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Abstract: In this study, we investigate the tangent bundle TM of an n-dimensional (pseudo-)Riemannian
manifold M equipped with a Ricci-quarter symmetric metric connection ∇̃. Our primary goal is to
establish the necessary and sufficient conditions for TM to exhibit characteristics of various solitons,
specifically conformal Yamabe solitons, gradient conformal Yamabe solitons, conformal Ricci solitons,
and gradient conformal Ricci solitons. We determine that for TM to be a conformal Yamabe soliton,
the potential vector field must satisfy certain conditions when lifted vertically, horizontally, or
completely from M to TM, alongside specific constraints on the conformal factor λ and the geometric
properties of M. For gradient conformal Yamabe solitons, the conditions involve λ and the Hessian
of the potential function. Similarly, for TM to be a conformal Ricci soliton, we identify conditions
involving the lift of the potential vector field, the value of λ, and the curvature properties of M. For
gradient conformal Ricci solitons, the criteria include the Hessian of the potential function and the
Ricci curvature of M. These results enhance the understanding of the geometric properties of tangent
bundles under Ricci-quarter symmetric metric connections and provide insights into their transition
into various soliton states, contributing significantly to the field of differential geometry.

Keywords: complete lift metric; Ricci-quarter symmetric metric connection; tangent bundle;
conformal Yamabe soliton; gradient conformal Yamabe soliton; conformal Ricci soliton; gradient
conformal Ricci soliton

MSC: 53C07; 53A45

1. Introduction

Golab [1] introduced the notion of a quarter-symmetric connection, defined by a linear
connection ∇ on a differentiable manifold (M, g) of dimension n. The torsion tensor T∇

associated with this connection must satisfy a certain criterion:

T∇(ξ1, ξ2) = η(ξ2)ϕξ1 − η(ξ1)ϕξ2. (1)

In this context, η represents a non-zero 1-form, ϕ denotes a (1, 1)− tensor, and ξi (i = 1, 2)
represent vector fields. The most comprehensive form of quarter-symmetric metric connec-
tions on Riemannian, Hermitian and Kaehlerian manifolds was introduced by Yano and
Imai [2]. In particular, when the (1, 1)-tensor ϕ coincides with the identity tensor (ϕ = id),
the quarter-symmetric connection simplifies to a semi-symmetric connection. Friedmann
and Schouten [3] were the pioneers in introducing the notion of a semi-symmetric linear
connection on a differentiable manifold. The form of the semi-symmetric metric connec-
tion that is currently known was first proposed by Yano [4], who employed Hayden’s
method [5]. Consequently, one can perceive a quarter-symmetric connection as an expan-
sion of the notion of a semi-symmetric connection. Fundamentally, a quarter-symmetric
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metric connection aligns with a Hayden connection, distinguished by its torsion tensor
properties (1).

When the tensor ϕ is specified as a (1, 1) type Ricci tensor, expressed as

g(ϕξ1, ξ2) = R(ξ1, ξ2),

the resulting quarter-symmetric connection is termed a Ricci quarter-symmetric connection.
Such a connection, denoted as ∇, on a Riemannian manifold is classified as a Ricci quarter-
symmetric metric connection (abbreviated as RQSMC) if it adheres to the condition:

(∇ξ1 g)(ξ2, ξ3) = 0

for all vector fields ξ1, ξ2, ξ3 on M. Kamilya and De introduced the concept of a RQSMC
on a Riemannian manifold and determined the required conditions for the symmetry of
the Ricci tensor of a RQSMC [6].

The Ricci flow transforms the metric g (i.e., the shape of the manifold M) into a
metric of appropriate constant curvature (i.e., spherical) proportional to the Ricci tensor.
In differential geometry, self-similar solutions of the Ricci flow are known as Ricci soliton.
On a Riemannian manifold (M, g), a smooth vector field V is considered to define a Ricci
soliton if it satisfies the equation:

1
2

LV g + Ric = λg,

where LV g denotes the Lie derivative of the Riemannian metric g according to V and λ is
a constant. A Ricci soliton is represented by the triple (g, V, λ), with its classification as
either shrinking, steady, or expanding whether λ > 0, λ = 0, or λ < 0, respectively.

The Yamabe flow, introduced by Hamilton [7] shortly after the Ricci flow addresses the
Yamabe problem—a quest to discover a metric on a given compact Riemannian manifold
(M, g) of dimension n > 3 that preserves the original metric g while upholding a constant
scalar curvature. An intriguing aspect of this flow is the concept of a Yamabe soliton,
elucidated by Barbosa and Ribeiro [8], which represents a solution showcasing self-similar
behavior on the manifold (M, g).

A Yamabe soliton, defined on a Riemannian or pseudo-Riemannian manifold (M, g),
is characterized by the equation

1
2

LV g = (r − λ)g,

where r signifies the scalar curvature of (M, g). The soliton is categorized as shrinking,
steady, or expanding based on whether λ > 0, λ = 0, or λ < 0, respectively.

In 2005, Fischer [9] introduced a novel concept termed conformal Ricci flow, inspired by
Hamilton’s pioneering work on Ricci and Yamabe flows [7]. This approach, a modification
of the traditional Ricci flow equation, replaces the unit volume restriction with a scalar
curvature constraint. The resulting equations, known as the conformal Ricci flow equations,
emerge from a blend of conformal flow and Ricci flow equations in terms of vector fields.

These equations, expressed as

∂g
∂t

+ 2
(

Ric(g) +
1
n

g
)
= −ρg with r(g) = 1,

where Ric denotes the Ricci tensor of M, r denotes the scalar curvature of the metric g
and ρ is a scalar non-dynamical field, exhibit a notable resemblance to the Navier–Stokes
equations from fluid mechanics:

∂υ

∂t
+∇υυ + υ∆υ = −gradρ divυ = 0
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is analogous to the Navier–Stokes equations in fluid mechanics. In this context, the time-
dependent scalar field ρ, termed conformal pressure, plays a pivotal role, akin to real
physical pressure, in ensuring the incompressibility of the fluid. Similarly, the conformal
pressure serves as a Lagrange multiplier, conformally deforming the metric flow in order
to maintain the scalar curvature constraint.

In their initial research contribution, Gezer and Karakas [10] introduced the innovative
concept of an RQSMC ∇̃ on the tangent bundle TM, in conjunction with the complete
lift metric Cg defined on the Riemannian manifold M. This seminal work delved into an
in-depth exploration of various curvature tensors and their associated properties under
the framework of ∇̃, accompanied by the introduction of the mean connection to enhance
the understanding of the geometric structures involved. The central focus of their research
was the clarification of the fundamental conditions that govern the transformation of the
tangent bundle TM into a Ricci soliton, gradient Ricci soliton, and the manifestation of
local conformal flatness. This elucidated the manifold’s dynamic behavior in response to
the RQSMC ∇̃.

Subsequently, in a follow-up research endeavor, Gezer and Karakas [11] undertook
a classification of distinct special vector fields on TM based on the RQSMC ∇̃. This
encompassed a diverse range of vector fields, including incompressible vector fields,
harmonic vector fields, concurrent vector fields, conformal vector fields, projective vector
fields and φ̃(Ric) vector fields on TM. This comprehensive categorization provided the
foundation for the delineation of the intricate interactions and behaviors of these vector
fields within the tangent bundle structure. Furthermore, their investigation extended to
defining the criteria under which the tangent bundle TM can function as a Riemannian
soliton and a generalized Ricci–Yamabe soliton under the influence of the connection ∇̃.
This unlocked further insights into the manifold’s soliton dynamics.

The overarching objective of their collective body of research work is to establish the
fundamental conditions that dictate the transition of the tangent bundle TM into a diverse
array of solitons, including the manifestation of a conformal Yamabe soliton, gradient
conformal Yamabe soliton, conformal Ricci soliton, and gradient conformal Ricci soliton
relative to the RQSMC ∇̃. This comprehensive exploration not only expands the existing
knowledge base concerning the intricate geometrical properties of the tangent bundle TM
but also provides insight into the transition of the tangent bundle into a diverse array of
solitons, including the manifestation of a conformal Yamabe soliton, gradient conformal
Yamabe soliton, conformal Ricci soliton, and gradient conformal Ricci soliton relative to
the RQSMC ∇̃. While both this paper and the paper [11] deal with soliton theory and
vector fields on TM under a Ricci quarter-symmetric metric connection ∇̃, they differ
in their primary focus: This paper focuses on conditions for specific types of solitons
(conformal Yamabe solitons, gradient conformal Yamabe solitons, conformal Ricci solitons,
and gradient conformal Ricci solitons) under ∇̃, while the paper [11] focuses primarily on
specific types of vector fields (incompressible, harmonic, etc.) and establish conditions for
solitons such as Riemannian solitons and generalized Ricci–Yamabe solitons within this
framework. The motivation behind considering the article is to contribute new insights
into soliton theory under Ricci quarter-symmetric metric connections, providing a rigorous
framework to explore and understand the emergence and properties of solitons on tangent
bundles TM of (pseudo-)Riemannian manifolds M. By addressing these gaps, the article
aimed to advance theoretical knowledge and potentially open avenues for future research
and applications in mathematical and physical sciences.

2. Preliminaries
2.1. The Tangent Bundle

Consider an n-dimensional differentiable manifold M. The tangent bundle TM of the
manifold M is defined as:

TM = ∪
P∈M

TP M
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where TP M denotes the tangent space of M at P. Let us choose a local coordinate system
{U, xh} within M, and use Cartesian coordinates (yh) in each tangent space TP M at a point
P ∈ M. These Cartesian coordinates are established using the natural basis

{
∂

∂xh |P
}

. With

this setup, we can define a local coordinate system in TM denoted as {π−1(U), xh, yh}.
Here, π represents the natural projection function defined as: π : TM 7−→ M, and P stands
for an arbitrary point belonging to U. Moreover, the coordinate system (xh, yh) is referred
to as the induced coordinates on π−1(U), which comes from the original coordinate system
{U, xh} within M.

Now, consider a vector field ξ defined within the open subset U of M. This can be
locally expressed as ξ = ξh ∂

∂xh . Given that ∇ is a torsion-free linear connection on M, we
are able to provide the following geometric objects without delay.

1. The vertical lift Vξ, the horizontal lift Hξ and the complete lift Cξ are, respectively,
as follows:

Vξ = ξh∂h, Hξ = ξh∂h − ysΓh
skξk∂h and Cξ = ξh∂h + ys∂sξh∂h.

2. The adapted frame
{

Eβ

}
=

{
Ej, Ej

}
on the tangent bundle is given by:

Ej = ∂j − ysΓh
sj∂h, Ej = ∂j.

The expressions of the lifts of a vector field ξ with regards to the adapted frame
immediately follow:

Vξ = ξ jEj, Hξ = ξ jEj, Cξ = ξ jEj + ys∇sξ jEj. (2)

3. The following is the complete lift metric Cg with respect to the adapted frame:

Cgαβ =

(
0 gij

gij 0

)
.

For the fundamental concepts and details, we refer to [12,13].

2.2. The RQSMC on
(
TM,C g

)
The RQSMC ∇̃ functions within the tangent bundle TM of a (pseudo-)Riemannian

manifold (M, g), where it is defined with respect to the complete lift metric Cg. This metric,
derived from the underlying metric g on M, serves as the basis for establishing geometric
relationships and structures within the tangent space. In our previous investigation detailed
in [10], we delve into the intricacies of the RQSMC ∇̃ and the associated curvature tensors.
By representing the components of these entities as Γk

ij and R k
sij , respectively, we elucidate

the behavior of the RQSMC ∇̃ and its associated curvature tensors in a structured manner.

1. The RQSMC ∇̃ on TM:
∇̃Ei Ej = Γk

ijEk + {ysR k
sij + yjR k

i − ykRij}Ek,
∇̃Ei Ej = Γk

ijEk,
∇̃Ei

Ej = 0, ∇̃Ei
Ej = 0
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2. The curvature tensor R̃ of the RQSMC ∇̃:

R̃(Ei, Ej)Ek = R l
ijk El + {ys∇sR l

ijk }El ,

R̃(Ei, Ej)Ek = R l
ijk El ,

R̃(Ei, Ej)Ek = {R l
ijk + Rikδl

j − gjkR l
i }El ,

R̃(Ei, Ej)Ek = {R l
ijk + gikR l

j − Rjkδl
i}El ,

R̃(Ei, Ej)Ek = 0, R̃(Ei, Ej)Ek = 0,

R̃(Ei, Ej)Ek = 0, R̃(Ei, Ej)Ek = 0

with respect to the adapted frame
{

Eβ

}
. The Ricci tensor K̃ of the RQSMC ∇̃:

K̃jk = (3 − n)Rjk, K̃jk = 0,

K̃ j k = 0, K̃j k = 0. (3)

The scalar curvature r̃ of the RQSMC ∇̃ in relation to Cg is established as zero.

A vector field Ṽ = vhEh + vhEh on TM within the adapted frame
{

Eβ

}
is identified as

a fiber-preserving vector field if the components vh solely depend on the variables
(

xh
)

.

The Lie derivative of the fiber-preserving vector field Ṽ with respect to the RQSMC ∇̃ is
expressed to be used in forthcoming proofs [11]:

(i) LṼ g̃ij =
(
∇ivh

)
ghj +

(
Ejv

h
)

ghi

(ii) LṼ g̃ij =
(

Eiv
h
)

ghj +
(
∇jvh

)
ghi

(iii)
LṼ g̃ij =

[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi.

(4)

3. Conformal Yamabe Soliton Structure on (T M, Cg) in Relation to RQSMC ∇̃
In recent years, geometric flows and associated solitons have attracted the attention

of many geometers. In 2021, Roy, Dey and Bhattacharyya [14] developed the idea of
Conformal Yamabe solitons, defined on an n-dimensional Riemannian manifold as follows:

LV g +

[
2λ − 2r − (ρ +

2
n
)

]
g = 0. (5)

The classification of a conformal Yamabe soliton into shrinking, steady, or expanding
categories is determined by the value of the constant λ. Specifically, a soliton is considered
shrinking if λ > 0, steady if λ = 0, and expanding if λ < 0. In this context, the scalar
curvature r, a scalar non-dynamical field ρ (which is time-dependent), and the Lie derivative
LV g of the metric g along the vector field V are all key components.

Theorem 1. When TM is regarded as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃, for the triplet (Cg, Ṽ, λ) to be a conformal Yamabe
soliton, it is necessary and sufficient that the specified conditions need to be satisfied:

(i) VV = (va, vā) = (0, va),
(ii) λ = 1

2 (ρ + 1
n ),

(iii) V is a Killing vector field on M.

In here, the potential vector field is constructed as the vertical lift VV of a vector field V defined on
M to the tangent bundle TM.
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Proof. Starting from the relation (5) we write

LṼ g̃εβ + [2λ − 2r̃ − (ρ +
2

2n
)]g̃εβ = 0. (6)

Consider (ε, β) = (i, j) from the previous equation:

LṼ g̃ij + [2λ − (ρ +
2

2n
)]g̃ij = 0.

Based on the formulation of LṼ g̃ in (4), we have(
∇ivh

)
ghj +

(
Ejv

h
)

ghi + [2λ − (ρ +
1
n
)]gij = 0.

Consider the potential vector field Ṽ as the vertical lift VV = (va, vā) = (0, va) of a vector
field V on M, then

λ =
1
2
(ρ +

1
n
).

When we consider (ε, β) = (i, j) in (6), we obtain

LṼ g̃ij + [2λ − 2r̃ − (ρ +
2

2n
)]g̃ij = 0.

From (4) we have [
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi = 0

and if we choose the potential vector field Ṽ as the vertical lift VV = (va, vā) = (0, va) of a
vector field V on M, then

(∇ivh)ghj + (∇jvh)ghi = 0.

It follows
LV gij = 0.

This shows V is a Killing vector field on M with respect to the Levi-Civita connection.

A (pseudo-)Riemannian manifold (M, g) is called an Einstein manifold if the relation

Kjk = λgjk

holds with a scalar function λ, where K is the Ricci tensor of (M, g).

Theorem 2. Consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃. For the triplet (Cg, Ṽ, λ) to be a conformal Yamabe
soliton, it is necessary and sufficient that the specified conditions need to be satisfied:

(i) HV = (va, vā) = (va, 0),

(ii) λ = 1
2 (ρ + 1

n )−
∇hvh

2n ,
(iii) Rsa =

r
2 gsa, i.e., M is an Einstein manifold,

where the potential vector field is formed as the horizontal lift HV of a vector field V defined on M
to the tangent bundle TM.

Proof. Referring to the relation (5), the following equations are derived for a manifold M
in connection with a potential vector field V.
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The equation

LṼ g̃ij + [2λ − 2r̃ − (ρ +
2

2n
)]g̃ij = 0

is obtained by considering specific values for (ε, β) = (i, j). Using the expression of
LṼ g̃ in (4), the equation(

∇ivh
)

ghj +
(

Ejv
h
)

ghi + [2λ − 2r̃ − (ρ +
1
n
)]gij = 0

is obtained.
For the potential vector field Ṽ as the horizontal lift HV = (va, vā) = (va, 0) with r̃ = 0,

the resulting equation is (
∇ivh

)
ghj + [2λ − (ρ +

1
n
)]gij = 0.

Contracting both sides of the previous equation with gij yields

∇hvh + [2λ − (ρ +
1
n
)]n = 0

and

λ =
1
2
(ρ +

1
n
)− ∇hvh

2n
.

By considering the indices (ε, β) = (i, j), the equation

LṼ g̃ij + [2λ − 2r̃ − (ρ +
2

2n
)]g̃ij = 0

is obtained. Referring to (4), we have[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi = 0.

If we consider the potential vector field Ṽ as the horizontal lift HV = (va, vā) = (va, 0), then[(
ysR h

sia + yaRh
i − yhRia

)
va
]

ghj

+
[(

ysR h
sja + yaRh

j − yhRja

)
va
]

ghi = 0.

By contracting both sides of the last equation with gij, we have

Rsa =
r
2

gsa.

This shows M is an Einstein manifold. Here, r is the scalar curvature of M.

Theorem 3. When TM is regarded as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃, for the triplet (Cg, Ṽ, λ) to be a conformal Yamabe
soliton, it is necessary and sufficient that the specified conditions need to be satisfied:

(i)CV = (va, vā) = (va, ys∇sva),

(ii) λ = 1
2 (ρ + 1

n )−
∇hvh

n ,
(iii)∇h∇svh − (2Rsa − gsar)va = 0,

where the potential vector field is generated as the complete lift CV of a vector field V defined on M
to the tangent bundle TM.



Mathematics 2024, 12, 2101 8 of 16

Proof. Utilizing the concept from relation (5), we represent the equation as follows:

LṼ g̃εβ + [2λ − 2r̃ − (ρ +
2

2n
)]g̃εβ = 0. (7)

When considering (ε, β) = (i, j), this equation simplifies to:

LṼ g̃ij + [2λ − 2r̃ − (ρ +
2

2n
)]g̃ij = 0.

Expanding using the expression of LṼ g̃ in (4), we obtain(
∇ivh

)
ghj +

(
Ejv

h
)

ghi + [2λ − (ρ +
1
n
)]gij = 0.

By considering the potential vector field Ṽ as the complete lift CV = (va, vā) =
(va, ys∇sva) of a vector field V on M, the equation simplifies to:(

∇ivh
)

ghj + [∂j(y
s∇svh)]ghi + [2λ − (ρ +

1
n
)]gij = 0.

Further simplification yields:(
∇ivh

)
ghj + (∇jvh)ghi +

[
2λ − (ρ +

1
n
)

]
gij = 0.

Contracting both sides of the last equation with gij, we obtain:

2∇hvh +

[
2λ − (ρ +

1
n
)

]
n = 0,

leading to the relationship:

λ =
1
2
(ρ +

1
n
)− ∇hvh

n
.

Upon analyzing (ε, β) = (i, j) in (7), we obtain

LṼ g̃ij + [2λ − 2r̃ − (ρ +
2

2n
)]g̃ij = 0.

Referring back to (4), we express the equation as:[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi = 0.

Opting for the potential vector field Ṽ as the complete lift CV = (va, vā) = (va, ys∇sva), then

[
(
∂i − ysΓ m

si ∂m
)(

yt∇tva)+ (
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia (y
s∇sva)]ghj

+[
(

∂j − ysΓ m
sj ∂m

)(
yt∇tva)+ (

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja (y
s∇sva)]ghi

= 0.

This simplifies to: [
ys∇i∇svh +

(
ysR h

sia + yaRh
i − yhRia

)
va
]

ghj

+
[
ys∇j∇svh +

(
ysR h

sja + yaRh
j − yhRja

)
va
]

ghi = 0.
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Contracting both sides with gij gives

2ys
[
∇h∇svh − (2Rsa − gsar)va

]
= 0,

from which we conclude:

∇h∇svh − (2Rsa − gsar)va = 0.

Here, r stands for the scalar curvature of M. This completes the proof.

4. Gradient Conformal Yamabe Soliton Structure on (TM, Cg) with Respect to RQSMC ∇̃
A Conformal Yamabe soliton (g, V, λ) is labeled as a gradient Conformal Yamabe

soliton when V is equal to the gradient of a smooth function f , denoted as ∇ f . In this
context, the smooth function f is denoted as the potential function, and the Equation (5) is
expressed as:

Hess f +
[

2λ − 2r − (ρ +
2
n
)

]
g = 0, (8)

where ∇ f represents the gradient of f and Hess represents the Hessian. Typically, the
Hessian of any function f on M, in relation to the connection ∇, is typically expressed as:

(Hess∇ f )(X, Y) = XY f − (∇XY) f ,

for any vector fields X and Y on M.

Lemma 1. The Hessian of the vertical lift of a smooth function f on a Riemannian manifold (M, g)
can be described in terms of the RQSMC ∇̃ on the tangent bundle (TM,C g) as follows:

(9)

Hess∇̃
V f (HX,H Y) = HX HY V f − (∇̃H X

HY)V f

Hess∇̃
V f (Ei, Ej) = Ei Ej

V f − (∇̃Ei Ej)
V f

= (∂i − ysΓh
si∂h)(∂j − ymΓl

mj∂l) f

−[Γh
ijEh + (ysR h

sij + yjRh
i − yhRij)Eh]

V f

= (∂i − ysΓh
si∂h)(∂j f )− Γh

ij(∂h − ysΓm
sh∂m) f

= ∂i∂j f − Γh
ij∂h f

= ∇i∇j f ,

Hess∇̃
V f (V X,V Y) = V X VY V f − (∇̃V X

VY)V f (10)

Hess∇̃
V f (Ei, Ej) = Ei Ej

V f − (∇̃Ei
Ej)

V f

= 0,

Hess∇̃
V f (HX,V Y) = HX VY V f − (∇̃H X

VY)V f (11)

Hess∇̃
V f (Ei, Ej) = Ei Ej

V f − (∇̃Ei Ej)
V f

= −(Γh
ijEh + Γh

ijEh)
V f

= 0,
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Hess∇̃
V f (V X,H Y) = V X HY V f − (∇̃V X

HY)V f (12)

Hess∇̃
V f (Ei, Ej) = Ei Ej

V f − (∇̃Ei
Ej)

V f

= ∂i(∂j − ysΓh
sj∂h)

V f

= ∂i∂j f

= 0.

Now, we focus on the gradient Conformal Yamabe soliton.

Theorem 4. Consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃. The triplet (Cg, Ṽ, λ) forms a conformal gradient
Yamabe soliton if and only if the following conditions are met:

(i) λ = 1
2 (ρ + 1

n ),
(ii) ∇i∇j f = 0.

Proof. With help of the relation (8), we can represent the equation as:

(Hess f )εβ +

[
2λ − 2r̃ − (ρ +

2
2n

)

]
g̃εβ = 0. (13)

Setting (ε, β) = (i, j), we derive

(Hess f )ij + [2λ − 2r̃ − (ρ +
1
n
)]g̃ij = 0

from the previous equation. Referring to the expression for Hess f in (11), we establish:

[2λ − (ρ +
1
n
)]gij = 0.

Contracting both sides with gij yields the relationship

λ =
1
2
(ρ +

1
n
).

Considering (ε, β) = (i, j) in (13), we write

(Hess f )ij + [2λ − 2r̃ − (ρ +
1
n
)]g̃ij = 0.

Finally, the conclusion from (9) is that:

∇i∇j f = 0.

5. Conformal Ricci Soliton Structure on (T M, Cg) in Relation to RQSMC ∇̃
In the context of an n-dimensional Riemannian manifold M, a conformal Ricci soliton

is characterized by the equation:

LV g + 2Ric =
[

2λ − (ρ +
2
n
)

]
g = 0, (14)

where Ric denotes the Ricci tensor, λ represents a constant, and ρ is a scalar non-dynamical
field (time-dependent scalar field) [15].
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Theorem 5. Consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃. The triplet (Cg, Ṽ, λ) constitutes a conformal Ricci
soliton if and only if the following conditions are met:

(i) VV = (va, vā) = (0, va),
(ii) λ = 1

2 (ρ + 1
n ),

(iii) For n ̸= 3, 1
2(3−n) LV gij + Rij = 0.

Here, the potential vector field is obtained by vertically lifting V, a vector field defined on M, to the
tangent bundle TM as VV.

Proof. We commence by considering relation (14), which is represented as:

LṼ g̃εβ + 2K̃
εβ
+ [2λ − (ρ +

2
2n

)]g̃εβ = 0. (15)

Substituting (ε, β) = (i, j) into this equation, we derive:

LṼ g̃ij + 2K̃
ij
+ [2λ − (ρ +

2
2n

)]g̃ij = 0.

Using the expression for LṼ g̃ in (4), we have:(
∇ivh

)
ghj +

(
Ejv

h
)

ghi + [2λ − (ρ +
1
n
)]gij = 0.

Choosing the potential vector field Ṽ as the vertical lift VV = (va, vā) = (0, va) of a
vector field V on M, we simplify to:

[2λ − (ρ +
1
n
)]gij = 0.

Contracting with gij on both sides of the last equation we have

λ =
1
2
(ρ +

1
n
).

Next, we examine (ε, β) = (i, j) in (15), which yields:

LṼ g̃ij + 2K̃ij + [2λ − (ρ +
2

2n
)]g̃ij = 0

Utilizing (4), this can be expressed as:[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi

+2(3 − n)Rij = 0

and also step by step with further simplifications:

[Eivh + Γ h
ia va]ghj + [Ejvh + Γ h

ja va]ghi + 2(3 − n)Rij = 0

[(∂i − ysΓ m
si ∂m)vh + Γ h

ia va]ghj + [(∂j − ysΓ m
sj ∂m)vh + Γ h

ja va]ghi

+2(3 − n)Rij = 0

[(∂ivh + Γ h
ia va]ghj + [(∂jvh + Γ h

ja va]ghi

+2(3 − n)Rij = 0



Mathematics 2024, 12, 2101 12 of 16

(∇ivh)ghj + (∇jvh)ghi + 2(3 − n)Rij = 0

and
Lvgij + 2(3 − n)Rij = 0.

This expression leads to:

1
2(3 − n)

LV gij + Rij = 0.

Theorem 6. Consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃. The triplet (Cg, Ṽ, λ) constitutes a conformal Ricci
soliton if and only if the following conditions hold:

(i) HV = (va, vā) = (va, 0),

(ii) λ = 1
2 (ρ + 1

n )−
∇hvh

2n ,
(iii) r = 0 and M is Ricci flat,

where the potential vector field is determined by horizontally lifting the vector field V from the base
manifold M to the tangent bundle TM.

Proof. As defined in (14), we begin with the equation:

LṼ g̃εβ + 2K̃
εβ
+ [2λ − (ρ +

2
2n

)]g̃εβ = 0. (16)

When applied to (ε, β) = (i, j), the equation simplifies to:

LṼ g̃ij + 2K̃
ij
+ [2λ − (ρ +

2
2n

)]g̃ij = 0.

Using the expression of LṼ g̃ in (4), we derive:(
∇ivh

)
ghj +

(
Ejv

h
)

ghi + [2λ − (ρ +
1
n
)]gij = 0.

Assuming Ṽ as the horizontal lift vector field HV = (va, vā) = (va, 0), we can express:(
∇ivh

)
ghj + [2λ − (ρ +

1
n
)]gij = 0.

Upon contracting with gij, we determine:

∇hvh + [2λ − (ρ +
1
n
)]n = 0

leading to:

λ =
1
2
(ρ +

1
n
)− ∇hvh

2n
.

For (ε, β) = (i, j) in (16), the equation simplifies to:

LṼ g̃ij + 2K̃ij + [2λ − (ρ +
2

2n
)]g̃ij = 0.
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From (4), the expression transforms into:[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi

+2(3 − n)Rij = 0[(
ysR h

sia + yaRh
i − yhRia

)
va
]

ghj +
[(

ysR h
sja + yaRh

j − yhRja

)
va
]

ghi

+2(3 − n)Rij = 0.

Contracting with gij, we obtain:

[−2ys(2Rsa − gsar)va] + 2(3 − n)r = 0.

This leads to the conclusion:

Rsa =
r
2

gsa and (3 − n)r = 0,

implying that r = 0, signifying the Ricci flatness of M with r denoting the scalar curvature
of M.

Theorem 7. If we consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃, the triplet (Cg, Ṽ, λ) constitutes a conformal Ricci
soliton if and only if the following conditions are met:

(i)CV = (va, vā) = (va, ys∇sva),

(ii) λ = 1
2 (ρ + 1

n )−
∇hvh

n ,
(iii) r = 0,

(iv) ∇h∇svh − 2Rsava = 0,

where the potential vector field is formed by completely lifting V, a vector field defined on M, to the
tangent bundle TM as CV.

Proof. Based on the relation (14), we write

LṼ g̃εβ + 2K̃
εβ
+ [2λ − (ρ +

2
2n

)]g̃εβ = 0. (17)

If we consider (ε, β) = (i, j), from the previous equation,

LṼ g̃ij + 2K̃
ij
+ [2λ − (ρ +

2
2n

)]g̃ij = 0

and from the expression of LṼ g̃ in (4) we have(
∇ivh

)
ghj +

(
Ejv

h
)

ghi + [2λ − (ρ +
1
n
)]gij = 0.

Taking CV = (va, vā) = (va, ys∇sva), we obtain(
∇ivh

)
ghj + [∂j(y

s∇svh)]ghi + [2λ − (ρ +
1
n
)]gij = 0

and (
∇ivh

)
ghj + (∇jvh)ghi + [2λ − (ρ +

1
n
)]gij = 0.
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Contracting with gij on both sides of the last equation we have

2∇hvh + [2λ − (ρ +
1
n
)]n = 0

and it follows

λ =
1
2
(ρ +

1
n
)− ∇hvh

n
.

Now we consider (ε, β) = (i, j) in (17), we obtain

LṼ g̃ij + 2K̃ij + [2λ − (ρ +
2

2n
)]g̃ij = 0

and from (4) we have[
Eivh +

(
ysR h

sia + yaRh
i − yhRia

)
va + Γ h

ia va
]

ghj

+
[

Ejvh +
(

ysR h
sja + yaRh

j − yhRja

)
va + Γ h

ja va
]

ghi

+2(3 − n)Rij = 0

and it follows [
ys∇i∇svh +

(
ysR h

sia + yaRh
i − yhRia

)
va
]

ghj

+
[
ys∇j∇svh +

(
ysR h

sja + yaRh
j − yhRja

)
va
]

ghi

+2(3 − n)Rij = 0.

Contracting with gij on both sides of the last equation we have

2ys
[
∇h∇svh − (2Rsa − gsar)va

]
+ 2(3 − n)r = 0

and it follows
∇h∇svh − (2Rsa − gsar)va = 0 and (3 − n)r = 0.

This shows r = 0. Therefore, we obtain ∇h∇svh − 2Rsava = 0. Here, r is the scalar
curvature of M.

6. Gradient Conformal Ricci Soliton Structure on (T M, Cg) in Relation to RQSMC ∇̃
A gradient conformal Ricci soliton, defined by (g,∇ f , λ) with V = ∇ f , involves a

smooth function f known as the potential function. The Equation (14) takes the form:

Hess f + 2Ric =
[

2λ − (ρ +
2
n
)

]
g = 0. (18)

In this context, ∇ f represents the gradient of f , and Hess denotes the Hessian. The Hessian
of any function f on M, with respect to the connection ∇, is typically denoted as:

(Hess∇ f )(X, Y) = XY f − (∇XY) f ,

for any vector fields X and Y on M.

Theorem 8. If we consider TM as the tangent bundle of an n-dimensional (pseudo-)Riemannian
manifold M equipped with the RQSMC ∇̃. The conformal gradient Ricci soliton can be identified
by the triplet (Cg, Ṽ, λ) if and only if the following conditions are satisfied:

(i) λ = 1
2 (ρ + 1

n ),
(ii) ∇i∇j f = 2(n − 3)Rij.
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Proof. In line with relation (18), we derive the equation:

(Hess f )εβ + 2K
εβ
+ [2λ − (ρ +

2
2n

)]g̃εβ = 0. (19)

By setting (ε, β) = (i, j), we find:

(Hess f )ij + 2K
ij
+ [2λ − (ρ +

1
n
)]g̃ij = 0.

Using the expression for Hess f from (11) and (3), we conclude:

[2λ − (ρ +
1
n
)]gij = 0.

Contracting both sides with gij leads us to:

λ =
1
2
(ρ +

1
n
).

When we substitute (ε, β) = (i, j) in (19), we can rewrite the equation as:

(Hess f )ij + 2Kij + [2λ − (ρ +
1
n
)]g̃ij = 0.

Finally, (9) and (3) lead us to the outcome:

∇i∇j f = 2(n − 3)Rij.

7. Conclusions

This paper presents a comprehensive investigation into the geometric attributes of the
tangent bundle TM of a (pseudo-)Riemannian manifold M, equipped with a RQSMC ∇̃.
The primary objective is to identify the essential conditions for TM to exhibit different
types of solitons and soliton-like structures under this connection. Through rigorous
mathematical analysis, we have provided explicit conditions characterizing each type of
soliton within the framework of the RQSMC ∇̃. By defining and scrutinizing the properties
of potential vector fields lifted from M to TM, we have elucidated the geometric and
algebraic structures underlying these soliton formations. These solitons represent critical
solutions of geometric flow equations and play pivotal roles in understanding the global
and local geometry of (pseudo-)Riemannian manifolds.

The results presented here provide a comprehensive understanding of the interplay
between geometric structures and connection properties within the tangent bundle TM. By
delineating the precise conditions under which each type of soliton emerges, we contribute
to the advancement of differential geometry and its applications in physics. These findings
have significant implications for various fields, including general relativity, where soliton-
like structures often arise as solutions to Einstein’s field equations.

The contributions of this paper extend beyond pure mathematics, as the results ob-
tained have implications in both differential geometry and physics. From a differential
geometry perspective, our work enriches the understanding of soliton-like structures
and their emergence in tangent bundles endowed with specific metric connections. Fur-
thermore, our findings provide valuable insights into the geometric flows and curvature
properties of tangent bundles, contributing to ongoing research in geometric analysis and
mathematical physics.

In the context of physics, the elucidation of soliton formations in tangent bundles opens
avenues for exploring the geometric aspects of physical theories. Solitons play a significant
role in various physical phenomena, including nonlinear wave equations and field theories.
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Therefore, our results pave the way for investigating the geometric underpinnings of soliton
dynamics in the context of tangent bundles, offering new perspectives on the interplay
between geometry and physics.

In conclusion, this paper represents a significant contribution to the fields of differential
geometry and theoretical physics, providing valuable insights into the geometric properties
of tangent bundles and their relevance to soliton theory. We anticipate that our findings
will inspire further research and foster interdisciplinary collaborations aimed at unraveling
the intricate geometrical structures of (pseudo-)Riemannian manifolds.
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