dwellings are categorized into the medium-profile, underscores a potential underestimation
of energy consumption. Conversely, an AHC precision of 92% in predicting low-profile
dwellings suggests an 8% misclassification rate, where some dwellings are inaccurately
categorized as lower than their observed profile. This discrepancy is critical for energy
companies as it may result in revenue loss due to underbilling. Therefore, although KM,
AHC, and SOM all exhibit high weighted average accuracies, their appropriateness varies
depending on the stakeholder perspective. AHC is particularly precise from a consumer
standpoint, effectively mitigating over-classification into costlier profiles. However, its
tendency to underestimate high-profile predictions may concern energy companies. Con-
versely, KM and SOM offer more balanced performances, with KM slightly ahead due to its
lower error rate in low-profile predictions and consistent accuracy across various measures.
Thus, selecting a clustering algorithm for energy consumption analysis should be guided by
the priorities of the stakeholders involved. Whether the focus is on minimizing overestima-
tion for consumer protection or avoiding underestimation for accurate billing, the decision
hinges on the requirements of the consumer or the energy provider. Table 7 compares the
properties, advantages, and disadvantages of each clustering method discussed.
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Table 7. Properties, advantages, and disadvantages for the indicated clustering method.

Method Properties Advantages Disadvantages

KM Iterative clustering based on centroids It is simple and computational effi-
ciency.

It is sensitive to outliers and requires
pre-set number of clusters.

AHC Hierarchical clustering, cluster merg-
ing

It does not require pre-set number of
clusters and is good for small datasets.

It is computationally intensive and
less efficient for large datasets.

SOM Clustering based on neural networks It captures nonlinear structures and
has good visualization.

It requires careful parameter tuning
and is computationally intensive.

In summary, our comparative analysis highlights the strengths and weaknesses of
each clustering method. The KM method, with its simplicity and computational efficiency,
is well suited for large datasets but is sensitive to outliers. The AHC method, while robust
for small datasets and not requiring a pre-defined number of clusters, is computationally
intensive and less efficient for larger datasets. The SOM method effectively captures
nonlinear structures and provides good visualization capabilities but requires careful
parameter tuning and is computationally intensive. The choice of clustering algorithm
ultimately depends on the specific requirements of the application, including dataset size,
desired clustering characteristics, and computational efficiency. Our study demonstrates
the practical applicability of each method and provides a framework for selecting the
appropriate clustering method based on the unique needs of energy consumption analysis.

5. Conclusions and Future Work

As we confront the persistent challenges of climate change and increasing energy
demands, the urgency of innovative energy conservation and efficiency strategies becomes
ever more critical. Developing a comprehensive understanding of energy consumption
profiles from both consumer and supplier perspectives is vital for advancing these strategies.
This understanding is essential for identifying opportunities to reduce and optimize energy
usage, thereby promoting a more sustainable approach to energy resource management.

In Brazil, with its dynamic economy and diverse population, these challenges are
relevant. Unique policies, such as consumption thresholds for billing, introduce complexity
into the analysis of energy usage, obscuring true consumption patterns. This complexity
shows the need for accurate data collection and the development of energy conservation
and efficiency strategies tailored to the specific context of Brazilian energy consumption.

Our study utilized machine learning methods, specifically k-means, agglomerative
hierarchical clustering, and self-organizing maps, to analyze energy consumption data in
Brazilian households. The incorporation of gradient boosting as a benchmarking tool for
these unsupervised learning methods facilitated a systematic evaluation of their efficacy.
This benchmark introduced a novel dimension to our analysis, particularly in enabling a
comparison of the clustering algorithms in effectively discerning consumption profiles.

The comparison highlighted in our analysis was particularly evident as we approached
the results from both a consumer and an energy company perspective, yielding valuable
insights. By categorizing “high-profile” dwellings as those with higher energy consumption
and “low-profile” as those with lower consumption, we could observe the precision and
recall rates of each algorithm more distinctly. For example, the precision rate of 93% for
self-organizing maps in classifying high-profile dwellings underscores a notable rate of
misclassification. This is further elucidated by our confusion matrix analysis, which shows
how each clustering method performs in real-world scenarios.

Likewise, the recall rates of k-means in low-profile classifications and the performance
of agglomerative hierarchical clustering in high-profile dwelling classifications unveiled
important aspects concerning the potential underestimation or overestimation of energy
consumption. These insights are pivotal for applications like accurate billing and con-
sumer protection, where the comprehension of consumption behavior directly influences
operational and strategic decisions.
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Each utilized clustering method has shown its unique strengths in segmenting energy
data into distinct profiles: k-means for its simplicity and efficiency, agglomerative hierar-
chical clustering for its balanced distribution capabilities, and self-organizing maps for
its in-depth pattern recognition. However, our findings underscore that the selection of a
clustering algorithm should be carefully aligned with the specific needs and perspectives of
the stakeholders involved, whether it is minimizing overestimation for consumer protection
or avoiding underestimation for accurate billing.

Our findings indicate that k-means offered the most accurate results for energy man-
agement applications, thereby enhancing the precision of energy policies. By providing
a clearer identification of energy consumption patterns, our methodology supports the
development of more targeted and effective energy conservation strategies. This improved
classification directly informs policy-making processes by identifying specific areas where
intervention is needed, promoting efficient and equitable resource allocation.

While precision and recall have been valuable metrics in our study, we acknowledge
the limitations related to their reliance on labeled data, which might not always be reliable.
Metrics like normalized mutual information and the rand index, which do not require
labeled data, could provide complementary insights. Future work will explore these metrics
to enhance our evaluation framework.

Beyond the methods explored in this study, the continuous advancements in deep
learning, including formulations like large language models and latent mixture models,
offer promising avenues for future analyses. These sophisticated models could further
refine our understanding of energy consumption patterns, potentially unveiling more
intricate relationships within the data that conventional methods might overlook.

Future work could also extend beyond the dataset used in the present study to compare
energy consumption patterns across the different regions of Brazil, capturing the diverse
socioeconomic and climatic conditions within the country. Additionally, analyzing the
impact of the COVID-19 pandemic on energy usage could provide insights into how
shifts in home office work and residential energy consumption behaviors have altered
consumption patterns. Moreover, comparing Brazilian energy consumption with that
of other countries in Latin America could highlight regional differences and similarities,
offering a broader perspective on energy efficiency strategies suitable for the region.

Looking ahead, broadening our analysis to encompass additional data features, such
as peak demand times and consumption variability, could enhance the profiling process
further. Moreover, exploring other clustering algorithms or incorporating advanced deep
learning methods, such as autoencoders, might provide deeper insights. Analyzing con-
sumption data at more granular time intervals may also provide more detailed information
for optimizing electricity demand management strategies.

The practical utilization of the consumption profiles identified in this study in initia-
tives like demand response programs and personalized energy-saving recommendations
presents a promising avenue for future exploration. Such identifications hold the potential
to substantially enhance load management practices, enabling more accurate demand
forecasting and resource allocation. Overall, this study established a robust groundwork
for further research in energy consumption analysis and hints at the prospect of extending
these methodologies to other sectors that require detailed pattern analysis.
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