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1. Introduction

A Banach algebra is an algebra A over C, with an identity e, which has a norm ∥ · ∥,
making it into a Banach space and satisfying ∥e∥ = 1, ∥ab∥ ≤ ∥a∥∥b∥, where a, b ∈ A. Let X
be a Banach space, then L(X), the algebra of all bounded linear operators on X, is a Banach
algebra with respect to the usual operator norm. The identity operator I is its unit elements.
L(X) is noncommutative when dim(X) > 1. An element a in a Banach algebra A has a
group inverse, provided that there exists b ∈ A such that a = aba, b = bab and ab = ba.
Such a b is unique if exists, denoted by a#, and is called the group inverse of a. In view of
(aa#)2 = (aa#a)a# = aa#, aa# is an idempotent of A. The symbol A# denotes the set of all
group invertible elements in A. For some examples related to the group inverse in Banach
algebras see [1]. As is well known, a square complex matrix A has a group inverse if and
only if rank(A) = rank(A2). The group invertibility in a ring is attractive. It has interesting
applications of resistance distances to the bipartiteness of graphs (see [2,3]). Recently, the
group inverse in a Banach algebra or a ring was extensively studied by many authors, e.g.,
[4–10]. In [11], Theorem 2.3, Liu et al. presented the group inverse of the combinations of
two group invertible complex matrices P and Q under the condition PQQ# = QPP#. In
Theorem 3.1 of [12], Zhou et al. investigated the group inverse of a + b under the condition
abb# = baa# in a Dedekind finite ring in which 2 is invertible. Group inverse is very useful,
for example, in solving singular differential and difference equations formulated over a
Banach space X [13]. In fact, since the structure of the Banach space is mainly considered,
we can regard the operators on Banach space X as an element of the Banach algebra L(X)
of all bounded linear operators on a complex Banach space X. The motivation of this paper
is to extend the preceding results to a general setting for Banach algebras.

In Section 2, we present the group inverse for the sum of two group invertible elements
in a Banach algebra. Let a, b ∈ A#. If abb# = λbaa#, then a + b ∈ A#. The representation of
its group inverse is also given. In Section 3, we apply our results and investigate the group
inverse of a block complex matrix

M =

(
A C
B D

)
where A ∈ Cm×m, B ∈ Cn×m, C ∈ Cm×n, D ∈ Cn×n. This problem is quite complicated,
and was extensively studied by many authors. As applications, the group invertibility of
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certain block complex matrices M is thereby obtained. Additionally, this paper extends the
results obtained in Theorem 2.3 of [11], and Theorem 3.1 of [12].

Throughout the paper, all Banach algebras are complex with an identity. Let A be the
Banach algebra. We use A−1 to denote the set of all invertible elements in A. λ always
stands for a complex number. Cm×n stand for the set of all complex m × n matrices.

2. Main Results

Let S = {e1, · · · , en} be a complete set of idempotents in A, i.e., eiej = 0(i ̸= j),

e2
i = ei(1 ≤ i ≤ n) and

n
∑

i=1
ei = 1. Then, we have a =

n
∑

i,j=1
eiaej. We write a as the

matrix form a = (aij)S, where aij = eiaej ∈ eiAej, and call it the Peirce matrix of a
relatively to S. We shall use this new technique with relative Peirce matrices and generalize
Theorem 2.3 of [11] and Theorem 3.1 of [12] as follows.

Theorem 1. Let a, b ∈ A#, λ ∈ C. If abb# = λbaa#; then, a + b ∈ A#. In this case,

(a + b)# =

{
(a + b)(a# + b#)2 , λ = −1,

1
1+λ [a

# + b# − a#bb#] + λ
1+λ [b

πa# + aπb#] , λ ̸= −1.

Proof. Let p = aa#. Write

b =

(
b1 b2
b3 b4

)
p
, bb# =

(
x1 x2
x3 x4

)
p
.

Then,

abb# =

(
ax1 ax2
0 0

)
p
, baa# =

(
b1 0
b3 0

)
p
.

Since abb# = λbaa#, we have

ax1 = λb1, x2 = 0, b3 = 0.

Then,

b =

(
b1 b2
0 b4

)
p
.

Moreover, we have

b# =

(
b#

1 z
0 b#

4

)
p

for some z ∈ A. This implies that

x1 = b1b#
1, x3 = 0, x4 = b4b#

4.

Therefore,

bb# =

(
b1b#

1 0
0 b4b#

4

)
p
.

Since b = (bb#)b = b(bb#), we see that

b2 = (b1b#
1)b2 = b2(b4b#

4).

Then,
b2 = (b1b#

1)b2(b4b#
4).
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Let e1 = b1b#
1, e2 = aa# − b1b#

1, e3 = b4b#
4, e4 = aπ − b4b#

4. Since a, e1 ∈ aa#Aaa#, we
write

a =

(
a1 a2
a3 a4

)
e1

∈ aa#Aaa#.

Then,
a1 = x1ax1 = λx1b1 = λb1b#

1b1 = λb1,
a3 = (aa# − e1)ax1 = ax1 − λb1 = 0.

Moreover, we see that
a1, a4 ∈ (aa#Aaa#)−1.

Since S = {e1, e2, e3, e4} is a complete set of idempotents in A, we have two Peirce
matrices of a and b relative to S:

a =


a1 a2 0 0
0 a4 0 0
0 0 0 0
0 0 0 0


S

,

b =


b1 0 b2 0
0 0 0 0
0 0 b4 0
0 0 0 0


S

.

Then,

a + b =


(1 + λ)b1 a2 b2 0

0 a4 0 0
0 0 b4 0
0 0 0 0


S

.

One directly checks that

a# =


a−1

1 −a−1
1 a2a−1

4 0 0
0 a−1

4 0 0
0 0 0 0
0 0 0 0


S

,

b# =


b−1

1 0 −b−1
1 b2b−1

4 0
0 0 0 0
0 0 b−1

4 0
0 0 0 0


S

.

Then,

aa# =


e1 0 0 0
0 e2 0 0
0 0 0 0
0 0 0 0


S

, bb# =


e1 0 0 0
0 0 0 0
0 0 e3 0
0 0 0 0


S

.

Case 1. λ = −1. Then,

a + b =


0 a2 b2 0
0 a4 0 0
0 0 b4 0
0 0 0 0


S

,
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(a + b)# =


0 a2(a4)

−2 b2(b4)
−2 0

0 (a4)
−1 0 0

0 0 (b4)
−1 0

0 0 0 0


S

.

Since a−1
1 + b−1

1 = a−1(b1 + a1)b−1
1 = a−1(1 + λ)b1b−1

1 = 0, we see that

a# + b# =


0 −a−1

1 a2a−1
4 −b−1

1 b2b−1
4 0

0 a−1
4 0 0

0 0 b−1
4 0

0 0 0 0


S

.

Therefore,

(a + b)(a# + b#)2

=


0 a2 b2 0
0 a4 0 0
0 0 b4 0
0 0 0 0


S


0 −a−1

1 a2a−1
4 −b−1

1 b2b−1
4 0

0 a−1
4 0 0

0 0 b−1
4 0

0 0 0 0


2

S

= (a + b)#,

as desired.
Case 2. λ ̸= −1. Then,

(a + b)#

=


(1 + λ)−1b−1

1 −(1 + λ)−1b−1
1 a2a−1

4 −(1 + λ)−1b−1
1 b2b−1

4 0
0 a−1

4 0 0
0 0 b−1

4 0
0 0 0 0


S

= (1 + λ)−1


b−1

1 −b−1
1 a2a−1

4 −b−1
1 b2b−1

4 0
0 0 0 0
0 0 0 0
0 0 0 0


S

+


0 0 0 0
0 a−1

4 0 0
0 0 0 0
0 0 0 0


S

+


0 0 0 0
0 0 0 0
0 0 b−1

4 0
0 0 0 0


S

.
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We compute that

a# + b# − a#bb#

=


a−1

1 −a−1
1 a2a−1

4 0 0
0 a−1

4 0 0
0 0 0 0
0 0 0 0


S

+


b−1

1 0 −b−1
1 b2b−1

4 0
0 0 0 0
0 0 b−1

4 0
0 0 0 0


S

−


a−1

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


S

=


b−1

1 −a−1
1 a2a−1

4 −b−1
1 b2b−1

4 0
0 a−1

4 0 0
0 0 b−1

4 0
0 0 0 0


S

,

bπa# =


0 0 0 0
0 a−1

4 0 0
0 0 0 0
0 0 0 0


S

, aπb# =


0 0 0 0
0 0 0 0
0 0 b−1

4 0
0 0 0 0


S

.

Therefore, we have

1
1 + λ

[a# + b# − a#bb#] +
λ

1 + λ
[bπa# + aπb#]

= (1 + λ)−1


b−1

1 −b−1
1 a2a−1

4 −b−1
1 b2b−1

4 0
0 0 0 0
0 0 0 0
0 0 0 0


S

+


0 0 0 0
0 a−1

4 0 0
0 0 0 0
0 0 0 0


S

+


0 0 0 0
0 0 0 0
0 0 b−1

4 0
0 0 0 0


S

.

Therefore, we have

(a + b)# =
1

1 + λ
[a# + b# − a#bb#] +

λ

1 + λ
[bπa# + aπb#],

as asserted.

Corollary 1. Let a, b ∈ A#, λ ∈ C. If aa#b = λbb#a, then a + b ∈ A#. In this case,

(a + b)# =

{
(a# + b#)2(a + b) , λ = −1,

1
1+λ [a

# + b# − aa#b#] + λ
1+λ [a

#bπ + b#aπ ] , λ ̸= −1.

Proof. Let (R, ∗) be the opposite ring of R. That is, it is a ring with the multiplication
a ∗ b = b · a. Applying Theorem 1 to the opposite ring (R, ∗) of R, we obtain the result.
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Corollary 2. Let a, b ∈ A be idempotents, and let λ ∈ C. If ab = λba, then a + b ∈ A#. In
this case,

(a + b)# =

 (a + b)3 , λ = −1,

a + b − 2 + λ

1 + λ
ab , λ ̸= −1.

Proof. Since a and b are idempotents, we have

aa#b = ab = λba = λbb#a.

Therefore, we establish the result by Corollary 2.2 [8].

Theorem 2. Let a, b ∈ A#, λ ∈ C. If abb# = λb(λ ̸= −1), then a + b ∈ A#. In this case,

(a + b)# = (1 + λ)−1b# + bπa#bπ

+ λ(1 + λ)−2b#aa#bπ − (1 + λ)−1b#abπa#bπ .

Proof. Let p = bb#. Write a =

(
a1 a2
a3 a4

)
p
, b =

(
b 0
0 0

)
p
. Then, a1 = bb#abb# =

λbb#b = λb and a3 = (1 − bb#)abb# = λ(1 − bb#)b = 0. Hence,

a =

(
λb a2
0 a4

)
p
, a + b =

(
(1 + λ)b a2

0 a4

)
p
.

Obviously, a4 = (1 − bb#)a(1 − bb#) = bπa. We easily check that a#
4 = bπa#bπ and

aπ
4 = 1 − bπabπa#bπ = 1 − bπaa#bπ . Moreover, we have

[(1 + λ)b]πa2aπ
4 = bπbb#a#

4

= bπbb#bπa#bπ

= 0.

According to Theorem 2.1 of [8], a + b ∈ A#. Further, we have

(a + b)# =

(
[(1 + λ)b]# z

0 a#
4

)
p
,

where z = [(1 + λ)−1b#]2a2aπ
4 − (1 + λ)−1b#a2a#

4. We compute that

a2aπ
4 = bb#abπ [1 − bπaa#bπ ]

= bb#abπaπbπ ]

= bb#abb#aπbπ ]

= λbaa#bπ .

Therefore, we have

(a + b)# = (1 + λ)−1b# + bπa#bπ

+ [(1 + λ)−1b#]2a2aπ
4 − (1 + λ)−1b#a2a#

4

= (1 + λ)−1b# + bπa#bπ

+ λ(1 + λ)−2b#aa#bπ − (1 + λ)−1b#abπa#bπ ,

as asserted.
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Corollary 3. Let a, b ∈ A#, λ ∈ C. If aa#b = λa(λ ̸= −1), then a + b ∈ A#. In this case,

(a + b)# = (1 + λ)−1a# + aπb#aπ

+ λ(1 + λ)−2aπbb#a# − (1 + λ)−1aπb#aπba#.

Proof. Let (A, ∗) be the opposite algebra of A. By applying Theorem 2 to elements b, a in
this opposite ring, we obtain the result.

We demonstrate Theorem 2 by the following numerical example.

Example 1. Let A =

(
−1 −1
1 −3

)
, B =

(
0 1
0 1

)
∈ C2×2. Then, A and B have group

inverses and ABB# = −2B. Since A# =

(
− 3

4
1
4

− 1
4 − 1

4

)
and B# =

(
0 1
0 1

)
. By using

Theorem 2, we obtain

(A + B)# = −B# + Bπ A#Bπ − 2B# AA#Bπ + B# ABπ A#Bπ

=

(
−1 0
− 1

2 − 1
2

)
.

3. Applications

The aim of this section is to present the group invertibility of the block matrix M by
using our main results. We are ready to prove the following.

Theorem 3. Let A and D have group inverses. If Aπ B = 0, DπC = 0, ACD# = λC and
BCD# = λD, then M has a group inverse.

Proof. Write M = P + Q, where

P =

(
A 0
B 0

)
, Q =

(
0 C
0 D

)
.

Since Aπ B = 0, DπC = 0, it follows by Theorem 3.4 of [4] that P and Q have group
inverses. Moreover, we obtain

Q# =

(
0 C(D#)2

0 D#

)
.

We easily check that

PQQ# =

(
A 0
B 0

)(
0 C
0 D

)(
0 C(D#)2

0 D#

)
=

(
A 0
B 0

)(
0 CD#

0 D#

)
=

(
0 ACD#

0 BCD#

)
= λ

(
0 C
0 D

)
= λQ.

In light of Theorem 2, M = P + Q has a group inverse, as desired.

Corollary 4. Let A and D have group inverses. If CDπ = 0, BAπ = 0, A#BD = λB and
A#BC = λA, then M has a group inverse.
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Proof. Applying Theorem 3 to the block matrix

MT =

(
DT BT

CT AT

)
,

we prove that MT has a group inverse. Therefore, we easily check that M = (MT)T has a
group inverse, as asserted.

Theorem 4. Let A and D have group inverses. If AπC = 0, Dπ B = 0, A# AB = λA and
A# AD = λC, then M has a group inverse.

Proof. Write M = P + Q, where

P =

(
A C
0 0

)
, Q =

(
0 0
B D

)
.

Since AπC = 0, Dπ B = 0, by using Theorem 3.4 of [4], we see that P and Q have group
inverses. Moreover, we obtain

P# =

(
A# (A#)2 A
0 0

)
.

Then, we have

PP#Q =

(
A C
0 0

)(
A# (A#)2 A
0 0

)(
0 0
B D

)
=

(
AA# A# A

0 0

)(
0 0
B D

)
=

(
A# AB A# AD

0 0

)
= λ

(
A C
0 0

)
= λP.

In light of Corollary 3, M = P + Q has a group inverse, as desired.

Corollary 5. Let A and D have group inverses. If BDπ = 0, CAπ = 0, CDD# = λD and
ADD# = λB, then M has a group inverse.

Proof. Applying Theorem 4 to the block matrix

MT =

(
DT BT

CT AT

)
,

we easily obtain the result as in Corollary 4.

It is convenient at this stage to prove the following.

Theorem 5. Let A ∈ Cm×m, D ∈ Cn×n be idempotents and rank(B) = rank(C) = rank(BC) =
rank(CB). If AD = λAC, A (I − CB) = 0 and DBAπC = 0, then M has a group inverse.
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Proof. Since r(B) = r(C) = r(BC) = r(CB), it follows by Lemma 2.3 of [14] that BC and

CB have group inverses. Let K =

(
0 C
B 0

)
. Then, K2 =

(
CB 0
0 BC

)
. By hypothesis,

we have

rank(K2) = rank(CB) + rank(BC)

= rank(C) + rank(B)

= rank(K).

Then, K has a group inverse.

Write Q :=
(

0 AπC
Dπ B 0

)
. Then, we have

Q =

(
Aπ 0
0 Dπ

)(
0 C
B 0

)
.

By hypothesis, we see that

Q =

(
0 C
B 0

)(
Aπ 0
0 Dπ

)
.

Therefore, N has a group inverse, and

Q# =

(
Aπ 0
0 Dπ

)(
0 C(BC)#

B(CB)# 0

)
.

Let P =

(
A AC

DB D

)
. Then, M = P+Q. Clearly, A# A(DB) = ADB = λA, A# AD =

AD = λAC, Aπ(AC) = 0 and Dπ(DB) = 0. In light of Theorem 4, P has a group inverse.
Since ACDπ B = 0, DBAπC = 0, we check that

PQ =

(
A AC

DB D

)(
0 AπC

Dπ B 0

)
= 0.

According to Theorem 2.1 of [4], M has a group inverse, as asserted.

Corollary 6. Let A ∈ Cm×m, D ∈ Cn×n be idempotents and rank(B) = rank(C) = rank(BC) =
rank(CB). If AD = λBD, (I − CB)D = 0 and BDπCA = 0, then M has a group inverse.

Proof. Applying Theorem 5 to the block matrix

MT =

(
DT BT

CT AT

)
,

we complete the proof as in Corollary 5.
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