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Abstract: R-tree is an important multi-dimensional data structure widely employed in many appli-
cations for storing and querying spatial data. As GPUs emerge as powerful computing hardware
platforms, a GPU-based parallel R-tree becomes the key to efficiently port R-tree-related applications
to GPUs. However, traditional tree-based data structures can hardly be directly ported to GPUs, and
it is also a great challenge to develop highly efficient parallel tree-based data structures on GPUs. The
difficulty mostly lies in the design of tree-based data structures and related operations in the context
of many-core architecture that can facilitate parallel processing. We summarize our contributions
as follows: (i) design a GPU-friendly data structure to store spatial data; (ii) present two parallel
R-tree construction algorithms and one parallel R-tree query algorithm that can take the hardware
characteristics of GPUs into consideration; and (iii) port the vector map overlay system from CPU
to GPU to demonstrate the feasibility of parallel R-tree. Experimental results show that our parallel
R-tree on GPU is efficient and practical. Compared with the traditional CPU-based sequential vector
map overlay system, our vector map overlay system based on parallel R-tree can achieve nearly
10-fold speedup.

Keywords: graphics processing unit (GPU); parallel R-tree; parallel computing; parallel data structure;
vector map overlay

MSC: 68W10; 68P05

1. Introduction

R-tree is an important multi-dimensional data structure used in storing and querying
spatial data. It is widely used in various fields. One of R-tree related applications is map
searching, in which spatial objects in a map, such as hospitals, schools, restaurants, etc.,
are stored in an R-tree, and then the R-tree is queried to answer questions such as “find
hospitals or restaurants within three kilometers of the current location”. In an R-tree, each
node can hold multiple entries, and the maximum number of entries that a node can contain
is defined by a metric, typically denoted by M. Each entry in an R-tree is associated with
a Minimal Bounding Rectangle or MBR. MBRs are the critical metadata for constructing
an R-tree. On one hand, each entry in a leaf node corresponds to a spatial object and its
MBR covers this spatial object. On the other hand, an entry in a non-leaf node aggregates
all entries in its child node, and its MBR is the union of all the MBRs associated with the
aggregated entries. Figure 1 shows an R-tree with M equal to 3. The R-tree have three leaf
nodes, R2, R3, and R4, and stores a total of 11 spatial objects D∼N. The root node, R1, has
three entries A∼C, with the MBR of each entry covering the MBRs of all the entries in its
corresponding child nodes.
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Figure 1. The layout of MBRs of R-tree entries and the corresponding R-tree.

The core idea of R-trees is to aggregate spatial objects that are close in space and
minimize the overlap between the MBRs of different entries so as to reduce search paths
and improve query performance. Ref. [1] is the first paper to propose the concept of R-tree.
It provides a series of algorithms for insertion, deletion, query, and construction of R-trees.
For example, when inserting a spatial object into an R-tree, the insertion algorithm finds
the most suitable path from the root level to the leaf level to insert the spatial object so that
the area increment of the related MBRs is minimized. The basic method of constructing
an R-tree is to insert spatial objects into the R-tree continuously.

General-purpose graphics processing unit (GPGPU or GPU) has become an integral
part of today’s mainstream computing systems. The modern GPU is not only a powerful
graphics engine but also a highly parallel programmable, many-core graphic processor
featuring peak arithmetic and memory bandwidth. A GPU consists of an array of parallel
processors, which are often referred to as streaming multiprocessors. Each streaming
multiprocessor contains dozens or hundreds of streaming processors. The streaming
multiprocessors run in a Single Instruction Multiple Thread (SIMD) mode in which a
group of 32 threads called a warp is the minimum execution unit. Once scheduled on a
streaming multiprocessor, the threads in a warp share the same instruction and execute
in a fairly synchronous fashion. The GPU is configured with global memory accessible
to all streaming multiprocessors and share memory used internally by each streaming
multiprocessor.

For parallel tree-based data structures, several prerequisites must be taken into account
to properly exploit the potential parallel performance benefits offered by the GPU. First,
workloads need to be assigned to every streaming processor so as to make full use of the
computing resources inside the GPU. Second, branch instructions should be avoided in
the program. Assuming that there are 16 threads in a warp that satisfy the condition and
another 16 threads that do not, half of the threads will execute the statements in the “if”
block while the other half executes the statements in the “else” block. This appears to be a
paradox, given that the threads in a warp can only execute the same instruction at the same
time. In reality, when encountering a branch divergence, the GPU will execute each branch
path sequentially, disabling the threads that are not on that path until all enabled branch
paths have been executed, at which point the threads reconverge on the same execution
path. Some threads will be idle on each branch, which results in a performance loss of at
least half as much as the original branch split, or at worst, 1/32 of the peak performance if
every thread executes the branch differently. Third, accessing data in the global memory is
one of the most important dimensions of CUDA kernel performance. Coalesced memory
access is a favorable data access pattern when designing kernel code. Such coalesced
memory access allows the dynamic random access memories to deliver data at a rate close
to the peak global memory bandwidth. Due to the powerful parallel computing capability,
many traditional computing problems have been successfully ported to the GPUs, and the
computing time has been shortened by more than ten times or even tens of times.
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The design and development of parallel R-tree on GPUs is crucial to many R-tree
based applications. The traditional R-tree structure, construction algorithm, and query
algorithm are designed for the CPU and do not consider the characteristics of the GPUs.
Thus the performance is inefficient when porting traditional R-tree data structure to GPUs
directly. To address this issue, we redesign the R-tree structure and related operations and
demonstrate its feasibility by employing it to help port the vector map overlay system
to the GPU. Vector map overlay is one of the important spatial operations in GIS and is
computationally intensive and time-consuming. The contributions of our work can be
summarized as follows:

• We have designed a more efficient data structure for R-tree on GPUs.
• We present two parallel R-tree construction algorithms and one parallel R-tree query

algorithm that can take the hardware characteristics of GPUs into consideration.
• We present the migration of a vector map overlay system from CPU to GPU to demon-

strate the feasibility of parallel R-tree.

The rest of this paper is organized as follows: Section 2 briefly reviews the related
work. Section 3 presents the ideas behind the algorithms of parallel R-tree construction and
query. Detailed descriptions of these algorithms are also included in this section. Section 4
discusses the application of parallel R-tree in the context of vector map overlap problems.
In Section 5, comprehensive experiments are conducted to evaluate the performance of
parallel R-tree and vector map overlap systems. Analyses on these experiments are also
included. Finally, we offer some conclusions and roadmaps for future work in Section 6.

2. Related Work
2.1. Related Variants of R-Trees

The traditional R-tree is a dynamic spatial index data structure that can be inserted,
deleted, and queried simultaneously without the need for periodic reorganization. Since
the MBRs of different entries in R-tree may overlap, there may be multiple search paths for
R-tree query operations. As we introduced in the Section 1, an important goal of building an
R-tree is to reduce the overlap between the MBRs and thus reduce the search path. In order
to avoid the problem of multi-path query in R-tree, R+tree is designed by Sellis et al. [2].
R+tree uses object separation technology to separate and store objects across subspace
in different nodes. Although R+tree can solve the problem of multi-path search, it also
brings problems such as redundant storage and complicated update operations. R*tree
is proposed by Beckmann et al. [3]. A series of node splitting optimization criteria and
node forced reinsertion technology are designed to increase the space utilization of R-tree,
which significantly improves the tree query performance. The Hilbert R-tree proposed by
Kamel et al. [4] uses a Hilbert curve to sort one-dimensional linear data in K-dimensional
space and then sorts tree nodes so as to obtain higher node storage utilization.

2.2. Parallel Tree-Based Data Structures on GPUs

Considering that this work deals with tree-based data structures on GPUs, here is
a brief overview of this area. Tree-based data structures are often stored in linear arrays to
make more efficient use of the coalesced memory access features of GPUs. GPUs are better
suited for batch operations, such as constructions and batch queries. Delete and update
operations on GPU should be avoided.

The traditional data structure based on CPU have been studied by researchers for
many years. As GPUs are widely used in both industry and academics, research into
parallel data structures on many-core architectures has become urgent. A number of
attempts have been made to accelerate the processing of parallel data structures by using
the massive parallelism of GPUs. Luo et al. [5] combines a queue with the conventional
array of structures to parallelize the R-tree index search in the breadth-first-search fashion
on GPUs. You et al. [6] proposed a GPU-based R-tree to perform the breadth-first search
with a queue. It is hard to exploit the maximum parallelism potential of GPUs due to the
high correlation of their hierarchical data and computational structures. Unfortunately,
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the highly dependent data and computation structure of this method is inadequate for
maximizing the coalesced memory access of GPUs. Zhou et al. [7] constructed KD-tree in
breadth-first order and adopted a novel construction algorithm for large nodes to make
full use of the computing power of the GPU. To solve the problem of consuming too much
memory of GPU in [7], Hou et al. [8] constructed KD-tree in partial breadth-first order and
sacrificed some concurrency in exchange for large memory savings. Kim et al. [9] proposed
a parallel KDB-tree to utilize GPUs for query processing using a hierarchical structure. This
approach is effective in accelerating the retrieval of the R-tree, but it pays the high cost to
find the leftmost child and the rightmost child on GPUs. An approach for kd-tree generation
on GPU [10] is introduced to improve the performance when working with medium-size
point datasets. This approach adapts a parallel sorting algorithm to sort sub-sections of the
data independently. A GPU-aware parallel indexing method called G-tree [11] is presented
to address the high-dimensional big data. It exploits the advantage of the traditional R-tree
and the parallel computation benefits of GPUs. The rationale of the design is to combine the
efficiency of the R-tree in lower-dimensional space with the parallel computing capability of
GPUs in higher dimensionality. He et al. [12] use the strategy of large nodes and pipelines
to realize concurrent heaps in GPUs, which gives a speed up of 20-fold. And the concurrent
heap is successfully applied to the morphological reconstruction system [13]. Other tree-
based data structures, such as Octree [14–18], decision tree [19–21], and bounding volume
hierarchy [22,23], have been ported to GPUs. Besides the tree-based data structures, hash
tables on GPUs have also been discussed in [24–26]. Kim et al. [27] presented the LBPG-tree,
an efficient multi-GPU indexing scheme that integrates the advantages of CPU instruction
pipelining with the parallel processing capabilities of GPUs. Through novel strategies, it
optimizes the utilization of GPU L2 cache to accelerate index searching and node access
on GPUs. Also, the LBPG-tree employs a hierarchical pipeline approach to maximize the
utilization of streaming multiprocessors and introduces a compact-and-sort mechanism
to enhance memory throughput. Xiao et al. [28] proposed a distributed parallel R-tree
solution supported by RDMA on CPU clusters. This approach achieves low-latency and
high-throughput parallel R-tree processing by adaptively utilizing network bandwidth
and computing resources. These two methods proposed by Kim et al. and Xiao et al. are
parallel schemes based on distributed computing resources, which are different from our
scheme. We focus on parallel computing on a single GPU.

Despite the challenges of designing R-trees on GPUs, which have been primarily
discussed in [5,6], more work is still needed for a better R-tree on GPUs. Ref. [5] presents a
R-tree memory layout on GPU. But this layout has two problems: (1) It has a fixed size for
every R-tree node, even though the R-tree node is not full. For large datasets, this design
can waste many GPU memory spaces. (2) The design of this R-tree layout makes it very
difficult to access R-tree nodes by levels. This is not good for parallel R-tree construction,
R-tree query, and other R-tree operations because we need to access a level of R-tree nodes
in parallel and take advantage of coalesced memory access. Essentially, this design of the
R-tree memory layout still follows the idea of traditional R-tree design on the CPU and
fails to think about R-tree design in a parallel way. So is its R-tree construction algorithm
and query algorithm. It is hard to execute its construction algorithm and query algorithm
in a way that can fully take advantage of the computing power of GPU. What is more, its
query algorithm focuses on the performance of a single R-tree query instead of a batch of
R-tree queries. This can prevent the potential collaboration of threads on GPU and thus
hurt the performance of R-tree query batches. The R-tree memory layout presented in [6] is
similar to the one in [5], and it also lacks the support for accessing a level of R-tree nodes in
parallel. Therefore, its construction algorithm and query algorithm suffer the same problem
as [5]. The paper proposes a more complicated R-tree query algorithm, yet this query
algorithm is the direct port of the CPU query algorithm and may not be the most well-
suited R-tree query algorithm on GPU. Our paper is aimed at developing a GPU-friendly
R-tree data structure and tries to explore the balance between R-tree construction efficiency
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and resulting R-tree quality. We also design an R-tree query algorithm targeted at R-tree
query batches.

3. Parallel R-Tree Processing on GPUs
3.1. Parallel R-Tree Construction Algorithm

To take full advantage of coalesced memory access of GPUs, the parallel R-tree pro-
posed in this paper is stored in four one-dimensional arrays. With this design, coalesced
memory access is promoted and scattered memory reads are reduced, thus enhancing
the overall performance of R-tree access. Figure 2 shows the data structure of the R-tree
introduced in Figure 1. The four arrays are the level array, start array, end array, and entry
array. The start, end and entry arrays define the relationship between the R-tree nodes and
their entries. As to the R-tree shown in Figure 2, the first element in the start array has
a value of 1, and the first element in the end array has a value of 3. These indicate that the
root node R1 contains three entries (i.e., A, B, and C) with the indexes from 1 to 3 in the
entry array. Similarly, the second node R2 contains four entries (i.e., D, E, F, and G) with
the indexes from 4 to 7 in the entry array. The third node R3 contains four entries (i.e., H,
I, J, and K) with the indexes from 8 to 11 in the entry array. The fourth node R3 contains
three entries (i.e., L, M, and N) with the indexes from 12 to 14 in the entry array. We can
also observe that the number of R-tree nodes can be obtained from the size of the start
array or the end array. The level array records the index of the first node at each level in the
start or end array. Since the R-tree in this example has two levels, there are two elements in
the level array. Specifically, the first node at the first level is R1, which is denoted with the
first element in the start and end arrays. Therefore, the first element in the level array is 0.
Similarly, the first node at the second level is R2, which is denoted with the second element
in the start and end arrays. Thus the second element in the level array is 1. By making
use of the structure of arrays, spatial object data of different regions can be loaded into
threads in the same warps at one memory read; therefore, the parallel R-tree construction
and query can perform efficiently.

index index

index

MBRs

start array end array

Level  array

entry  array

index

Figure 2. The memory layout of a parallel R-tree.

Generally, every thread needs to have sufficient computing tasks so as to better take
advantage of the parallel computing capacity of GPUs. Traditional R-tree construction is
performed by inserting spatial objects in succession. Essentially, it is performed sequentially.
In addition, inserting spatial objects sequentially in an R-tree requires deciding whether the
spatial object is inserted into the left subtree or the right subtree. In other words, branching
is introduced. Therefore, the traditional construction algorithm is not well-suited for R-tree
parallel construction on GPUs. In this work, we adopt a bottom-up or top-down parallel
batch processing strategy to build R-tree level by level.
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The bottom-up parallel construction algorithm is exhibited in Algorithm 1 (Bottom-up
GPU). Its basic idea is to build each level of R-tree in a bottom-up fashion by merging
entries at the lower level. Lines 3–9 are executed on CPU, while lines 10–16 are carried out
on GPU. Line 3 reads the spatial objects from the input file and creates R-tree leaf level
entries by computing the MBRs of these spatial objects. The entry size at R-tree leaf level is
calculated at line 4, and lines 5–6 compute the total number of entries and the height of the
R-tree. These computations are necessary for determining the memory space required by
R-tree. GPU memory is then allocated for R-tree structure in line 7. Next, the entries at the
R-tree leaf level are sorted by the space filling curve (SFC) values [29] of their MBRs. These
sorted entries are copied to the entry array on GPU in line 9, and the start, end, and level
arrays need to be updated accordingly in line 10. In lines 12–14, the algorithm loops over
all of the R-tree levels to fill the four arrays with R-tree structure. At each iteration, entries
at a R-tree level are generated in parallel by merging M entries at the lower R-tree level,
and these newly created entries are also stored in the entry array. With the new entries
written in the entry array, the start, end, and entry arrays are also needed to be updated to
keep track of the relationships between R-tree levels and R-tree nodes and between R-tree
nodes and R-tree entries. When this algorithm is executed, the entire R-tree structure is
stored in the GPU memory.

Algorithm 1 Bottom-up parallel construction algorithm

Input: The spatial object dataset and the maximum number of entries M in an R-tree node
Output: R-tree data structure in GPU memory
1: Begin
2: In CPU
3: entries← getEntries(dataset)
4: nentries ← sizeo f (entries)
5: totalentries ← sum(nentries, M)
6: L← getLevel(nentries, M)
7: alloMem(L, M, nentries, totalentries)
8: sort(entries)
9: entry← entries

10: In GPU
11: update(entry, start, end, level)
12: for i = L− 1 to 1 do
13: createEntry(entry)
14: update(entry, start, end, level)
15: end for
16: End

A crucial problem in R-tree construction is how to guarantee the quality of the resulting
R-tree and reduce the overlaps between entries to improve query performance. The quality
of a bottom-up construction algorithm largely depends on the order of spatial objects.
Therefore, it is necessary to preprocess spatial objects before building the R-tree. One of the
solutions is to pre-sort spatial objects according to the horizontal coordinate of the bottom
left points of the spatial objects’ MBRs [5]. Unfortunately, this solution is not effective
because it is simplistic and does not take into account two dimensions and above. It is not
accurate to sort only by the coordinate value of a spatial object. Factors such as the size
and location of the two-dimensional or multi-dimensional spatial object should be taken
into consideration. The approach of this work (Line 8) is to first calculate the values of the
center points of spatial objects’ MBRs in the SFC and then sort the spatial objects according
to these values. The basic idea is to transform spatial objects into multidimensional points
and then use SFC to transform multi-dimensional objects into one-dimensional values so as
to facilitate sorting with traditional sorting algorithms. Since the points of similar values in
the SFC are also adjacent in space, adjacent objects in space will group together after sorting.
Therefore, this algorithm can ensure the quality of R-tree construction to a certain extent.
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The disadvantage of this method is that the spatial overlap between entries at non-leaf
levels cannot be controlled. As a result, a top-down construction algorithm is designed.

Algorithm 2 (Top-down GPU) is designed to construct a R-tree in a top-down fashion,
aiming at reducing the overlap between nodes at non-leaf level. Its idea is as follows:
Initially, all the MBRs of entries obtained from the dataset are in a group. Then, starting
from the root level, at each level, the MBRs in the same group are split into M sub-groups
after they are sorted. The MBRs in each sub-group are merged into one entry at that level.
Lines 3–8 are shared between Algorithms 1 and 2. These lines are used to compute the
parameter of the R-tree so that memory space required by the R-tree can be determined and
allocated. Also, the MBRs of entries created from the spatial data set are transferred to GPU.
The loop from line 10 to line 19 is executed to build the R-tree level by level. According
to the parity of the R-tree level, MBRs in each group are sorted according to either the
x-coordinates of their bottom left corners (line 12) or the y-coordinates of their bottom left
corners (line 14). Then MBRs in each group are divided into M sub-groups, and the MBRs
in each group will be merged to create an entry at the current level (line 16). Similar to
Algorithm 1, after the new entries are created and written to the entry array, the start, end,
and level are also needed to be updated accordingly (line 17).

Algorithm 2 Top-down parallel construction algorithm

Input: The spatial object dataset and the maximum number of entries M in an R-tree node
Output: R-tree data structure in GPU memory
1: Begin
2: In CPU
3: entries← getEntries(dataset)
4: nentries ← sizeo f (entries)
5: totalentries ← sum(nentries, M)
6: L← getLevel(nentries, M)
7: alloMem(L, M, nentries, totalentries)
8: MBRs← entries
9: In GPU

10: for i = 1 to L do
11: if i is odd then
12: sortX(MBRs)
13: else if i is even then
14: sortY(MBRs)
15: end if
16: splitEntry(entry, start, end, level, MBRs)
17: update(entry, start, end, level)
18: end for
19: End

Compared with Algorithms 1 and 2 requires more computation and therefore has
a larger execute time. Yet it can effectively reduce the space overlap between entries, thus
the quality of the R-tree it builds should be better.

3.2. Parallel R-Tree Query Algorithm

R-tree applications, such as vector map overlay system, often generate multiple R-tree
query requests simultaneously. Here we will discuss how to process these R-tree query
requests efficiently on GPU. Generally, there are two approaches to execute R-tree queries:
depth-first query and breadth-first query. Yet the depth-first query is not well suited for
GPU execution. The execution mode of GPU is single instruction multiple data, or SIMD,
which means all threads in a group (warp in Nvidia’s term) always execute the same
instructions. Since the workloads of different depth-first queries are usually different, and
sometimes the difference may be quite large, the query thread with a small workload
has to wait for the query thread in the same group with a large workload. These would
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result in the degradation of overall query performance. Also, depth-first queries would
introduce branch divergence, thus causing performance loss (see Section 1 for more details).
Moreover, it is difficult for multiple depth-first query threads to cooperate with each other,
which makes it difficult to effectively coalesce memory access. For R-tree queries on GPU,
their performance depends on the efficiency of memory access, and coalesced access of
global memory, which can combine multiple memory access requests into one, can greatly
improve the efficiency of memory access.

Therefore, R-tree queries are processed in parallel on GPU in the manner of breadth-
first. The scheme is illustrated in Figure 3 where R-tree queries are executed in a level-by-
level fashion. A R-tree query task in this scheme is composed of a R-tree query request and
a R-tree node that this R-tree query is going to check. Initially every R-tree query request is
wrapped up with the root node to be a R-tree query task. Then, starting from Level 0, these
R-tree query tasks are processed in parallel, with each R-tree query task checking whether
the query window of its R-tree query request intersects with any entry’s MBR in the root
node. If there is an intersection between a R-tree query request and an entry in the root
node, then a new R-tree query task consisting of the R-tree query request and the R-tree
node represented by the entry will be generated for the next level. Likewise at Level 1, all
the R-tree query tasks at this level will be collected and processed in parallel. Then these
R-tree query tasks will again generate new tasks for the next level. This loop will continue
until the leaf level of the R-tree is visited and query results are found. There are two details
worth discussing in the process. Firstly, it is needed to allocate global memory when storing
the newly generated R-tree query tasks. However, the number of R-tree query tasks cannot
be estimated in advance, so it is difficult to determine the memory space to be allocated. In
some cases, the problem occurs when the allocated memory space is insufficient to store
the R-tree query tasks. Ref. [6] proposed three kinds of data overflow solutions. Our
solution is to avoid data overflow by counting the number of newly generated R-tree query
tasks before allocating memory space to store them. Secondly, breadth-first query of R-tree
requires a global synchronization of all threads between levels, and global synchronization
is time consuming. However, there are not many entries in the first few levels of the R-tree,
which cannot take advantage of the computational processing of the GPU, and each level
needs global synchronization. Therefore, our R-tree breadth-first query ignores the first
few levels and starts at the level with enough entries.

Figure 3. Breadth-first parallel R-tree queries.

The pseudo-code of Algorithm 3 sketches the process detail of breadth-first parallel
query of R-tree. All the algorithm code is executed on GPU. Line 3 initializes the R-tree
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query tasks by wrapping the R-tree queries and R-tree nodes at level K to form R-tree
query tasks. Assuming that the query starts from level K and L is the height of the R-tree,
the loop in Line 4–8 searches the R-tree level by level. Line 5 processes the R-tree query
tasks and uses prefix sum to count the number of overlaps between R-tree queries and
the associated entries specified in R-tree query tasks. According to this number, line 6 can
allocate memory space for storing newly generated tasks. Line 7 processes the R-tree query
tasks again, and results are wrapped to become the new tasks. Once the loop is completed,
line 10 returns the R-tree queries and their overlapping spatial objects.

Algorithm 3 Breadth-first parallel query algorithm

Input: R-tree data structure and R-tree query requests
Output: The spatial objects that overlap with the R-tree query
1: Begin
2: In GPU
3: tasks = initTask()
4: for i = K to L parallel do
5: sum = countNewTasks(tasks, i)
6: newTasks = memAlloc(sum)
7: newTasks = processTasks(tasks)
8: tasks← newTasks
9: end for

10: return tasks
11: End

3.3. R-Tree Deletion and Update

Parallel deletion and update operations are not suitable for R-tree running on GPUs
because those operations involve concurrency and locking, which can affect the efficiency
of the GPUs. A better strategy is to rebuild the R-tree if it needs to be deleted and updated.
It is very efficient to construct R-tree in GPUs, especially using the bottom-up R-tree
construction method. The source code of the parallel R-tree on GPU is available on GitHub
at: https://github.com/83033183/ParlllelRtree (accessed on 20 April 2024).

4. Application of Parallel R-Tree

The vector map overlay problem in GIS [30] is mainly used to compute the overlay
operations between a base polygon set and an overlay polygon set. The overlay operations
include intersection, union, complement, and difference. This problem is computationally
intensive and is ideal for running on GPUs. The parallel processing steps are as follows:

• Read the base polygon set and the overlay polygon set from the input file respectively.
• Create overlapping polygon pairs.
• Execute the overlay operations of overlapping polygon pairs in parallel and merge

the results.
• Write the result to the output file.

Figure 4 shows the processing pipeline of the vector map overlay system. In Step 2,
we create overlapping polygon pairs from the base polygon set and the overlay polygon
set. The idea is to convert the computation of vector map overlay operation into the
computation of overlay operations on each of these overlapping polygon pairs since the
overlay operations of overlapping polygon pairs are independent of each other and they
can be processed in parallel. The detailed process is as follows. First, we build an R-tree in
parallel based on the base polygon set. Then, every polygon in the overlay polygon set is
fed to the R-tree to find out all of the base polygons that overlap with the given overlay
polygon. An overlay polygon and a base polygon that overlap with the overlay polygon
comprise an overlapping polygon pair.

For the overlapping polygon pairs created in Step 2, the overlay operation of each
pair is computed in parallel, and the resulting polygons will be collected in Step 3. The

https://github.com/83033183/ParlllelRtree
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classic polygon clipping algorithm [31] is often employed to carry out the overlay operation
between a pair of polygons. Yet this algorithm is designed to be executed sequentially
in CPU. To speed up its performance, we designed the parallel version of the algorithm,
which will be discussed in detail in another paper due to space limitations.

Figure 4. Pipeline diagram of GPU based vector map overlay system.

5. Experimental Evaluation

In this section, we describe our experimental setup and provide comprehensive dis-
cussions based on our obtained experimental results.

5.1. Experimental Setup

All experiments are conducted on an Ubuntu server with one Intel Xeon Gold 5120
of 2.2 GHz consisting of 28 cores and 512 GB of memory. The graphic card is the NVIDIA
GeForce RTX 2070 SUPER, consisting 2560 CUDA cores and 8 GB GDDR6 memory.

The purpose of the experiments is to measure and evaluate the performance of our
parallel R-trees. We have three goals in our experiments. Firstly, we would like to measure
the efficiency of our R-tree construction with different datasets and compare it with sequen-
tial R-tree construction and other GPU-based parallel R-tree construction. The quality of
the resulting R-trees will be also compared and analyzed. Secondly, we want to evaluate
the R-tree query performance of our parallel R-tree by comparing it with other R-tree query
implementations. Lastly, we use different numbers of overlap polygons to perform overlap
operations to evaluate the performance of our parallel R-trees in a practical application.
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5.2. Performance Analysis

We have prepared two groups of test data for the R-tree construction and query
experiments. The first group contains 5 data sets. Each data set contains rectangles, each
of which stands for a spatial object. These data sets are generated randomly by computer
programs. Table 1 describes the characteristics of each data set. The first column indicates
the number of spatial objects in each data set. The second column shows the total number
of overlapping pairs of spatial objects in each data set. The third and fourth columns
indicate the average and maximum number of overlapping spatial objects that each spatial
object in the data set has. The second group contains 3 data sets, namely rea02, abs02, and
par02. These are the publicly available benchmark data sets from [32]. Table 2 describes the
characteristics of each of these data sets.

Table 1. The characteristics of generated test data sets.

Data Size Total Overlap
Number

Average Overlap Number
per Object

Maximum Overlap Number
per Object

1024 5489 5.36 28

4096 80,287 19.6 109

16,384 126,199 77.03 399

65,536 20,108,655 306.83 1532

262,144 320,865,497 1224 6053

Table 2. The characteristics of benchmark data sets.

Name Data Size
Total

Overlap
Number

Average Overlap Number
per Object

Maximum Overlap Number
per Object

rea02 1,888,012 4,892,099 2.59 317

abs02 1,000,000 950,474 0.95 7

par02 1,048,576 2,974,753 2.84 4727

The sequential R-tree implementation can be downloaded from [33] (denoted as
SeqCPU). It will be used as the baseline for comparison. Also, we have implemented the
parallel R-tree in [5] (denoted as ParallelRtree) and developed an openMP based parallel
R-tree rooted in the idea from [34] (denoted as OpenMPRtree).

In the assessment of R-tree performance, the definition of speedup is defined as follows:

speedup =
SeqCPU′s execution time

parallel Rtrees′ execution time
(1)

We first want to evaluate the quality of the resulting R-trees constructed by different
algorithms. The basic idea is to execute the same R-tree queries on different R-trees, and
then count the total number of R-tree nodes these R-tree queries have to deal with because
the better the quality of an R-tree obtained, the fewer query paths there are and the fewer
R-tree nodes a query has to deal with. The R-tree queries are generated with the exact
spatial objects that are used to construct the R-tree. Table 3 shows the total number of R-tree
nodes that the queries encounter for the R-trees constructed with the randomly generated
data sets. The third, fourth, fifth, and sixth columns keep track of the average sequential
query time on the R-tree constructed by [5,34], by our bottom-up algorithm, and by our
top-down algorithm, respectively. Table 4 shows the similar statistical result for the R-trees
built with the benchmark data sets. It is clear that our two algorithms can build R-trees
with better quality.
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Table 3. Average sequential query time for R-trees constructed with randomly generated data
sets (ms).

Data
Size

Query
Size ParallelRtree [5] OpenMPRtree [34] Bottom-Up Top-

Down

1024 1024 8.99 10.05 4.1 3.61

4096 4096 136.04 187.37 37.76 30.42

16,384 16,384 1634.71 2687.62 408.2 331.83

65,536 65,536 23,498.74 36,751.5 3568 4807.59

262,144 262,144 366,976.91 520,437.14 42,041.32 68,155.29

Table 4. Average sequential query time for R-trees constructed with benchmark data sets (ms).

Name Data
Size

Query
Size ParallelRtree [5] OpenMPRtree [34] Bottom-Up Top-Down

rea02 1,888,012 1,888,012 127,578.54 158,742.22 12,919.29 6173.91

abs02 1,000,000 1,000,000 55,732.25 75,738.24 4022.59 2473.4

par02 1,048,576 1,048,576 173,510.33 235,942.18 8536.35 6275.69

Figure 5 shows the performance of different R-tree construction algorithms. It is
clear that the bottom-up GPU R-tree construction algorithm, the top-down GPU R-tree
construction algorithm, the ParallelRtree algorithm, and the OpenMPRtree algorithm
have similar construction performance when the data set is relatively small. When the
dataset increases exponentially, the construction performance of the ParallelRtree algorithm
outperforms other algorithm. In this work, we focus on balancing between the efficiency
of R-tree construction and the quality of the resulting R-tree construction. Although our
construction algorithm is less efficient than the ParallelRtree construction algorithm, the
quality of the resulting R-tree has improved a lot, making our construction algorithm
worthy and useful. For example, for the abs02 data set, the construction time of our
bottom-up algorithm is about 3.67 times slower than that of the ParallelRtree construction
algorithm. Yet the quality of the resulting R-tree constructed by our bottom-up algorithm
is 13.85 times better than that constructed by the ParallelRtree construction algorithm if we
measure the quality of R-trees by their corresponding sequential query time.

� � �
 
� �	



�,$��)�& �*'�+!��&�"��+*�������

�

��

��

��

��

	�


�

��

��

�

���

���

���

���

���

�	�

�
�

���

�.
��

,+
!&

%�
+!

$�
�$

*�

��(���

�&++&$�,'����

�&'��&-%����

��)�##�#�+)��

�'�%���+)��

Figure 5. Execution time of different R-tree construction algorithms with randomly generated
datasets.
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In a real R-tree application such as a vector map overlay system, R-tree construction is
usually carried out once, while R-tree queries may be executed many times, and a R-tree
with good quality can save plenty of query time. Also, our data structure is relatively more
complex compared to the one in [5] and thus more informative, making it more useful
and practical in real applications. Figures 6 and 7 demonstrate the speedup of different
parallel R-tree construction algorithms on the randomly generated datasets and benchmark
datasets. M is set to 4 in the experiment.
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Figure 6. Speedup of different R-tree construction algorithms over sequential R-tree implementation
with randomly generated datasets.
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Figure 7. Speedup of different R-tree construction algorithms over sequential R-tree implementation
with benchmark datasets.

Figure 8 shows the execution time of different query algorithms. Figure 9 shows the
speedup of different parallel query algorithms over sequential query algorithms. These
query requests are selected from the randomly generated datasets. Figure 10 exhibits the
speedup of different parallel query algorithms over sequential query algorithms. The query
requests are selected from the benchmark datasets. It is obvious that as the number of
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R-tree query requests increases, the parallelism in the parallel query is enhanced, and thus
the speedup increases. Compared with ParallelRtree query and OpenMPRtree query, our
query algorithm also has a better speedup.
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Figure 8. Execution time of different query algorithms with different number of R-tree query requests.
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Figure 9. Speedup of different query algorithms over sequential query algorithm with different
number of R-tree query requests.

Experiments of vector map overlay systems are carried out with a base polygon
set containing 1000 polygons and an overlap polygon set containing various numbers
of polygons. The sequential program on CPU is the optimized implementation of the
Vatti algorithm [31]. Figure 11 shows the execution time of sequential version and parallel
version of vector map overlay system. Figure 12 shows the speedup of a parallel vector
map overlay system over other versions of vector map overlay systems. It is shown that,
compared with the traditional CPU-based system, our parallel R-tree-based system can
achieve nearly 10-fold speedup.
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Figure 10. Speedups of different query algorithms over sequential query algorithm with benchmark
datasets.
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Figure 11. Execution time of sequential version and parallel version of vector map overlay system.
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6. Conclusions

This paper discusses the design and implementation of parallel R-tree on GPU. We
are particularly interested in the design of R-tree construction and query that can make
full use of GPU’s computing power. Experiments results are promising, showing that, for
example, our R-tree construction on GPU can achieve up to 10 fold speedup compared to
the sequential R-tree construction. Based on parallel R-tree on GPU, we also port vector
map overlay system from CPU to GPU. Our vector map overlay system on GPU can achieve
nearly 10-fold speedup compared to the traditional vector map overlay systems on CPU. In
the future, we are interested in exploring multi-GPU parallel schemes. The performance
of our vector overlap system can be further improved by segmentation in that it can run
efficiently on a cluster of GPUs. In addition, some operations of parallel R-tree on GPU,
such as update operation and parallel join, have yet to be implemented and will become
the direction of our future research.
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