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Abstract: In this paper, we apply the classical FKKM lemma to obtain the Ky Fan minimax inequality
defined on nonempty non-compact convex subsets in reflexive Banach spaces, and then we apply it
to game theory and obtain Nash’s existence theorem for non-compact strategy sets, which can be
regarded as a new, simple but interesting application of the FKKM lemma and the Ky Fan minimax
inequality, and we can also present another proof about the famous John von Neumann’s existence
theorem in two-player zero-sum games. Due to the results of Li, Shi and Chang, the coerciveness in
the conclusion can be replaced with the P.S. or G.P.S. conditions.
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1. Introduction

In a non-cooperative game, consider n players named P1, P2, · · · , Pn, and each Pi has a
set of strategies Ki, where i = 1, 2, · · · , n and Ki satisfy the following condition:

(O) Each Ki is a nonempty convex compact subset of a topological vector space Ei.

If each player Pi has chosen a strategy from Ki, let

fi : K1 × · · · × Kn =: X → R

be the loss of player Pi. Equivalently, − fi gives Pi’s payoff.
John Forbes Nash Jr., an American mathematician, introduced the following concept

and proved its existence with a 28-page Ph.D. dissertation [1] in 1950.

Definition 1 (Nash). The equilibrium is a point

q̃ := (q̃1, q̃2, · · · , q̃n) ∈ X

satisfying that
fi(q̃) = min

pi∈Ki
fi(q̃1, · · · , q̃i−1, pi, q̃i+1 · · · , q̃n).

In other words, the Nash equilibrium is a state of a non-cooperative game such that
no one can increase their expected return by changing their strategy while the others keep
theirs unchanged.

Using Brouwer fixed point theorem, John Nash proved the following.
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Theorem 1. Assume that

Ki = {pi = (pi1, pi2, · · · , pini ) ∈ Ei = Rni , 0 ≤ pik ≤ 1, k = 1, · · · , ni,
ni

∑
k=1

pik = 1}

and the following:

(I) fi : K1 × · · · × Kn → R is continuous for every i ∈ {1, · · · , n}.
(II) Let p = (p1, · · · , pn). For i = 1, · · · , n, fix all pj when j ̸= i, and assume pi 7→ fi(p) is

convex on Ki.

Then, Nash equilibrium does exist.

Nash’s work on game theory shocked the economics community and won the John
von Neumann Theory Prize in 1978 and the Nobel Memorial Prize in Economic Sciences
(with John Harsanyi and Reinhard Selten) in 1994.

In 1961, the Chinese-born American mathematician Ky Fan extended the classical Knaster–
Kuratowski–Mazurkiewicz (KKM) lemma to an infinite-dimensional result [2]. Later, in 1972,
Ky Fan applied the FKKM lemma and obtained the Ky Fan minimax inequality [3].

Theorem 2 ([3]). It is
min
y∈X

sup
x∈X

f (x, y) ≤ sup
x∈X

f (x, x)

if the following three assumptions are satisfied:

(1) The function f : X × X → R is given where X is a compact, convex and nonempty set in a
topological vector space.

(2) f is quasi-concave in the first argument, i.e., x 7→ f (x, y) is quasi-concave on X for every
fixed y ∈ X.

(3) f is lower semicontinuous in the second argument, i.e., y 7→ f (x, y) is lower semicontinuous
on X for every fixed x ∈ X.

The Ky Fan minimax inequality is equivalent to Brouwer’s fixed-point theorem [4];
it is a powerful tool and has many applications [5], especially in mathematical economics
and game theory (see Chapter 9 in [4]). One of its applications is to show Nash’s existence
theorem in a very concise way (see [6,7]). In this paper, we apply the classical FKKM
lemma to obtain the Ky Fan minimax inequality defined on nonempty non-compact convex
subsets in reflexive Banach spaces, and then we apply it to game theory and obtain Nash’s
existence theorem for non-compact strategy sets, which can be regarded as a new, simple
but interesting application of the FKKM lemma and the Ky Fan minimax inequality, and
we can also give another proof of the famous John von Neumann’s existence theorem in
two-player zero-sum games. Due to the results of Li [8], Shi and Chang [9], the coerciveness
in the conclusion can be replaced with the P.S. or G.P.S. conditions.

The academic editor and the referee pointed out some important references on the
FKKM lemma and the Ky Fan inequality [5,10–13]. Their generalizations are very compli-
cated; our conditions and proofs are different from theirs.

2. Main Results and Proofs

We replace condition (O) with the following one:

(H) Each Ki is a nonempty convex subset of a reflexive Banach space Ei.

And we maintain the original definition of the Nash equilibrium. Then, we denote the
set of strategy profiles as follows:

X := K1 × K2 × · · · × Kn ⊆ E1 × E2 × · · · × En =: E.
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For a vector p := (p1, p2, · · · , pn) ∈ E, define its norm

∥p∥E :=

√
n

∑
i=1

∥pi∥2
Ei

.

Since each Ei is a reflexive Banach space, it is not difficult to verify that E (equipped
with its norm topology) is a reflexive Banach space either.

We cite the classical FKKM lemma as follows.

Lemma 1. Let X be a nonempty subset of a topological vector space E and let the set-valued mapping

T : X → 2E

satisfy the following conditions:

(1) For any fixed x ∈ X, T(x) is a nonempty and closed subset of E.
(2) There exists a x0 ∈ X such that T(x0) is compact in E.
(3) For any finite set {x1, x2, · · · , xn}, the following holds

co{x1, x2, · · · , xn} ⊆
n⋃

i=1

T(xi).

Then, ⋂
x∈X

(
T(x) ∩ T(x0)

)
̸= ∅,

and especially, ⋂
x∈X

T(x) ̸= ∅.

For the convenience of the reader, here, we provide the proof, which is slightly different
from that in [2].

Proof. Case 1. X is a set with finite points in it. The proof is similar to the that of the classic
KKM lemma [14].

Case 2. X is an infinite set. From hypotheses (1) and (2), we have that

T̃(x) := T(x) ∩ T(x0)

is compact for any x ∈ X.
Next, we will prove by contradiction. If the conclusion in this case is not true, we will

show that there exists the finite set {x1, · · · , xm} ⊂ X such that

m⋂
i=1

T̃(xi) = ∅,

which is contradictory to Case 1.
Assume that ⋂

x∈X
T̃(x) = ∅,

Then, by taking the complement of both sides, we have⋃
x∈X

T̃c(x) = X.
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For an arbitrary point x1 ∈ X, the compact set is as follows:

T̃(x1) = X \ T̃c(x1) ⊂
⋃

x ̸=x1

T̃c(x).

Notice that its right-hand side is an open covering of T̃(x1), so we can pick only a
finite number of open subsets to cover T̃(x1), i.e., there exist some finite sets, which we
denote as {x2, x3, · · · , xm}, that satisfy

m⋃
i=2

T̃c(xm) ⊃ T̃(x1).

So, their complements satisfy

m⋂
i=2

T̃(x) ⊂ T̃c(x1).

Hence, we obtain that

m⋂
i=1

T̃(x) ⊂ T̃c(x1) ∩ T̃(x1) = ∅,

which contradicts Case 1.

Applying Lemma 1, we have the following Ky Fan minimax inequality in the case
that the topological vector space is especially a reflexive Banach space equipped with
weak topology. Then, we can weaken the compactness assumption of the classical Ky
Fan inequality.

Theorem 3. Let X be a nonempty and convex subset of a reflexive Banach space E and let the
functional

f : X × X → R

satisfy the following conditions:

(i) For any fixed y ∈ X, the functional x 7→ f (x, y) is quasi-concave on X, i.e., for any l ∈ R,
the set

{x ∈ X| f (x, y) ≥ l}

is convex.
(ii) For any fixed x ∈ X, y 7→ f (x, y) is weakly lower semicontinuous on X, i.e., for any l ∈ R,

the set
{(y, l) ∈ X ×R| f (x, y) ≤ l}

is weakly closed.
(iii) m := supx∈X f (x, x) < +∞.
(iv) There exists a x0 ∈ X such that the set

T(x0) := {y ∈ X| f (x0, y) ≤ m}

is bounded in X.

Then,
min
y∈X

sup
x∈X

f (x, y) ≤ sup
x∈X

f (x, x).

Remark 1. In particular, condition (iv) in Theorem 3 is satisfied, while the functional

y 7→ f (x0, y)
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is coercive on X, i.e., ∥yn∥E → +∞ implies that f (x0, yn) → +∞. In fact, if not, there must exist
a sequence {yn} ⊂ T(x0) satisfying ∥yn∥E → +∞ so that f (x0, yn) → +∞, which contradicts
the definition of T(x0).

Proof. Set
T(x) = {y ∈ X| f (x, y) ≤ m}.

(1) From hypotheses (ii) and (iii), we have that for any x ∈ X, T(x) is nonempty (since
x must belong to T(x)) and weakly closed (by the definition of weak lower semicontinuity).

(2) By hypothesis (iv), we obtain the boundedness of T(x0). Using the Eberlein–
Šmulian theorem (see Page 144 in [15]), T(x0) becomes weakly relatively compact. Then,
combined with conclusion (1) above, T(x0) is weakly compact.

(3) We claim that

co{x1, x2, · · · , xn} ⊆
n⋃

i=1

T(xi)

for any finite set {x1, x2, · · · , xn}. Otherwise, there has to be a ȳ ∈ co{x1, x2, · · · , xn}, but
ȳ /∈ ⋃n

i=1 T(xi). Then,
f (xi, ȳ) > m, ∀i = 1, 2, · · · , n.

That is, ∃ε > 0 such that
f (xi, ȳ) ≥ m + ε.

From hypothesis (i), we have that the set {x ∈ X| f (x, ȳ) ≥ m + ε} is convex since for
each xi that belongs to it, ȳ is also in it. Then,

f (ȳ, ȳ) ≥ m + ε > m,

which is contradictory to the definition of m.
Using Lemma 1, we have that ⋂

x∈X
T(x) ̸= ∅,

i.e., there exists ỹ ∈ T(x) such that

f (x, ỹ) ≤ m, ∀x ∈ X.

Hence,
inf
y∈X

sup
x∈X

f (x, y) ≤ sup
x∈X

f (x, ỹ) ≤ sup
x∈X

f (x, x).

Next, we will show that the notation “inf” above can be replaced with “min”. Notice
hypothesis (ii): for any real number l, the set {(y, l) ∈ X ×R| f (x, y) ≤ l} is weakly closed
in E. Then, the set ⋂

x∈X
{(y, l) ∈ X ×R| f (x, y) ≤ l}

is also weakly closed, which implies that the functional

y 7→ sup
x∈X

f (x, y)

is weakly lower semicontinuous on X. Moreover, the set

{y ∈ X| sup
x∈X

f (x, y) ≤ m} =
⋂

x∈X
T(x)
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is weakly closed in E since

M :=
⋂

x∈X
T(x) ⊆ T(x0) = {y ∈ X| f (x0, y) ≤ m},

which implies that the set M is a weakly compact subset of T(x0). Since weakly lower semi-
continuous functionals always have the minimum on weakly compact sets, the functional

y 7→ sup
x∈X

f (x, y)

is able to reach its infimum in M. Then, we clearly have that

inf
y∈X

sup
x∈X

f (x, y) = min
y∈M

sup
x∈X

f (x, y) = min
y∈X

sup
x∈X

f (x, y).

Hence, we have
min
y∈X

sup
x∈X

f (x, y) ≤ sup
x∈X

f (x, x),

which completes the proof.

Now, we can prove Nash’s existence theorem for non-compact strategy sets in the
following.

Theorem 4. Assume the hypothesis

(H) Each Ki is a nonempty convex closed subset of a reflexive Banach space Ei.

and the following assumptions:

(I) Let p = (p1, · · · , pn). For each i = 1, · · · , n, fix all the components pj when j ̸= i and
the functional

pi 7→ fi(p)

is convex on Ki.
(II) Each fi is weakly continuous on X := K1 × · · · × Kn.
(III) There exists a p0 = (p10, · · · , pn0) ∈ X such that ∀i ∈ {1, · · · , n}, the set

T(p0) :=
{

q ∈ X|
n

∑
i=1

[
fi(q)− fi(q1, · · · , qi−1, pi0, qi+1, · · · , qn)

]
≤ 0

}
is bounded in E.

Then, there is at least one Nash equilibrium in X.

Proof. We set

f : X × X → R

(p, q) 7→
n

∑
i=1

[
fi(q)− fi(q1, · · · , qi−1, pi, qi+1, · · · , qn)

]
.

and

T : X → 2X

p 7→ {q ∈ X| f (p, q) ≤ 0}.

(i) From hypothesis (I), we obtain that for any fixed q ∈ X, the functional

p 7→ f (p, q)

is concave on X.
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(ii) By hypothesis (II), we obtain the weak continuity of f .
(iii) It is obvious that f (p, p) = 0 for all p ∈ X.
(iv) Observing hypothesis (III), we have that T(p0) is bounded in E since for each

q ∈ T(p0), we have that

∥q∥E =

√
n

∑
i=1

∥qi∥2
Ei
≤

n

∑
i=1

∥qi∥Ei < +∞.

Using Theorem 3, there exists a q̃ ∈ X such that

f (p, q̃) ≤ 0, ∀p ∈ X.

In particular, for any i = 1, 2, · · · , n, we choose

pi = (q̃1, · · · , q̃i−1, pi
i, q̃i+1 · · · , q̃n) ∈ X.

Then,
fi(q̃)− fi(pi) ≤ 0, ∀i ∈ {1, · · · , n},

that is,

fi(q̃) ≤ fi(pi) = fi(q̃1, · · · , q̃i−1, pi
i, q̃i+1 · · · , q̃n), ∀pi

i ∈ Ki and ∀i ∈ {1, · · · , n}.

This means that q̃ is exactly the Nash equilibrium and that the proof is complete.

Remark 2. In Theorem 4, condition (III) is usually difficult to satisfy for n ≥ 3; however, it holds
for the following practical and concise situation for John von Neumann’s two-person zero-sum game
in unbounded strategy sets. Compared with the result of Zeidler (see Theorem 2.G. on Page 76 and
Proposition 1 on Page 80 of [6]), our assumptions are weaker; in particular, here, we do not need the
strict convexity of the space X.

Theorem 5. In a two-player zero-sum game, we denote the loss functional for player Pi as

fi : K1 × K2 =: X → R,

where Ki (i.e., the strategies of Pi) is a nonempty convex set in a suitable reflexive Banach space Ei.
Then, it is clear that f2 = − f1. Assume the following:

(S1) For any fixed p2 ∈ K2, the functional p1 7→ f1(p1, p2) is convex and lower semicontinuous
on K1.

(S2) For any fixed p1 ∈ K1, the functional p2 7→ f1(p1, p2) is concave and upper semicontinuous
on K2.

(S3) There exists a p0 := (p10, p20) ∈ X such that the functional · 7→ f1(·, p20) is coercive on K1
and · 7→ − f1(p10, ·) is coercive on K2.

Then, there is at least one Nash equilibrium in X and

min
p1∈K1

max
p2∈K2

f1(p1, p2) = max
p2∈K2

min
p1∈K1

f1(p1, p2).

Proof. We set

f : X × X → R
(p, q) 7→ − f1(p1, q2) + f1(q1, p2).
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(i) For any fixed q ∈ X, p 7→ f1(q1, q2)− f1(p1, q2) + f2(q1, q2)− f2(q1, p2) = f (p, q) is
concave on X since ∀x = (x1, x2), y = (y1, y2) ∈ X = K1 × K2 and ∀λ ∈ [0, 1], in applying
conditions (S1) and (S2), the following holds:

f
(
λx + (1 − λ)y, q

)
=− f1

(
λx1 + (1 − λ)y1, q2

)
+ f1

(
q1, λx2 + (1 − λ)y2

)
≥− [λ f1(x1, q2) + (1 − λ) f1(y1, q2)]

+ [λ f1(q1, x2) + (1 − λ) f1(q1, y2)]

=λ[− f1(x1, q2) + f1(q1, x2)] + (1 − λ)[− f1(y1, q2) + f1(q1, y2)]

=λ f (x, q) + (1 − λ) f (y, q).

(ii) Similar to conclusion (i) above, the function q 7→ f (p, q) is convex on X (and of
course quasi-convex). Then, we have that the set T(p) :=

{
q ∈ X| f (p, q) ≤ m

}
is convex

for every m ∈ R and for any p ∈ X. And clearly, both q 7→ f1(q1, p2) and q 7→ − f1(p1, q2)
are lower semicontinuous on X; we have that T(p) is closed on X. Since T(p) is both closed
and convex, using Mazur’s lemma (see Page 6 in [16]), we obtain that T(p) is weakly closed.
Hence, the functional q 7→ f (p, q) is weakly lower semicontinuous on X for any fixed p
by definition.

(iii) It is obvious that f (p, p) = 0 for all p ∈ X.
(iv) By applying condition (S3), we have that the functional

q 7→ f (p0, q) = − f1(p10, q2) + f1(q1, p20)

is coercive on X and the set
{

q ∈ X| f (p0, q) ≤ 0
}

is bounded in X directly from Remark 1.
Hence, using Theorem 3, we have that there exists a q̃ ∈ X such that

f (p, q̃) ≤ 0, ∀p ∈ X.

Similar to Theorem 4, this q̃ is exactly the Nash equilibrium and

min
p1∈K1

f1(p1, q̃2) = f1(q̃1, q̃2) = max
p2∈K2

f1(q̃1, p2),

that is,
max
p2∈K2

min
p1∈K1

f1(p1, p2) = f1(q̃1, q̃2) = min
p1∈K1

max
p2∈K2

f1(p1, p2).

For the two-player zero-sum game, Shu-Zhong Shi and Kung-Chin Chang [9] proved
the following theorem.

Theorem 6 (Theorem 3.1 of [9]). Assume that the loss functional for the i-th player Pi is denoted as

fi : K1 × K2 =: X → R,

where Ki is not only nonempty and convex in some reflexive Banach space, but also weakly closed.
Since the payoffs are zero-sum, f1 + f2 = 0, that is, f2 = − f1. Assume the following:

(S1)’ For any fixed p2 ∈ K2, the functional p1 7→ f1(p1, p2) is quasi-convex and weakly lower
semicontinuous on K1.

(S2)’ For any fixed p1 ∈ K1, the functional p2 7→ f1(p1, p2) is quasi-concave and weakly upper
semicontinuous on K2.

(S3)’ There exists a p0 := (p10, p20) ∈ X such that the functional · 7→ f1(·, p20) is bounded below
and coercive on K1 and · 7→ − f1(p10, ·) is bounded below and coercive on K2.

Then, there is at least one Nash equilibrium in X and

min
p1∈K1

max
p2∈K2

f1(p1, p2) = max
p2∈K2

min
p1∈K1

f1(p1, p2).
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The proof is directly from the Lop-sided Maximum Theorem (Page 213 of [9]). It
only requires the quasi-convexity of p1 7→ f1(p1, p2) and p2 7→ − f1(p1, p2). But the cost
is that K1 and K2 must be weakly closed, and it is also necessary that · 7→ f1(·, p20) and
· 7→ − f1(p10, ·) have lower bounds. Due to the different proof methods, this theorem is
difficult to generalize to the case of multiple people like Theorem 4.

Shi and Chang also noticed a result due to Li [8]: a function f must be coercive if it
has a lower bound and satisfies the following Palais–Smale (P.S. in short) condition:

Definition 2 (Definition 5.3.1 in [7]). For a closed set X in a Banach space and a functional
f ∈ C1(X,R), f satisfies that

“∀{xn} ⊂ X satisfying that ∃M ∈ (0,+∞) s.t. | f (xn)| ≤ M and f ′(xn) → 0”

⇒ “∃x0 ∈ X and {xk} ⊆ {xn} s.t. xk → x0”.

Thus, the coerciveness aspects in Theorem 5 and Theorem 6 can both be replaced with
the P.S. condition.

Furthermore, Shi and Chang extended the P.S. condition to the G.P.S.’ condition (“G”
stands for “generalized”) and Li’s theorem for nonsmooth functionals; they then obtained
the following theorem.

Theorem 7 (Theorem 3.2 in [9]). Let X be a nonempty closed set in a Banach space. Assume that
f : X → R is lower semicontinuous and bounded below and satisfies the following G.P.S.’ condition:

“∀{xn} ⊂ X satisfying that ∃a ∈ R and b ∈ [0,+∞) s.t.

f (xn) → a and inf
γ∈TX(xn)

f ′+X(xn,
γ

∥γ∥ ) → b”

⇒ “∃x0 ∈ X and {xk} ⊆ {xn} s.t. xk → x0”.

Then, f is coercive. Here, the notation TX(·) is the contingent cone of a nonempty subset X of
a Banach space E; that is,

TX(·) := {γ ∈ E|∃tn ↘ 0 and γn → γ s.t. ·+tnγn ∈ X}.

And the notation f ′+X(·, γ) is the contingent derivative of f at ·, i.e.,

f ′+X(·, γ) := lim inf
γ′→γ

·+tγ′∈X
t↘0

f (·+ tγ′)− f (·)
t

.

In the same way, we can also replace the coerciveness in Theorem 5 with the G.P.S.
condition to make it more applicable.
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