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Abstract: This paper introduces equitable graphs of Type I associated with finite groups. We
investigate the connectedness and some graph-theoretic properties of these graphs for various
groups. Furthermore, we establish the novel concepts of the equitable square-free number and the
equitable group. Our study includes an analysis of the equitable graphs for specific equitable groups.
Additionally, we determine the first, second and forgotten Zagreb topological indices for the equitable
graphs of Type I constructed from certain groups. Finally, we derive the adjacency matrix for this
graph type built from cyclic p-groups.

Keywords: equitable graph; equitable group; topological indices

MSC: 05C62; 05C25

1. Introduction

The connection between graphs and groups is an interesting field of research and has
wide applications. Research on this subject leads to the investigation of the relationship
between the group and the associated graph and explores theoretical properties from one
to the other. The graph associated with a group can provide valuable information and offer
a combinatorial approach to studying groups. This can give group theorists more tools to
work with. Additionally, comparing groups with similar graph-theoretic properties can
help classify these groups. The literature is rich with studies on this topic. This concept
has been known since 1878, when Cayley graphs were presented [1]. Subsequently, several
graphs have been constructed from groups, such as the commuting graph, which was
introduced by Brauer and Fowler in 1955 [2]. Then, the prime graphs were defined by
Gruenberg and Kegel in 1975 [3]. Later, in 2009, Chackrabarty, Gosh and Sen presented the
power graph [4,5]. Many graphs have been introduced in the literature: for instance, the
order-divisor graph, intersection graph and cyclic graph. All of these graphs have been
thoroughly studied, including their characteristics and their relations with groups. For
more details, we refer the reader to [6–11].

In light of the increasing significance of graphs linked to groups and their role in
classifying both groups and graphs, as well as the importance of element orders in a finite
group, we are inspired to introduce a new type of graph based on the distinctions between
element orders within the group. Through this research, we study a graph associated with
a finite group called the equitable graph Type I and denoted by E1(G). The vertex set of
this graph is a finite group G, and two distinct vertices x and y are adjacent if and only if
|o(x)− o(y)| ≤ min{o(x), o(y)}.

In our research, we extensively studied important algebraic groups in order to create
general formulaic representations of the resulting graphs. These representations were thor-
oughly analyzed to understand their theoretical properties and topological characteristics.
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Moreover, our exploration of this innovative conceptual definition allowed us to establish
new specialized terminology: specifically, the concepts of the equitable square-free number
and the equitable group. These new concepts serve as valuable classifications within the
respective domains of number theory and graph theory.

In this paper, G denotes a finite group, and e is the identity of G. For any element of
G, say g, o(g) is the order of g, and the number of elements of order m in a cyclic group is
equal to ϕ(m), where ϕ is the Euler’s phi function. For a real number x, the greatest integer
≤ x [or the least integer ≥ x], called the floor [or ceiling] function and denoted by ⌊x⌋ [or
⌈x⌉], respectively.

Let Γ denote a graph with vertex set V and edge set E. Then, m(Γ(V)) denotes the
size of the graph, and the number of edges incident to a single vertex v ∈ V is called
the degree of v, d(v); the maximum and minimum degrees of the graph are denoted by
∆(Γ(V)) and δ(Γ(V)), respectively. The graph Γ(V) is said to be connected if and only if
there is a path between any two distinct vertices of V, while the graph is complete if and
only if any two vertices are adjacent, and Km denotes the complete graph on m vertices.
The complete subgraph of Γ(V) is called a clique, and the clique number, ω(Γ(V)), is the
cardinality of the maximum clique. The diameter, diam(Γ(V)), is defined as the maximum
distance between two vertices, and the radius, r(Γ(V)), is the minimum eccentricity of the
graph, where the eccentricity of any vertex v is defined as e(v) = max{d(v, u) : u ∈ V}.
The length of the shortest cycle in Γ(V) is called the girth of the graph, and it is denoted
by gr(Γ(V)). A set S of vertices is said to be a dominating set if every vertex v belong to
V \ S is adjacent to at least one vertex in S, and the cardinality of the minimum dominating
set, γ − set, is called the domination number, γ(Γ(V)). The minimum number of colors
needed to label the vertices such that no two adjacent vertices have the same color is called
the chromatic number of the graph, χ(Γ(V)). The adjacency matrix is an (n × n) matrix,
where |V| = n, and is denoted by A(Γ(V)). Almost all of the definitions and notations can
be found in [12–14] for group theory and graph theory.

Through this work, we deal with finite groups and simple graphs. We consider the
vertex set as the elements of the group and introduce the first type of equitable graph,
E1(G). In this paper, we study the connectedness of the equitable graph Type I for some
groups and investigate some of their theoretical properties in Section 2. In Section 3, we
introduce the concepts of the equitable square-free number and the equitable group. Then,
the graph of this group is studied. Next, we determine the first, second and forgotten
Zagreb indices for the equitable graph Type I of some groups in Section 4. Finally, in
Section 5, we obtain the adjacency matrix for E1(G), where G is a cyclic p-group, and many
examples are included. In this work, since the vertices are the elements of the group G,
we use the words “elements” and “vertices” interchangeably. Also, for simplicity, we use
δ(E1), for example, rather than δ(E1(G)).

2. Equitable Graph Type I

The definition of the first type of an equitable graph from any finite group is introduced
in this section. Later, we explore some theoretical properties of this graph from certain
groups.

Definition 1. Let G be a finite group. The equitable graph of Type I of G, denoted by E1(G), is a
graph with vertex set G in which any two distinct elements of G, x and y are adjacent if and only if

| o(x)− o(y) | ≤ min{o(x), o(y)}.
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Example 1. Consider the special linear group G = SL(2, 3) that is the group of 2 × 2 matrices
with determinant 1 over the field of three elements. Then, the list of the elements is as follows:

v1 =
( 1 0

0 1

)
, v2 =

( 2 0
0 2

)
, v3 =

( 1 1
0 1

)
, v4 =

( 2 1
2 0

)
,

v5 =
( 1 0

2 1

)
, v6 =

( 0 1
2 2

)
, v7 =

( 1 2
0 1

)
, v8 =

( 2 2
1 0

)
,

v9 =
( 1 0

1 1

)
, v10 =

( 0 2
1 2

)
, v11 =

( 2 1
0 2

)
, v12 =

( 1 1
2 0

)
,

v13 =
( 2 0

2 2

)
, v14 =

( 0 1
2 1

)
, v15 =

( 2 2
0 2

)
, v16 =

( 1 2
1 0

)
,

v17 =
( 2 0

1 2

)
, v18 =

( 0 2
1 1

)
, v19 =

( 0 2
1 0

)
, v20 =

( 0 1
2 0

)
,

v21 =
( 1 1

1 2

)
, v22 =

( 2 1
1 1

)
, v23 =

( 1 2
2 2

)
, v24 =

( 2 2
2 1

)
,

where v1 has order 1, v2 has order 2, v3 to v10 have order 3, v11 to v18 have order 6, and v19 to v24
have order 4. Then E1(G) is depicted in Figure 1.

Figure 1. The equitable graph Type I of the group SL(2, 3).

• δ(E1(G)) = 1, ∆(E1(G)) = 22.
• χ(E1(G)) = ω(E1(G)) = 22.
• gr(E1(G)) = 3.
• γ(E1(G)) = 2.
• diam(E1(G)) = 3.
• m(E1(G)) = 246.

Lemma 1. gr(E1(G)) = 3 for any finite group G with order greater than 3.

Proof. Let G be a finite group of order n. Then, the result is clear for n = 1 or 2, and the
only group of order 3 is a cyclic group in which the identity is isolated. Now, assume that
n = 4; then there are only two possible cases for the group G. Either G is cyclic or G is
isomorphic to the Klein four group V4 = ⟨a, b : a2 = b2 = e, ab = ba⟩. In the first case, the
element of order two is adjacent to the two elements of order four in E1(G), forming a cycle
with three edges. In the latter case, the graph is complete.

Now, if n > 4, it is clear that there exist at least three elements sharing the same order.
Hence, E1(G) contains K3 as a subgraph.

The following lemma has been utilized in numerous proofs throughout this research;
therefore, it is prudent to mention it here.
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Lemma 2. Let i be a positive integer. Then

1. 2i−2 + 2i−1 + 2i = (7)2i−2.

2. 2i−2 + 2i−1 = (3)2i−2.

Theorem 1. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then E1(G) is
connected.

Proof. As G is a cyclic group, the orders of the elements are the divisors of |G|. Now, as is
well known, | 2i − 2i+1 |= 2i for all 0 ≤ i ≤ k − 1. Therefore, each element of order 2i is
adjacent to all elements of order 2i+1 (as vertices) for all 0 ≤ i ≤ k − 1. Thus, we conclude
that there is a path between any two vertices, and the graph E1(G) can be shown as in
Figure 2 such that each circle forms a complete subgraph.

Figure 2. The equitable graph Type I of cyclic groups of order 2k.

Theorem 2. Let G be a cyclic group of order 2k; k > 1 and is a positive integer. Then E1(G) has
the following properties:

1. δ(E1) = 1, and ∆(E1) = (7)2k−3 − 1 unless k = 2, in which case ∆(E1) = 3.
2. ω(E1) = (3)2k−2.
3. diam(E1) = k.
4. E1(G) is a weakly perfect graph.

5. γ(E1) =
⌈ k + 1

3

⌉
.

6. r(E1) =


k
2

, k ≡ 0(mod2);
k + 1

2
, otherwise.

7. m(E1) = 1 +
k−1

∑
i=1

2i−1(2i+1 − 1).

Proof. Let G be a cyclic group of order 2k, where k > 1 is a positive integer.

1. In this case, the minimum degree and the maximum degree for k = 2 are obvious.
Now, for k > 2, each element of order 2i is adjacent to each element of order 2i−1

and 2i+1 for all 1 ≤ i ≤ k − 1, and since the number of elements of order 2m is
ϕ(2m) = 2m−1 as G is cyclic, for all 1 ≤ m ≤ k, we obtain the result.

2. According to the fact that ϕ(2) = 1 < ϕ(22) < . . . < ϕ(2k) and from the adjacency
criteria, the result can be obtained using Lemma 2.

3. This follows from Theorem 1 and the adjacency method of the vertices.
4. Since for any graph Γ, obviously χ(Γ) ≥ ω(Γ), we obtain that χ(E1) ⩾ 3(2k−2). Then,

according to the adjacency order, we can reuse these colors, and hence, χ(E1) ⩽
3(2k−2). Therefore, the equality holds.

5. Through the adjacency method and by Figure 2, we deduce that for each of three
consecutive cliques, one vertex of the middle one can be in a dominating set. So

the cardinality of γ − set ⩾
k + 1

3
, and thus, from the definition of the domination

number and the number of sequential cliques, we can obtain γ(E1) ⩽
k + 3

3
.
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6. From Figure 2, we obtain that the eccentricity of the vertices ranges between k and
k
2

(or
⌈ k

2

⌉
) if k is even (or odd). Therefore, r(E1) =

⌈ k
2

⌉
.

7. This follows from the adjacency method and the fact that the elements of the same
order form a complete subgraph. Hence,

m(E1) = 1 +
k

∑
i=2

[ϕ(2i)(ϕ(2i)− 1)
2

+ ϕ(2i−1)(ϕ(2i))
]

Let n be a positive integer. Then the dihedral group of order 2n is defined as follows

D2n = ⟨a, b : an = b2 = e, ab = ba−1⟩.

Example 2. Consider the dihedral group of order 8, D8. Then this group has one element of order
1, five elements of order 2, and two elements of order 4. Therefore, the equitable graph of D8 is
shown as in Figure 3, where v1 denote the identity, v2 = a2, v3 = b, v4 = ab, v5 = a2b, v6 = a3b,
v7 = a, and v8 = a3.

Figure 3. The equitable graph Type I of D8.

Through the next two results, we explore the theoretical properties of the equitable
graph of this group for special cases of n.

Theorem 3. Consider the dihedral group G ∼= D2n; n = 2k, k > 1. Then

1. E1(G) is connected.

2. diam(E1(G)) = k, and γ(E1(G)) =
⌈ k + 1

3

⌉
.

3. χ(E1(G)) = ω(E1(G)) = 2k + 3.

Proof. Let G ∼= D2n; n = 2k, k > 1. Then

1. The connectedness of this graph is satisfied since the order of the elements of D2n in
this case are clearly 2i for each 1 ≤ i ≤ k, which is the same as the cyclic group of
order 2k.

2. From the previous point, we obtain that the equitable graph Type I of this group and
any cyclic group of order 2k share the same diameter and domination number. Then by
Theorem 2 we obtain the result.

3. The number of elements of order 2 in D2n is equal to n + 1, and for the remaining
divisors of n, there are ϕ(2m) elements for all 1 < m ≤ k. Hence, clearly, the maximum
clique consists of the elements of order 2 in addition to the elements of order 22 by the
connectedness. Therefore, we obtain the outcome.

Proposition 1. Let G be the dihedral group D2n; n = 2k, k > 1. Then
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1. δ(E1(G)) =


5, k = 2 or 3;
11, k = 4;
13, k ≥ 5.

2. ∆(E1(G)) =

{
2k + 6, k ≥ 3;
7, k = 2.

Proof. Let G be the dihedral group D2n; n = 2k, k > 1. Then

1. From the adjacency method and according to the number of elements in each order in
G, we attain the solution for k = 2, 3 or 4. Now, for all k ≥ 5, we have that the degree
of any element of order 23 is 13, which is the minimum among all others, and hence,
we are done.

2. For the first case, since the elements of order 22 are adjacent to all elements of order 2,
which include the maximum number of the elements, we obtain that

∆(E1(G)) = 2k + 1 + ϕ(22)− 1 + ϕ(23) = 2k + 6.

Now, when k = 2, let v(j) denote a vertex of order j. Then d(v(1)) = 5, d(v(2)) = 7,
and d(v(22)) = 6. Hence, we can conclude the result.

Theorem 4. Let G be a cyclic group of order pk, where p > 2 is a prime number and k > 1. Then
E1(G) is disconnected.

Proof. Let G be a cyclic group of order pk, where p > 2 is a prime number and k > 1. Then
the graph E1(G) is as shown in Figure 4.

Figure 4. The equitable graph Type I of cyclic groups of order pk.

Thus, for any 1 ≤ i ≤ k, we have |pi − pi−1| > min{pi, pi−1}. Hence, all elements
of order pi cannot be adjacent to any element of a different order. Therefore, the graph
consists of disconnected cliques.

Theorem 5. Consider the cyclic group G of order pk; p > 2 is a prime number, and k > 1. Then
E1(G) has the following properties

1. δ(E1) = 0, ∆(E1) = pk − pk−1 − 1.
2. There are k + 1 components.
3. γ(E1) = k + 1.
4. ω(E1) = pk−1(p − 1).
5. χ(E1) = pk−1(p − 1).

6. m(E1) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]
2

.

Proof. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1. Then

1. The result is clear for the minimum degree. Now, for the maximum degree, the result
follows as each element of the same order forms a complete subgraph and since
ϕ(p) < ϕ(p2) < . . . < ϕ(pk). Thus, ∆(E1) is equal to the degree of any element of
order pk.

2. Since the elements of the same order form a clique and by Theorem 4, we obtain that
the number of the components is the number of the divisors of |G|.
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3. According to Theorem 4 and the method of the adjacency, one vertex from each clique
can be in the dominating set that includes the identity. Thus, the cardinality of the
dominating set is at most k + 1. Therefore, the dominating set, say S, contains the
identity and one vertex of order pi for all 1 ≤ i ≤ k, and hence, |S| = k + 1.

4. The result is direct as the number of vertices in each clique equals ϕ(pi) for all
1 ≤ i ≤ k.

5. By the previous point, we obtain that at least pk−1(p − 1) colors are needed to label
the vertices. Since the components are disjoint, these colors can be reused. Hence,
χ(E1) = ω(E1).

6. The result can be obtained through the adjacency method and from the fact that all of
the elements of order pi form a complete subgraph for all 1 ≤ i ≤ k.

Theorem 6. Let G be a cyclic group of order 2k.q; q > 2 is a prime number, and k > 1, such that
|2i − q| ≤ min{2i, q} for some 1 ≤ i ≤ k. Then E1(G) is connected.

Proof. It is known that the divisors of n consist of 1, 2, 22, . . . , 2k, q, 2q, 22q,
. . . , 2kq. Then by Theorem 1, we obtain that the vertices of orders 1, 2, . . ., 2k are connected.
Consequently, |2jq− 2j−1q| = 2j−1q = min{2jq, 2j−1q} for all 1 ≤ j ≤ k, and this is achieved
by the connectedness of the vertices of orders q, 2q, . . ., 2kq. Therefore, by the condition
|2i − q| ≤ min{2i, q} for some 1 ≤ i ≤ k, the connectedness of this graph holds.

Proposition 2. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then
E1(G) has the following properties

1. δ(E1) = 1.
2. χ(E1) = ω(E1) = ϕ(n) + ϕ( n

2 ).

3. ∆(E1) =

{
ϕ(n) + ϕ( n

2 ) + ϕ( n
3 ) + ϕ( n

4 )− 1, i f q = 3;
ϕ(n) + ϕ( n

2 ) + ϕ( n
4 )− 1, i f q > 3.

Proof. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then
for the first point, the proof is followed, since deg(e) = 1, which is the minimum among
all vertices. For (2), as the orders n and n

2 involve the largest number of elements, and
since |2kq − 2k−1q| ≤ min{2kq, 2k−1q}, |2kq − 2k| > min{2kq, 2k}, and |2kq − 2k−2q| >
min{2kq, 2k−2q}, we obtain that the vertices of orders n and n

2 form the maximum clique. It
is clear that χ(E1) ≥ ω(E1). But from the relations above, we deduce that the colors of the
vertices of order n can be reused. Thus, χ(E1) ≤ ω(E1).

The maximum degree of this graph is the degree of a vertex of order n
2 ; this follows

from the previous points and according to the adjacency method. Now, if q > 3, we
have |2 − q| > min{2, q}. Consequently, |2k − 2k−1q| > min{2k, 2k−1q}. Hence, by the
arrangement of the order as in Theorem 6, we obtain the result. Otherwise, if q = 3, since
|3 − 2| ≤ min{3, 2}, we obtain that |2k−13 − 2k| ≤ min{2k−13, 2k}. Also, as |3 − 1| >
min{3, 1}, then |2k−13 − 2k−1| > min{2k−13, 2k−1}. Then

∆(E1) = ϕ(2k3) + ϕ(2k−13) + ϕ(2k) + ϕ(2k−23)− 1. (1)

Theorem 7. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then E1(G)
has the following properties:

1. If E1(G) is connected, then

(a)

{
γ(E1) = ⌊ t−4

5 ⌋+ 2, i f q = 3;
⌊ t−4

5 ⌋+ 2 ≤ γ(E1) ≤ ⌈ t
3⌉, i f q > 3.
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(b) diam(E1) = (t − 1)− (k − i).

where i is a positive integer such that 2i ≤ q ≤ 2i+1, and t denotes the number of divisors of
n, which in this case is equal to 2(k + 1).

2. If E1(G) is disconnected, then γ(E1) = 2⌈ k+1
3 ⌉.

Proof. Let G be a cyclic group of order 2k.q; q > 2 is a prime number, and k > 1. Then
consider the connected case of the graph, and let q = 3; then the divisors of n will be in the
following order:

1, 2, 3, 22, 2.3, 23, 223, 24, 233, . . . , 2k, 2k−13, 2k3.

Let v(j) denote a single vertex corresponding to an element of order j. Now, as the
vertex that is associated with the element of order 2, say v(2), is adjacent to the identity
and all vertices that are associated with elements of order 3 and 4, thus v(2) belongs to the
dominating set S. For the remaining t − 4 divisors, we have the following relation:

It is clear that any vertex associated with an element of order 2i, say v(2i), is adjacent
to all symmetrical vertices and all v(2i−1) and v(2i+1) for all 2 ≤ i ≤ k − 1. This implies that
any vertex v(2i3) is adjacent to all vertices of orders 2i+13 and 2i−13.

Also, since |2 − 3| ≤ min{2, 3}, we have |2i − 2i−13| ≤ min{2i, 2i−13}. And as
|22 − 3| ≤ min{22, 3}, we obtain |2i − 2i−23| ≤ min{2i, 2i−23} for all 2 ≤ i ≤ k − 2.
Therefore, v(2i3) is adjacent to all symmetrical vertices and all vertices v(2i−13), v(2i+13), v(2i+1)
and v(2i+2). Also, each vertex v(2i) is adjacent to all symmetrical vertices and all vertices
v(2i−1), v(2i+1), v(2i−23) and v(2i−13). Thus, according to the order of elements mentioned at
the beginning of the proof, we find that the dominating set contains v(223), v(26), v(273),
v(211), . . ., v(2k−1) or v(2k); so for every five consecutive divisors, one vertex can be in S,

and so γ(E1) > ⌊ t−4
5 ⌋+ 1. But since |2k3 − 2k| > min{2k3, 2k}, one vertex of v(n) or v( n

2 )

must be in S. Hence, we conclude the result. On the other hand, concerning the case of
q > 3, |2 − q| > min{2, q}, where the minimum value for this occurs at q = 3, so the graph
in this case is more interconnected based on the relationships mentioned previously. So
γ(E1) > ⌊ t−4

5 ⌋+ 2. But the equality is possible given that numerous examples achieve it.
For instance, if n = 245, then, according to the order of the divisors, which is as follows:

1, 2, 22, 5, 23, 2(5), 24, 22(5), 23(5), 24(5),

we obtain that the minimum dominating set contains the vertices v(2), v(2(5)) and v(24(5)),
where v(j) denotes a single vertex associated with an element of order j. Hence, γ(E1) =

3 = ⌊ 10−4
5 ⌋+ 2, and this yields the desired result. Also, it is clear that γ(E1) cannot be more

than ⌈ t
3⌉, whereas the occurrence of the maximum probability arises when for every set of

three consecutive divisors (orders), a singular vertex having an order equal to the middle
divisor is included in the dominating set.

The diameter of E1(G) in this case is clearly equal to the distance between the identity
and an element of order 2kq (as each divisor of n corresponds to a clique in E1(G)). Thus, if
q > 2k, then diam(E1) = t − 1. Otherwise, if 2i < q < 2i+1 for some 1 ≤ i ≤ k − 1, then

2i+1 < 2q < 2i+2

2i+2 < 22q < 2i+3

...
2k−1 < 2(k−1)−iq < 2k.

Then, the path, say P, that joined the identity with v(2kq) will be as follows: v(1) − v(2) −
. . . − v(2i) − v(2i+1) − . . . − v(2k) − v(2k−i)q − . . . − v(2k−1q) − v(2kq).

Now, as has been shown, all the vertices corresponding to the elements of orders
q, 2q, . . . , and 2(k−1)−iq have been excluded from P. This reduces the length by about
(k − 1)− i + 1 = k − i. Therefore, the result is obtained.
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Finally, when the graph E1(G) is disconnected, meaning |2k − q| > min{2k, q} and
q > 2k, there are two components by Theorem 6, and each component consists of k + 1
cliques that are joined successively as in Theorem 1. Therefore, in this case, the domination
number is twice the value of the domination number in Theorem 2.

Theorem 8. Let Sn and An be the symmetric and alternating groups, respectively, on a set of n
elements. Then

1. E1(Sn), where n ≥ 2, is connected.
2. E1(An) is connected for all n > 3.

Proof. The proof is straightforward due to the nature of the orders of the elements in these
groups.

The following theorems have been referenced for their applications in verifying the
Eulerian and planar properties of this graph.

Theorem 9 ([14] (Theorem 6.2.2)). For nontrivial connected graph Γ, the following statements
are equivalent:

1. Γ is Eulerian.
2. The degree of each vertex of Γ is an even positive integer.
3. Γ is an edge-disjoint union of cycles.

Theorem 10 ([14] (Theorem 8.4.1)). K5 is nonplanar.

Theorem 11. Let G be a cyclic group of order n; n is a positive integer. Then

1. E1(G) is not Eulerian for all n ≥ 3.
2. E1(G) is not Hamiltonian for all n ≥ 2.

Proof. Let G be a cyclic group of order n; n is a positive integer. Then the proof of the first
point follows from Theorem 9 since whenever the graph E1(G) is connected, the degree
of the identity vertex is equal to one, which is an odd integer. Now, for the second point,
according to the definition of the graph and since there is exactly one element of order 2 in
this group, there is only one edge that is incident to the identity. Hence, it is impossible to
have any Hamiltonian cycle in E1(G).

Theorem 12. Let G be a cyclic group of order n; n is a positive integer. Then E1(G) is planar for
all n ≤ 6 and nonplanar otherwise.

Proof. Let G be a cyclic group of order n; n is a positive integer. Then for each n > 6, the
graph E1(G) contains an induced subgraph K5, and this implies the nonplanarity of the
graph. On the other hand, the proof is obvious for n = 1, 2, 3 and 4. Also, if n = 5, then
E1(G) consists of an isolated vertex, which is the identity, and the complete graph k4, and
hence, it is planar. Finally, the planarity of the graph when n = 6 is shown in Figure 5.

Figure 5. The plane embedding of a cyclic group of order 6.
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3. Equitable Square-Free Number

This section endeavors to establish the conceptual frameworks of the equitable square-
free number and the equitable group. Furthermore, it encompasses a comprehensive study
of the connectedness properties inherent to the equitable graph Type I associated with such
a group, and we analyze its characteristics in detail.

Definition 2. Let p1 < p2 < · · · < pk be distinct prime numbers. The square-free number
n = ∏k

i=1 pi is called an equitable square-free number if and only if pi+1 − pi ≤ pi for all
i = 1, 2, · · · , k − 1.

Theorem 13. Let n be an equitable square-free number and consider the cyclic group G of order n.
Then

1. For p1 = 2, E1(G) is connected.
2. For p1 > 2, E1(G) is disconnected.

Proof. Let G be a cyclic group of order n, where n is an equitable square-free number. Then
the divisors of n will be arranged, in general, as follows:

1 , p1 , p2 , · · · , pk , p1 p2 , p1 p3 , · · · , p1 pk , p2 p3 , · · · · · · , pk−1 pk , p1 p2 p3 , p1 p2 p4 , · · · · · · ,
pk−2 pk−1 pk , p1 p2 p3 p4 , · · · · · · , p1 p2 . . . pk−1 , · · · , p2 p3 . . . pk , p1 p2 . . . pk = n

Since the order of the elements is the divisor of n, we first need to prove that any vertices
that have an order equal to the product of the same number of primes form a component;
that is, any two vertices of orders with the same number of primes have a path between
them. This is clear for order 1 since there is only one vertex that has this order, which is the
identity. Also, the vertices with order n clearly form a component.

Now we will prove this for the remaining divisors by using the mathematical induction
on the number of primes in the prime factorization of the divisors, say m. The proof is clear
for m = 1, n = pi; 1 ≤ i ≤ k according to the choice of n.
The base case of m = 2:

Let d1 = pi pj and d2 = pt ps be any two divisors such that j < i, t < s, and j ≤ t. By
the definition of n, we have

|pi+1 − pi| ≤ min{pi+1 , pi}; for all i = 1, 2, . . . , k − 1.

Then
|pj pi+1 − pj pi| ≤ min{pj pi+1 , pj pi} (2)

So if t = j, then this forms a path between the vertices of order d1 and d2. If j < t, then we
have the following:
By inequality (2), we can find a path from the vertices of order pj pi to the vertices of order
pj pk. Hence, from the ordering of the divisors, we obtain that:

pj+1 pj+2 − pj pk = pj+1 pj+2 − pj pj+2 + pj pj+2 − pj pk (3)

≤ pj pj+2 + pj pj+2 − pj pk (4)

= pj(2pj+2 − pk) ≤ pj pk (5)

Then
|pj+1 pj+2 − pj pk| ≤ min{pj+1 pj+2, pj pk} (6)

This forms an edge between the vertices of these orders. Then by using the same fact
as in inequality (2), we obtain that there is a path from the vertices of order pj pi to the
vertices of order pj+1 pk. Continuing the process in the inequalities (2) and (6), we can find
a path between vertices of orders d1 and d2. Therefore, for all α ∈ Sk such that α ̸= e and
α(j) < α(i), there is a path from any vertex of order pj pi to any vertex of order pα(j)pα(i),
where 1 ≤ j < i ≤ k.
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The inductive hypothesis: Assume that this is true for all m < k − 1. That is, for all α ∈ Sk
such that α ̸= 1 and α(i1) < α(i2) < · · · < α(im), there is a path between any two vertices
of orders ∏m

j=1 pij and ∏m
j=1 pα(ij)

.

The inductive proof: Let m = k − 1, and di = ∏k−1
t=1 pit and dj = ∏k−1

s=1 pjs are any two
divisors such that pit < pit+1 and pjs < pjs+1 for all 1 ≤ t, s ≤ k − 2. By the inductive
hypothesis, we have that there is a path between the vertices of orders d′ i = ∏k−2

t=1 pit
and d′ j = ∏k−2

s=1 pjs . Now if pik−1
= pjk−1

, we are done. So without loss of generality, let
pik−1

< pjk−1
. Then, similarly to the base case, we can find a path between the vertices

of orders di = d′ i pik−1
and dj = d′ j pjk−1

. Hence, for all α ∈ Sk such that α ̸= e and
α(i1) < α(i2) < · · · < α(ik−1), there is a path from the vertices of order ∏k−1

t=1 pit to the
vertices of order ∏k−1

t=1 pα(it).
Now, assume that p1 = 2. Then by the first part, we need to check the connectedness

between the components, and this is clear from the fact that for any integer m,

|2m − m| = m = min{2m, m}.

Thus, for any divisor d = pi1 pi2 . . . pit , where 2 ≤ t ≤ k − 1 and 2 < pi1 < pi2 < · · · < pit ,
we have

|2d − d| = d ≤ min{2d, d} (7)

Therefore, there is a path from any element of order ∏m
t=1 pit to any element of order

∏m+1
j=1 pij , where 1 ≤ m ≤ k − 1. Therefore, there is a path between any two vertices in

E1(G). Otherwise, if p1 > 2, since |pi − 1| > min{pi, 1} for all i = 1 , 2 , . . . , k, we have
that for any divisor d of |G|,

|d − 1| > min{d, 1} (8)

Then, there is no edge between the identity and any other vertex in the graph. Hence, the
identity is an isolated vertex.

For the disconnected case delineated in Theorem 13, the subsequent theorem examines
the cardinality of its constituent components.

Theorem 14. Let G be a cyclic group of order n = ∏k
i=1 pi, where n is an equitable square-free

number, and consider that p1 > 2. Then

1. E1(G) has 3 or 4 components for k = 2 or 3, respectively.
2. For k > 3, we have

• If |p1 p2 − pt| ≤ min{p1 p2, pt} for some 3 < t ≤ k. Then E1(G) has 3 components.
• If |p1 p2 − pi| > min{p1 p2, pi} for all 3 < i ≤ k, then the number of the components

in E1(G) will be as follows:{
5, |p1 p2 p3 − pt pl | ≤ {p1 p2 p3, pt pl} f or some 1 ≤ t < l ≤ k;
k + 1, |p1 p2 p3 − pi pj| > {p1 p2 p3, pi pj} f or all 1 ≤ i < j ≤ k.

Proof. Let G be a cyclic group of order n = ∏k
i=1 pi , where n is an equitable square-free

number. Now as p1 > 2, we have |pi − 1| > min{pi, 1}. Then

|n −
k−1

∏
r=1

pir | >
k−1

∏
r=1

pir = min{n,
k−1

∏
r=1

pir} (9)

Thus, there is no edge between the elements of order ∏k−1
r=1 pir and the elements of order

equal to n. These two components are depicted in Figure 6.



Mathematics 2024, 12, 2126 12 of 23

Figure 6. The disconnecting of the last components in E1(G).

In the figure, the dotted line circle represents a connected (not complete) subgraph,
and o(v) denotes the order of the element v in the group G. Hence, when k = 2, E1(G)
obviously has three components, as is shown in Figure 7.

Figure 7. The equitable graph Type I of G with k = 2.

Let k = 3. Then according to the choice of the prime numbers, we have |p1 p2 − p3| >
min{p1 p2, p3}. So there is no edge between any element of order pi and any element of
order pr ps. Thus, the graph has 4 components, as shown in Figure 8.

Figure 8. The equitable graph Type I of G with k = 3.

Now let k > 3 and assume that |p1 p2 − pt| ≤ min{p1 p2, pt} for some 3 < t ≤ k. This
implies that there is a path between any two elements of order pi and pr ps for all 1 ≤ i ≤ k
and 1 ≤ r < s ≤ k, respectively. Also, by this assumption, we obtain that

|p1 p2 . . . pt−1 pt+1 . . . pk − p3 . . . pt−1 pt pt+1 . . . pk| ≤ min{p1 p2 . . . pt−1 pt+1 . . . pk, p3 . . . pt−1 pt pt+1 . . . pk} (10)

Hence, there is a path between all elements of order ∏k−1
r=1 pir and ∏k−2

s=1 pjs . Also, by
choosing any 2 < i ≤ k such that i ̸= t, we obtain that

|p1 p2 pi − pt pi| ≤ min{p1 p2 pi, pt pi} (11)

And this forms a path between the elements of order ∏3
r=1 pir and ∏2

s=1 pjs . Continuing
this process, we obtain that there is a path between any two elements of order ∏m

r=1 pir
and ∏m−1

s=1 pjs for all 3 ≤ m ≤ k − 2. Therefore, there is a path between any two elements
of order ∏m

r=1 pir and ∏t
s=1 pjs , where 1 ≤ m , t ≤ k − 1, and hence, these vertices form a

component. Thus, the graph in this case is expressed as in Figure 9.
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Figure 9. E1(G) with 3 components, where k > 3.

On the other hand, if |p1 p2 − pi| > min{p1 p2, pi} for all 3 < i ≤ k. By the increasing
of the primes, we have that p1 p2 < pi pj for all 1 ≤ i ≤ k − 1, 2 < j ≤ k and i < j. Then

|pi pj − pr| > min{pi pj, pr}; ∀1 ≤ r ≤ k and 1 ≤ i < j ≤ k (12)

Therefore, there is no path between any two elements of order pr and pi pj. Hence, the two
components C1 and C2 are disjoint, where Cm denotes the components that consist of all
elements of order ∏m

j=1 pij for all 1 ≤ m ≤ k. Consequently, we have

|
k−1

∏
r=1

pir −
k−2

∏
s=1

pjs | > min{
k−1

∏
r=1

pir ,
k−2

∏
s=1

pjs} (13)

Thus, the disjoint components are depicted in Figure 10.

Figure 10. The disconnected components in E1(G) with 5 components.

Now consider the case |p1 p2 p3 − pt pl | ≤ min{p1 p2 p3, pt pl} for some 1 ≤ t <
l ≤ k. Hence, there is a path from any element of order pi pj to any element of order
∏3

r=1 pir . Then, by choosing any c /∈ {1, 2, 3, t, l}, we obtain that |p1 p2 p3 pc − pt pl pc| ≤
min{p1 p2 p3 pc, pt pl pc}. Thus, this forms a path from any element of order ∏3

r=1 pir to any
element of order ∏4

s=1 pjs . Sustaining this procedure, we obtain that

|
m

∏
r=1

pir −
m−1

∏
s=1

pjs | ≤ min{
m

∏
r=1

pir ,
m−1

∏
s=1

pjs}; ∀4 ≤ m ≤ k − 2 (14)

Therefore, there is a path between any two elements of these orders, and hence, it forms a
component such as that shown in Figure 11.

Figure 11. The middle component in E1(G) with 5 components.
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Otherwise, if |p1 p2 p3 − pi pj| > min{p1 p2 p3, pi pj} for all 1 ≤ i < j ≤ k, then
p1 p2 p3 > pi pj for all 1 ≤ i < j ≤ k. Also, since p1 p2 p3 < pi pj pr for all 1 ≤ i < j < r ≤ k,
we obtain that

|
3

∏
r=1

pir −
2

∏
s=1

pjs | > min{
3

∏
r=1

pir −
2

∏
s=1

pjs (15)

Hence, there is no path between these components, as presented in Figure 12.

Figure 12. The disconnection of the first four components in E1(G) with k + 1 components.

From inequality (15), we obtain

|
k−2

∏
r=1

pir −
k−3

∏
s=1

pjs | > min{
k−2

∏
r=1

pir ,
k−3

∏
s=1

pjs} (16)

Hence, these components are disjoint, as described in Figure 13.

Figure 13. The disconnection of the last four components in E1(G) with k + 1 components.

Then, by the mathematical induction on the number of primes in the prime factoriza-
tion of the divisors, say m, we will prove that the component containing elements of order
∏m

r=1 pir and the component consisting of elements of order ∏m−1
r=1 pir for all 4 ≤ m ≤ k − 3

are separated.
The base case, m = 4: First, claim p1 p2 p3 p4 > pk−2 pk−1 pk. Then

p1 p2 p3 p4 > pi pj pr; for all 1 ≤ i < j < r ≤ k.

Now since p1 p2 > pi for all 1 ≤ i ≤ k and p1 p2 p3 > pi pj for all 1 ≤ i < j ≤ k, then
p1 p2 p3 > pk−1 pk.

Moreover, as p4 is greater than every prime on the left side of the inequality and pk−2
is smaller than every prime on the other side, according to the choice of the primes, we
obtain that

p1 p2 p3 p4 > pk−2 pk−1 pk

Thus, by the increasing these numbers, we have
p1 p2 p3 p4 > pi pj pr for all 1 ≤ i < j < r ≤ k. From inequality (15) and for any

t ∈ {1, 2, . . . , k}, such that pt > pir and pt > pjs for all r = 1, 2, 3 and s = 1, 2, respectively,
then

|
3

∏
r=1

pir pt −
2

∏
s=1

pjs pt| > min{
3

∏
r=1

pir pt,
2

∏
s=1

pjs pt} (17)

Furthermore, p1 p2 p3 − pk−1 pk > min{p1 p2 p3, pk−1 pk} = pk−1 pk

p1 p2 p3 p4 − p4 pk−1 pk > p4 pk−1 pk (18)
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and
p1 p2 p3 pk−2 − pk−2 pk−1 pk > pk−2 pk−1 pk (19)

Then
p1 p2 p3 pk−2 − p4 pk−1 pk > p4 pk−1 pk (20)

Then, adding the inequalities (18) and (19) gives

[p1 p2 p3 p4 − pk−2 pk−1 pk] + [p1 p2 p3 pk−2 − p4 pk−1 pk] > pk−2 pk−1 pk + p4 pk−1 pk (21)

Also, inequality (20) implies that

p1 p2 p3 p4 − pk−2 pk−1 pk > pk−2 pk−1 pk

Then,

|
4

∏
r=1

pir −
3

∏
s=1

pjs | > min{
4

∏
r=1

pir ,
3

∏
s=1

pjs} (22)

Thus, there is no path from any element of order ∏3
s=1 pjs to any element of order ∏4

r=1 pir .
The inductive hypothesis: Assume that this is true for all m < k − 3, that is

|
m

∏
r=1

pir −
m−1

∏
s=1

pjs | > min{
m

∏
r=1

pir ,
m−1

∏
s=1

pjs} (23)

Then the resulting components are depicted in Figure 14.

Figure 14. The disconnection of the middle components in E1(G) with k + 1 components.

The inductive proof: Claim that |∏k−3
r=1 pir − ∏k−4

s=1 pjs | > min{∏k−3
r=1 pir , ∏k−4

s=1 pjs}.
Now from the inductive hypothesis, we have for all k − 4 < s ≤ k and ps > pij for all
1 ≤ j ≤ k,

|p1 p2 . . . pk−4 ps −
k−5

∏
j=1

pij ps| > min{p1 p2 . . . pk−4 ps,
k−5

∏
j=1

pij ps} (24)

Then, similarly to the base case, we obtain

p1 p2 . . . pk−3 > p5 p6 . . . pk, and
|p1 p2 . . . pk−3 − p5 . . . pk| > min{p1 p2 . . . pk−3, p5 . . . pk}

Then

|p1 p2 . . . pk−3 −
k−4

∏
j=1

pij | > min{p1 p2 . . . pk−3,
k−4

∏
j=1

pij} (25)

And hence, p1 p2 . . . pk−3 > ∏k−4
j=1 pij .

Thus, the increase of the primes implies that

|
k−3

∏
r=1

pir −
k−4

∏
s=1

pjs | > min{
k−3

∏
r=1

pir ,
k−4

∏
s=1

pjs} (26)

Therefore, there is no path between any two elements of orders ∏k−3
r=1 pir and ∏k−4

s=1 pjs .
Hence, there is no path between any element of order ∏m

r=1 pir and any element of order
∏m−1

s=1 pjs for all 4 ≤ m ≤ k − 4, and this complete the proof.
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Definition 3. Let G be a finite group. Then G is said to be an equitable group if the order of G is
an equitable square-free number.

Example 3. The symmetric group S3, the dihedral group D30 and the cyclic group of order 1729
are examples of equitable groups.

Corollary 1. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where pi are distinct primes

for all 1 ≤ i ≤ k. Then the only cases in which E1(G) is connected to k = 2, 3 or 4 are
n = 6, 30 or 210, respectively.

Proposition 3. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes for all 1 ≤ i ≤ k. Consider the disconnected graph E1(G). Then
E1(G) has the following properties:

1. δ(E1) = 0,
2. χ(E1) = ω(E1) = ϕ(n),
3. ∆(E1) = ϕ(n)− 1,

4. 2k − 2 ≤ γ(E1) ≤ ⌈ 2k−2
3 ⌉+ 2.

Proof. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes, and consider the disconnected graph E1(G). Then, the
identity is isolated, and hence, we obtain the result of the minimum degree. Also, since
all the vertices that are associated with the elements of order n in G, which occupies the
largest number of vertices, form a disjoint clique by Theorem 14, we obtain (2) and (3).

To prove (4), let Cm denote a component that consists of vertices that correspond to
the elements of order dm = ∏m

j=1 pij , where 1 ≤ m ≤ k in the group. Then we have k + 1
components, including the identity. From Theorem 14, we obtain that the identity and
one vertex from Ck belong to the dominating set, say S. The two components C1 and Ck−1

consist of k = (k
1) = ( k

k−1) connected cliques. Hence, taking into view the number of cliques
in these components and the difference between the divisors, at least one vertex of each of
them can be in S. Each one of the remaining (k − 3) components consists of (k

j) connected
cliques, which is greater than k for all 2 ≤ j ≤ k − 2. So again, based on a similar reason, at
least two vertices of each component belong to S. Thus, the dominating set S consists of at
least 4 + 2(k − 3) = 2k − 2 components. The highest value that S can attain is ⌈ 2k−2

3 ⌉+ 2
since each divisor of n corresponds to a clique in this graph and, in our case, n has 2k

divisors. As previously explained, the identity and one vertex of Ck are included in the
dominating set. Therefore, 2k − 2 cliques remain, in which, for each three consecutive
cliques, one vertex can be in S, which has an order equal to the middle ones.

Proposition 4. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes. Consider the connected graph E1(G). Then E1(G) has the
following properties:

1. δ(E1) = 1.
2. ∆(E1) = ϕ(n) + ϕ( n

2 ) + ϕ( n
3 )− 1.

3. χ(E1) = ω(E1) = ϕ(n) + ϕ( n
2 ).

4. γ(E1) ≥ k + 1 unless k = 2, 3 or 4, in which case, γ(E1) = k.

5. diam(E1) ≥ 2γ(E1) unless k = 2, 3 or 4, in which case, diam(E1) = 3, 6 or 10, respectively.

Proof. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes, and consider the connected graph E1(G). Then the
number of vertices that are associated with the elements of order 2 in G is ϕ(2) = 1, for
which the identity is uniquely adjacent to it, and this yields the result of (1). Now, the
two following differences |n − n

2 | ≤ min{n, n
2 } and | n

2 − n
3 | ≤ min{ n

2 , n
3 } lead to any

vertex associated with an element of order n
2 being adjacent to all symmetrical vertices and
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all vertices that are associated with elements of order n and n
3 . Moreover, as | n

2 − n
5 | >

min{ n
2 , n

5 } and |n − n
3 | > min{n, n

3 }, taking into consideration the number of elements in
each order, this gives (2) and (3), respectively.

The diameter and the domination number of the graph when k = 2, 3 or 4 is obtained
obviously. On the other hand, let k be greater than four. Then the first four primes are always
2, 3, 5 and 7, which means that the divisors of n begin as 1, 2, 3, 5, 6, 7, 10, . . . , n

2 , n. Let
v(i) denote a single vertex associated with an element of order i in G for all 1 ≤ i ≤ n. Then
we have v(2), v(10), v(42), v( n

2 )
or v(n) and one vertex from the component Ck−1, where Cm is

defined as in Proposition 3 are always belonging to S. Now for the residue components (C3
to Ck−2), at least k − 4 vertices from these components can be included in the dominating
set regarding the connectedness of the graph and the difference between the divisors. Thus,
γ(E1) ≥ k + 1.

Moreover, the diameter of the graph is clearly the shortest path from the identity to
v(n), which, in this case, usually starts as v(1) → v(2) → v(3) → v(6) → v(10) → . . . → v(n).

So we obtain that each vertex in S gives at least two edges in this path in addition to
the edge between v(3) and v(6). Hence, we conclude the result.

4. Zagreb Indices of the Equitable Graph

Topological indices are crucial for analyzing the physico–chemical characteristics of
chemical compounds. They include degree-based and distance-based molecular structures
and hybrid formulations. These indices are leading tools for identifying physical properties,
chemical reactivity and biological activities of compounds. For any graph Γ with vertex set
V and edge set E, the first and second Zagreb indices are defined as M1(Γ) = ∑

u∈V

(
d(u)

)2

and M2(Γ) = ∑
uv∈E

d(u)d(v). The forgotten index is similar to the first Zagreb index, which

is defined as F(Γ) = ∑
u∈V

(
d(u)

)3. For more details, see [15,16]. Through this section, we

determine these three indices for the equitable graph Type I from some specific cyclic
groups.

Theorem 15. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then the first, second
and forgotten Zagreb indices of E1(G) will be as follows:

1. M1(E1(G)) = 10 + 2k−1((3)2k−2 − 1)
2
+

k−2

∑
i=1

2i((7)2i−1 − 1)
2
.

2. M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v2i )d(v2i+1)] +
k

∑
i=2

[ si(si + 1)
2

]
[d(v2i )]2

where si = ϕ(2i)− 1 = 2i−1 − 1.

3. F(E1(G)) = 28 + 2k−1((3)2k−2 − 1)
3
+

k−2

∑
i=1

2i((7)2i−1 − 1)
3
.

Proof. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then as ϕ(2i) = 2i−1

and for any vertex v that associates with an element of order 2i; 2 ≤ i ≤ k − 1, we have
d(v) = ϕ(2i−1) + ϕ(2i)− 1 + ϕ(2i+1), and if i = 1 or k, d(v) = 3 or [ϕ(2k−1) + ϕ(2k)],
respectively. Then, computing M1(E1) = ∑

v∈V(E)
d2(v), we obtain

M1(E1(G)) = 1 + 9 + ϕ(22)[1 + ϕ(22)− 1 + ϕ(23)]2 + ϕ(23)[ϕ(22) + ϕ(23)− 1+
ϕ(24)]2 + . . . + ϕ(2k−1)[ϕ(2k−2) + ϕ(2k−1)− 1 + ϕ(2k)]2 + ϕ(2k)[ϕ(2k−1) + ϕ(2k)− 1]2.

Hence, substituting the value of ϕ(2i) and using Lemma 2, we obtain the result.
Now for the second Zagreb index, let v(2i) denote the vertex corresponding to an

element of order 2i; then
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M2(E1(G)) = ∑
uv∈E(E1)

d(u)d(v)

= (1)(3) + 2[d(v(2))d(v(22))] +
( ϕ(23)−1

∑
j=1

j
)
[d(v(23))]

2 + (22)(23)[d(v(23))d(v(24))]

+
( ϕ(24)−1

∑
j=1

j
)
[d(v(24))]

2 + . . . . . . + (2k−2)(2k−1)[d(v(2k−1))d(v(2k))] +

( ϕ(2k)−1

∑
j=1

j
)
[d(v(2k))]

2.

Setting si = ϕ(2i)− 1, using the fact that
n

∑
j=1

j =
n(n + 1)

2
, and since all the vertices that

correspond to elements of the same order have the same degree, we obtain what is required.
For the forgotten index, we have the following:

F(E1(G)) = 1 + 27 + ϕ(22)[1 + ϕ(22)− 1 + ϕ(23)]3 + ϕ(23)[ϕ(22) + ϕ(23)− 1+
ϕ(24)]3 + . . . + ϕ(2k−1)[ϕ(2k−2) + ϕ(2k−1)− 1 + ϕ(2k)]3 + ϕ(2k)[ϕ(2k−1) + ϕ(2k)− 1]3.

Then, similarly to the first index, we obtain the desired outcome.

Example 4. Let G be a cyclic group of order 2k; k > 1. Table 1 shows the value of the topological
indices of E1(G).

Table 1. The topological indices of a cyclic group G of order 2k for some k > 1.

|G| = 22 |G| = 23 |G| = 24 |G| = 25 |G| = 26

M1(E1(G)) 18 182 1726 15,054 125,678
M2(E1(G)) 19 465 9677 176,325 300,5621
F(E1(G)) 44 960 19,896 361,384 6,151,048

Theorem 16. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1 is a positive
integer. Then the first, second and forgotten Zagreb indices of E1(G) will be as follows:

1. M1(E1(G)) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]2.

2. M2(E1(G)) =
k

∑
i=1

[ si(si + 1)
2

.(si)
2]

where si = ϕ(pi)− 1; 1 ≤ i ≤ k.

3. F(E1(G)) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]3.

Proof. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1 is a positive
integer. Then the result for the first Zagreb and the forgotten indices follows from the fact
that each clique in this graph has ϕ(pi) vertices, where pi is the order of the group elements
that correspond to these vertices for all 1 ≤ i ≤ k, and hence, the degree of any vertex v in
such a clique is ϕ(pi)− 1.

Now for the second Zagreb index, since each vertex is adjacent only to the vertices
that associate with elements of the same order, consider the clique, say Q, of vertices that
correspond to elements of order pi for some 1 ≤ i ≤ k. Let v1 , v2 , . . . , vt, where t = ϕ(pi).



Mathematics 2024, 12, 2126 19 of 23

Then d(u) = d(v), f or all u ̸= v in Q, and by computing ∑ d(u).d(v), uv ∈ E(E1), we
obtain

d(v1)d(v2) + d(v1)d(v3) + . . . + d(v1)d(vt)
+ d(v2)d(v3) + d(v2)d(v4) + . . . + d(v2)d(vt)
...
+ d(vt−2)d(vt−1) + d(vt−2)d(vt) + d(vt−1)d(vt)
= d(v1)[(ϕ(pi)− 1)(d(v1))] + d(v2)[(ϕ(pi)− 2)(d(v2))] + . . . + d(vt−2)[2(d(vt−2))]
+ d(vt−1)[1(d(vt−1))]

=
t−1

∑
j=1

j[d(vj)]
2 =

[ t − 1(t)
2

]
(t − 1)2.

Therefore, by generalizing this sum to all 1 ≤ i ≤ k, we obtain the result.

Example 5. Let G be a cyclic group of order pk; k > 1 and p > 2. Table 2 shows the value of the
topological indices of E1(G).

Table 2. The topological indices of a cyclic group G of order pk; p > 2 for some k > 1.

|G| = 32 |G| = 33 |G| = 52 |G| = 53 |G| = 72 |G| = 73

M1(E1(G)) 152 157,040 7256 987,356 70,752 1,307,720
M2(E1(G)) 376 4,064,272 68,644 48,583,594 1,447,716 71,230,240
F(E1(G)) 752 8,128,544 137,288 97,167,188 2,895,432 142,460,480

Theorem 17. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then the
first Zagreb index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≤ t < k, we have

M1(E1(G)) = 10 +
t−1

∑
i=1

2i[(7)2i−1 − 1]2 + 2t−1[(7)2t−2 + q − 2]2 + (q − 1)[(3)2t−1+

2q − 3]2 +
k−1

∑
i=t+1

2i−1[(7)2i−2 + (3)2i−t−2(q − 1)− 1]2 +
k−t−1

∑
i=1

2i−1(q − 1)[(7)2i−2(q−

1) + (3)2i+t−1 − 1]2 + 2k−1[(3)2k−2 + (3)2k−t−2(q − 1)− 1]2 + 2k−t−1(q − 1)[2k−1+

(7)2k−t−2(q − 1)− 1]2 +
k−1

∑
i=k−t+1

2i−1(q − 1)[(7)2i−2(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q−

1)− 1]2.

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, we have

M1(E1(G)) = 10 +
k−2

∑
i=1

2i[(7)2i−1 − 1]2 + 2k−1[(3)2k−2 + q − 2]2 + (q − 1)[2k−1 + 2q−

3]2 +
k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]2.

• If q > 2k, and |q − 2k| > min{q, 2k}, we have

M1(E1(G)) = 10 +
k−2

∑
i=1

2i[(7)2i−1 − 1]2 + 2k−1[(3)2k−2 − 1]2 + (q − 1)[2q − 3]2+

k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]2.

Proof. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then
consider the arrangement of the divisors according to the position of the prime number q.
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Assume the first case; then the divisors will be as follows:
1, 2, 22, . . . , 2t, q, 2t+1, 2q, 2t+2, 22q, . . . , 2k, 2k−t, . . . , 2kq.
For the later cases, the divisors will be as mentioned in the proof of Theorem 6. Hence,
applying identical procedures as outlined in Theorem 15 and using Lemma 2, we achieve
the desired outcome.

Theorem 18. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
second Zagreb index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≥ t < k, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2

+
k

∑
i=0

ϕ(2iq)ϕ(2i+1q)[d(v(2iq))d(v(2i+1q))] +
k

∑
i=t

22i−t−2(q − 1)[d(v(2i))d(v(2i−tq))]

+
k

∑
i=t+1

22i−t−3(q − 1)[d(v(2i−t−1q))d(v(2i))].

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2+

2k−1(q − 1)[d(v(2k))d(v(q))] +
k−1

∑
i=0

ϕ(2iq)ϕ(2i+1q)[d(v(2iq))d(v(2i+1q))].

• If q > 2k, and |q − 2k| > min{q, 2k}, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2

+
k−1

∑
i=0

ϕ(2iq)ϕ(2i+1q)[d(v(2iq))d(v(2i+1q))].

where si = ϕ(i)− 1 and d(v(j)) denote the degree of a vertex that is associated with an
element of order j.

Proof. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then
applying the same procedure as in Theorems 15 and 17, we obtain the result.

Theorem 19. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
forgotten index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≥ t < k, we have

F(E1(G)) = 28 +
t−1

∑
i=1

2i[(7)2i−1 − 1]3 + 2t−1[(7)2t−2 + q − 2]3 + (q − 1)[(3)2t−1+

2q − 3]3 +
k−1

∑
i=t+1

2i−1[(7)2i−2 + (3)2i−t−2(q − 1)− 1]3 +
k−t−1

∑
i=1

2i−1(q − 1)[(7)2i−2(q−

1) + (3)2i+t−1 − 1]3 + 2k−1[(3)2k−2 + (3)2k−t−2(q − 1)− 1]3 + 2k−t−1(q − 1)[2k−1+

(7)2k−t−2(q − 1)− 1]3 +
k−1

∑
i=k−t+1

2i−1(q − 1)[(7)2i−2(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q−

1)− 1]3.

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, we have
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F(E1(G)) = 28 +
k−2

∑
i=1

2i[(7)2i−1 − 1]3 + 2k−1[(3)2k−2 + q − 2]3 + (q − 1)[2k−1 + 2q−

3]3 +
k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]3.

• If q > 2k, and |q − 2k| > min{q, 2k}, we have

F(E1(G)) = 28 +
k−2

∑
i=1

2i[(7)2i−1 − 1]3 + 2k−1[(3)2k−2 − 1]3 + (q − 1)[2q − 3]3+

k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]3.

Proof. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
proof is similar to Theorems 15 and 17.

5. The Adjacency Matrix A(E1(G))

In graph theory, the adjacency matrix of a simple graph Γ is a symmetric matrix
A(Γ) = (aij) of size n × n, where n represents the number of vertices in the graph. The
matrix is defined such that aij = 1 if the vertices vi and vj are adjacent and 0 otherwise.

This section deals with obtaining the adjacency matrix of the equitable graph of Type I
that arises from cyclic p groups.

Proposition 5. Let G be a cyclic group of order 2k; k > 2 (or pk; k > 1, and p > 2 is a prime
number). Then the adjacency matrix of the equitable graph Type I of G will be as follows:

A(E1(G)) =



0 . . . . . . . . . . . . . . . . . . . . . . . .
... J∗

... J
... . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... J∗
... . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . .
. . . . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
... . . . . . .

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . . . . . . . . J∗
... J

. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . . . . . . . . J
... J∗


Proof. Let G be a cyclic group of order n and assume that n = 2k; k > 2. Then according
to the adjacency method, let J be a 3 × 3 matrix for which each entry equals one, and J∗ is
similar to J except that it has zeros in the main diagonal. In A(E1(G)), the first row consists
of zeros except for in the (2k−1)th position. The middle row, (2k−1), has one only in the
positions (2k−1 , 0), (2k−1 , 2k−2) and (2k−1 , 2k−23). Now for each (4m)th row, where
m ≥ 1, if m is odd, then there are zeros in the positions (4m , i), where i = 0, 4m, 2k−1,
and all odd numbers. On the other hand, if m is even such that 4m ̸= 2k−1, this row has
ones in the positions (4m, 4i) for all i ≥ 1 and i ̸= m. The corresponding rows and columns
are symmetric.

Now suppose that n = pk, where p > 2, and k > 1. Then by the definition of the
graph, in this case, J and J∗ are (p − 1 × p − 1) matrices, and they are as defined as before.
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The first row (column) is zeros, and the remaining rows (columns) in A(E1(G)) have the
following explanations

First, if p = 3, the (3m)th rows, where m ≥ 1 and 3m ̸= 3k−1 or (2)3k−1, have ones in
the positions (3m , 3i), where i ≥ 1, except for the case when i = 3k−2 or (2)3k−2 or i = m.
For the (3k−1)th and ((2)3k−1)th rows (columns), they have one at a unique position where
the row and the column intersect mutually. Now if p > 3, then the (pr)th rows, where
r ≥ 1, consist of ones only in the positions (pr , pi) for all i ≥ 1 and i ̸= r.

Example 6. Let G ∼= Z8. Then

A(E1(G)) =



0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 1 0 0 0 1 0
0 1 1 1 0 0 1 1
0 1 1 1 1 1 0 1
0 1 1 1 0 1 1 0


Example 7. Let G be a cyclic group of order 2k; k = 2. Then

A(E1(G)) =


0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0


Example 8. Let G ∼= Z9. Then

A(E1(G)) =



0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 1 1
0 1 1 0 1 0 0 1 1
0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 1
0 1 1 0 1 1 0 1 0


6. Conclusions

In this research, we introduced the equitable graphs Type I on groups. We studied
the connectedness of these graphs for some groups and explored some of their theoretical
properties. Additionally, the equitable square-free number and the equitable group were
established. Furthermore, the connectedness and characteristics of the graph of cyclic
equitable groups were investigated. The first, second and forgotten Zagreb indices were
determined for the equitable graph Type I of specific groups. Finally, the adjacency matrix
for the equitable graph Type I of cyclic p-groups was obtained. The newly introduced graph
has significant potential for further investigation into its properties. Promising avenues
for future research include analyzing equitable graph Type I, examining its perfectness,
computing spectral properties, and elucidating connections with other well-known graph
classes associated with finite groups. Addressing these open problems can provide valuable
insights into theoretical and practical aspects, advancing our understanding of finite group
theory and its interplay with graph theory.
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