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Abstract: Developers often rely on online resources, such as Stack Overflow (SO), to seek assistance for
programming tasks. To facilitate effective search and resource discovery, manual tagging of questions
and posts with the appropriate programming language is essential. However, accurate tagging
is not consistently achieved, leading to the need for the automated classification of code snippets
into the correct programming language as a tag. In this study, we introduce a novel approach
to automated classification of code snippets from Stack Overflow (SO) posts into programming
languages using generative pre-trained transformers (GPT). Our method, which does not require
additional training on labeled data or dependency on pre-existing labels, classifies 224,107 code
snippets into 19 programming languages. We employ the text-davinci-003 model of ChatGPT-3.5
and postprocess its responses to accurately identify the programming language. Our empirical
evaluation demonstrates that our GPT-based model (SCC-GPT) significantly outperforms existing
methods, achieving a median F1-score improvement that ranges from +6% to +31%. These findings
underscore the effectiveness of SCC-GPT in enhancing code snippet classification, offering a cost-
effective and efficient solution for developers who rely on SO for programming assistance.

Keywords: SCC (Source Code Classification); NLP (Natural Language Processing); Large Lagnuage
Model (LLM)

MSC: 68T01

1. Introduction

Developers frequently rely on online resources to seek assistance and guidance for
their programming tasks, using online sources such as Stack Overflow (SO) or video pro-
gramming tutorials. When searching for solutions or information, developers often include
specific programming languages in their queries to narrow down the search results and find
relevant resources. Platforms like Stack Overflow (SO) provide tagging functionality to help
with indexing the immense amount of information available. Developers can manually tag
their questions or posts with the appropriate programming language of the attached code
snippet to make them more discoverable and to increase the chances of receiving relevant
answers [1,2]. However, despite the availability of tagging features and its importance,
not all questions or posts are adequately tagged with the proper programming language,
and some may even be tagged incorrectly [3,4].

To address this issue, it is crucial to automate the classification of source code snip-
pets in Stack Overflow (SO) posts into the correct programming language. Extensive
research efforts have been dedicated to utilizing machine learning (ML) and Natural Lan-
guage Processing (NLP) techniques for accurately classifying source code into appropriate
programming languages [5–8]. However, it is important to note that much of the prior
work in this area has primarily focused on classifying large source code files obtained
from datasets like GitHub, which inherently possess more features than the code snippets
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typically found in SO posts [9]. Consequently, applying these existing methods directly
to code snippets may yield suboptimal results due to the variations in code length and
contextual information. Those code snippets could also be found in programming video
tutorials where classifying the code could help in mining the programming videos such as
in extracting source code [10–12], classifying video frames [13–15], and finding relevant
software artifacts for video contents [16–18].

Several studies have focused on the classification of code snippets in Stack Over-
flow (SO) posts into 21 different programming languages [4,9,19]. In their research, Al-
rashedy et al. [9,19] gathered a substantial dataset, comprising 232,727 SO posts that
contained code snippets and were already tagged with 21 programming languages. They
proposed the Source Code Classification (SCC) model [19], utilizing the Multinomial Naive
Bayes (MNP) [20] algorithm to train their dataset. In a subsequent study, they introduced
SCC++ [9], employing gradient boosting algorithms such as XGBoost [21] and Random
Forest (RF) [22] to enhance the learning process. Another study by Yang et al. proposed
DeepSCC [4], which was designed to further improve the performance of predicting the
programming language of the same dataset by fine-tuning the RoBERTa model [23]. Despite
achieving reasonable results, the practicality and feasibility of these models may be limited
for two reasons: (i) they were primarily trained on a dataset with potentially inaccurate
labels, as they were manually tagged by the creators of the SO posts, and (ii) developers
cannot directly utilize these models for assistance in tagging and/or classifying code snip-
pets. Consequently, addressing these limitations and exploring alternative approaches
becomes crucial for improving the practicality and usability of code snippet classification.

Recently, large-scale language models, particularly generative pre-trained transform-
ers (GPT) [24], have emerged as powerful tools for tackling real-world challenges. These
models have undergone extensive training on vast amounts of data, enabling them to
develop a comprehensive understanding of language patterns and structures. One key
advantage of these models is their remarkable ability to generalize across diverse tasks
without requiring extensive fine-tuning specific to each task. This versatility has generated
considerable interest among researchers, leading to their application in various domains,
including code generation [25], code and model completion [26–28], and bug fixing [29,30].
Moreover, Large Language-based Models like ChatGPT have demonstrated their potential
in assisting developers without the need to train models from scratch or rely on manually
labeled datasets. However, the effectiveness of these models in classifying code snippets
remains an underexplored area, presenting an opportunity for further investigation and
potential advancements in the Source Code Classification (SCC) domain.

In this paper, we propose a novel and cost-effective approach that harnesses the
power of generative pre-trained transformers (GPTs) for the automatic classification of code
snippets obtained from Stack Overflow (SO) into 19 distinct programming languages. Our
study focuses on evaluating and analyzing the performance of ChatGPT-3.5, utilizing the
advanced text-davinci-003 model, to accurately predict the programming language of a
substantial dataset comprising 224,107 code snippets. We utilized ChatGPT by requesting
it to identify the programming language used in each code snippet. We then postprocessed
the model’s response by removing any unrelated text and keeping only the detected
programming language.

We conducted a comprehensive performance comparison against well-established
traditional ML-based models, including SCC [19], SCC++ [9], a state-of-the-art DL-based
model called DeepSCC [4], and the Programming Languages Identification (PLI) [31] tool,
renowned for its exploitation of diverse statistical and syntactic features. Our extensive
evaluation revealed that the Source Code Classification using a GPT-based model, referred
to as SCC-GPT, significantly outperformed all existing approaches on the 19 programming
languages. Notably, the median F1-score of SCC-GPT exhibited remarkable improvements,
ranging between +6% and +31%, compared to the aforementioned models.

We have included in our online appendix https://zenodo.org/records/11832019
(accessed on 4 July 2024) (i) the entire dataset that contains code snippets and the cor-

https://zenodo.org/records/11832019


Mathematics 2024, 12, 2128 3 of 12

responding programming language and (ii) the script with the prompt we formulated,
the postprocessing script, and the results analysis.

The remainder of the paper is organized as follows: Section 2 reviews related work.
Section 3 outlines dataset extraction and processing, along with machine learning classifiers.
Section 4 presents our results. Finally, threats to validity and conclusions are outlined in
Sections 5 and 6.

2. Related Work
2.1. Source Code Classification

Prior investigations into source code classification have taken various routes. However,
most of them have not fully leveraged the potential of modern, transformer-based language
models in classifying smaller code snippets. For example, Khasnabish et al. [5] assembled
over 20,000 source code files from multiple GitHub repositories. Employing a Bayesian
classifier, their model aimed to predict 10 programming languages. In another approach,
Gilda [6] proposed a neural network-based model for source code classification. Van
Dam and Zaytsev [7] explored software language identification using natural language
classifiers. Their experiment further highlighted the potential of leveraging language
processing techniques. In addition, the programming language identification tool by
Algorithmia [31] offers a practical solution for language detection. Nevertheless, these
models’ efficacy in the context of smaller code snippets, like those typically found on Stack
Overflow, hasn’t been comprehensively evaluated. Moreover, it is crucial to emphasize that
the labeling of data must be carried out prior to any analysis or utilization.

On the other hand, Baquero et al. [8] focused on extracting knowledge from Stack
Overflow posts to predict the programming language. Their method, while innovative,
lacked the ability to handle isolated code snippets without contextual clues being provided
in Stack Overflow posts. A couple of studies by Alrashedy et al. [9,19] demonstrated the
application of machine learning in predicting programming languages from Stack Overflow
snippets and questions. However, their machine learning models required comprehensive
training and lacked robustness across different languages. Lastly, Yang et al. [4] developed
DeepSCC, a classification approach based on a fine-tuned RoBERTa model, and demon-
strated its capabilities with the aid of natural language statistical models, although using
a fine-tuned RoBERTa model requires extra network training. Moreover, it is crucial to
emphasize that the labeling of data must be carried out prior to any analysis or utilization
used in the aforementioned work.

In contrast to prior studies, our approach employs a Large Language Model for source
code classification, surpassing state-of-the-art methods in efficiency and accuracy without
the need for additional training. While existing studies predominantly concentrated on
classifying large source code files from GitHub, our research uniquely addresses the diverse
and fragmented nature of code snippets on platforms like Stack Overflow.

2.2. ChatGPT in Software Engineering

The use of Large Language Models (LLMs) like ChatGPT in software engineering has
seen a surge of interest in recent years. Xu et al. [25] carried out a systematic evaluation of
Large Language Models for code. Their findings showed that such models could provide
valuable insights when applied to code analysis and development. The potential of few-
shot learning was explored by Chaaben et al. [28], aiming to automate model completion.
They demonstrated how prompt learning could make substantial contributions to model
completion tasks, highlighting the power of LLMs in learning from limited examples.
In another study, Kang et al. [29] described how LLMs could serve as few-shot testers.
They explored the potential of LLMs in bug reproduction, opening new horizons for
automated testing in software engineering. Sobania et al. [32] analyzed the performance of
ChatGPT in automatic bug fixing. Their research emphasized the model’s capabilities in
identifying and correcting software errors, hinting at the future of automated debugging.
Akli et al. [33] presented a unique application of few-shot learning to predict flaky test
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categories. Their innovative approach leveraged the capacity of LLMs to learn from
sparse examples, improving the prediction of unstable tests. Lyu et al. [34] introduced
Chronos, a time-aware zero-shot identification tool for libraries from vulnerability reports.
Their work further expands the application scope of LLMs in vulnerability detection and
remediation. Le and Zhang [35] explored log parsing with prompt-based few-shot learning.
This approach demonstrates the adaptability of LLMs in processing log files, a critical
aspect of system monitoring and diagnostics. Nashid et al. [36] investigated retrieval-
based prompt selection for code-related few-shot learning. Their work elucidates the
importance of careful prompt selection in few-shot learning tasks. Finally, Siddiq et al. [37]
studied zero-shot prompting for code complexity prediction using GitHub Copilot. Their
results showcased the potential of LLMs in understanding and predicting the complexity
of coding tasks.

Each of these studies underline the growing importance of LLMs in various areas
of software engineering, from code analysis and testing to vulnerability detection and
code complexity prediction. Their collective findings suggest the burgeoning potential
of LLMs to revolutionize many aspects of software engineering practices. Thus, building
upon the successful applications of LLMs in various aspects of software engineering, our
research seeks to leverage the power of Large Language Models for the task of source
code classification. By tapping into the ability of these models to understand and generate
human-like text, we aim to bring a new perspective and potentially improved performance
to the task of classifying code snippets from a wide array of programming languages.

3. Empirical Study

In this section we present the dataset and our methodology for assessing Chat-
GPT’s SCC.

3.1. Dataset Description

The dataset was collected by Alrashedy et al. [9,19] from Stack Overflow, a popular
online platform where developers post their programming-related questions and answers.
As of July 2017, Stack Overflow had over 37 million posts, with a significant number of
these tagged with different programming languages. The data dump from July 2017 was
used and questions were selected so that they only had one programming language tag and
at least one code snippet with more than two lines of code. The aim was to avoid potential
confounding factors.

The data dump from July 2017 was used and the questions were selected so that
they only had one programming language tag and at least one code snippet with more
than two lines of code. The aim was to avoid potential confounding factors. There were
12,000 questions per language extracted, but, for Markdown and Lua, there were only 1210
and 8107 questions, respectively.

In this paper, similar to a previous study [4], we exclusively used code snippets from
19 programming languages. More specifically, we omitted code snippets associated with
(i) HTML (12,000 code snippets, ∼5%), as our manual observation revealed that many of
these snippets also included segments of CSS and JavaScript, and (ii) Markdown, which is
significantly lower than that of other languages (only 1210 code snippets, ∼0.5%).

3.2. SCC-GPT Evaluation Methodology

During the evaluation of SCC-GPT, we leveraged the SCC [4] benchmark set, compris-
ing 224,107 pairs of code snippets and their corresponding language types. Our evalua-
tion process unfolded in three key steps. Initially, we formulated queries that prompted
ChatGPT to classify a given code snippet into one of the 19 programming languages:
Bash, C, C#, C++, CSS, Haskell, Java, Javascript, Lua, Objective-C, Perl, PHP, Python, R,
Ruby, Scala, SQL, Swift, and VB.net. Subsequently, we submitted each code snippet to
ChatGPT-3.5 utilizing the text-davinci-003 backend model. Finally, we postprocessed the
ChatGPT replies, retaining only the predicted programming language, and saved it for
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subsequent comparison with the ground-truth programming language. This meticulous
approach ensures a comprehensive evaluation of SCC-GPT’s proficiency in programming
language classification.

4. Results and Discussion
4.1. Evaluation Metrics

To assess the effectiveness of a classifier in categorizing source code snippets from
19 programming languages, we employed precision, recall, and F1-score as evaluation
metrics. These evaluations are determined by considering True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) values. By reporting the F1-score, we
can summarize the classifier’s performance with a single metric that balances precision
and recall.

Precision measures the accuracy of positive predictions made by the classifier. It
calculates the ratio of true positives (TP) to the sum of true positives and false positives
(FP). A low precision means that a classifier is returning a large number of false positives.
Precision is defined as follows:

Precision =
TP

TP + FP
(1)

Recall measures the ability of the classifier to correctly identify positive instances. It
calculates the ratio of true positives (TP) to the sum of true positives and false negatives
(FN). A high recall value indicates that the classifier has a low rate of false negatives,
meaning that it can effectively identify most positive instances. Recall is defined as follows:

Recall =
TP

TP + FN
(2)

F1-score provides a balanced evaluation of the classifier’s performance, considering
both precision and recall simultaneously. In particular, we used the F1-score or balanced
F-score, which is the harmonic mean of precision and recall, defined as follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

4.2. SCC-GPT Experimental Results

Table 1 presents a comparison of the accuracy results in terms of F1-score between
SCC-GPT and previous approaches for source code snippet classification. The table includes
performance metrics for various programming languages and algorithms, including SCC++
XGBoost [9], SCC++ RF [9], SCC MNP [19], PLI [31], DeepSCC [4], and SCC-GPT.

The analysis of the experimental findings reveals that SCC-GPT outperforms the base-
line algorithms and achieves the highest performance in source code classification. Across
the programming languages examined, SCC-GPT consistently demonstrates superior ac-
curacy compared to the other algorithms. Notably, it achieves substantial improvements
in the F1-score metric, indicating its effectiveness in accurately classifying code snippets.
SCC-GPT achieves a maximum performance improvement of 5% in terms of F1-score com-
pared to the baseline algorithms. For specific languages, SCC-GPT achieves outstanding
performance. In particular, it surpasses the other algorithms in classifying Bash, C, C#,
C++, Haskell, Java, JavaScript, Lua, Objective-C, Perl, Python, R, Ruby, Scala, SQL, Swift,
and VB.net code snippets, as evidenced by its higher F1-score. These results highlight
SCC-GPT’s superior ability to capture and learn the deep semantics of code, leading to
more accurate classification outcomes.

However, the performance of SCC-GPT in CSS and PHP can be attributed to the
challenges posed by the intertwined nature of these languages with others. The presence
of CSS within HTML or JavaScript code makes it challenging to accurately distinguish
CSS-specific snippets. Similarly, PHP’s integration with other scripting languages adds
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complexity to the classification process, as it becomes more difficult to differentiate PHP
code from code written in alternative scripting languages. This ambiguity in distinguishing
CSS from JavaScript or HTML and PHP from other scripting languages contributes to the
performance variations observed in SCC-GPT’s classification results for CSS and PHP.

Comparing the performance of SCC-GPT with the other baselines in the field of source
code classification, it becomes apparent that SCC-GPT consistently outperforms them. This
indicates the effectiveness of the SCC-GPT approach, which leverages advanced techniques
such as generative pre-trained transformers to capture deep code semantics, resulting in
improved classification accuracy.

In summary, the experimental results clearly demonstrate the superiority of SCC-GPT
over the baseline algorithms in source code snippet classification. SCC-GPT’s exceptional
performance across various programming languages showcases its effectiveness in accu-
rately categorizing code snippets. The findings highlight the potential of the two-way
transformer encoder approach in capturing the intricate semantics of code, leading to
enhanced classification outcomes.

Table 1. Comparing the accuracy (F1-score) results of SCC-GPT with previous work for source code
snippet classification.

Lang./Algos SCC++ XGBoost [9] SCC++ RF [9] SCC MNP [19] PLI [31] DeepSCC [4] SCC-GPT

Bash 0.80 0.85 0.76 0.67 0.87 0.91
C 0.76 0.81 0.76 0.56 0.81 0.87

C# 0.80 0.78 0.79 0.51 0.83 0.89
C++ 0.49 0.73 0.51 0.65 0.82 0.90
CSS 0.87 0.77 0.86 0.30 0.87 0.70

Haskell 0.90 0.78 0.89 0.67 0.93 0.94
Java 0.70 0.76 0.70 0.46 0.86 0.92

Javascript 0.80 0.74 0.78 0.48 0.82 0.89
Lua 0.86 0.70 0.84 0.50 0.91 0.94

Objective-C 0.65 0.88 0.57 0.77 0.92 0.95
Perl 0.77 0.41 0.74 0.69 0.86 0.91
PHP 0.75 0.88 0.74 0.62 0.83 0.88

Python 0.89 0.79 0.88 0.69 0.86 0.92
R 0.78 0.78 0.77 0.72 0.92 0.93

Ruby 0.72 0.72 0.70 0.43 0.88 0.91
Scala 0.78 0.81 0.76 0.72 0.93 0.93
SQL 0.67 0.79 0.65 0.50 0.85 0.93
Swift 0.87 0.89 0.84 0.54 0.94 0.95

VB.net 0.86 0.77 0.83 0.60 0.88 0.88
Average 0.77 0.77 0.76 0.58 0.87 0.90

Figure 1 visually represents the performance distribution of various source code clas-
sification models, including SCC++ XGBoost [9], SCC++ RF [9], SCC MNP [19], PLI [31],
and DeepSCC [4]. The boxplot highlights key statistical metrics for each model, such as
minimum, maximum, median, and average F1-score values across the 19 programming lan-
guages. This graphical representation offers a comprehensive overview of the comparative
effectiveness of the models, providing insights into their variability and overall perfor-
mance in code snippet classification. Specifically, as observed in Figure 1, SCC-GPT, our
proposed approach, demonstrates notable strengths across all key metrics. With a minimum
F1-score of 0.70, SCC-GPT surpasses the minimum scores of several comparative models,
emphasizing its robustness in handling diverse programming languages. The maximum
F1-score of 0.95 attests to the exceptional performance of SCC-GPT, outperforming other
models in capturing the complexities of code snippets. The median and average F1-score
values of 0.91 and 0.90, respectively, further underscore the consistency and effectiveness
of SCC-GPT in programming language classification. These results collectively affirm the
superior performance and reliability of our proposed SCC-GPT approach in comparison to
established models in the field.
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Figure 1. Boxplots of the F1-score results in predicting the 19 programming languages used in our
study (∼224k code snippets) using SCC-GPT compared to five baselines: SCC++ XGBoost [9], SCC++
RF [9], SCC MNP [19], PLI [31], and DeepSCC [4].

4.3. A Discussion of ChatGPT Answers

In this section, we present three illustrative examples (shown in Figure 2) featuring
queries accompanied by code snippets, each followed by the corresponding responses
generated by ChatGPT for the classification of programming languages. The purpose is
to showcase instances where ChatGPT provides incorrect or misleading language classifi-
cations, offering insights into its performance nuances. These examples serve as valuable
illustrations to understand potential challenges and areas for improvement in the model’s
proficiency as a programming language classifier.

In Figure 2a, the code snippet, written in VB.NET, employs server-side code blocks
within the ASP.NET Razor view engine. Despite the distinctive VB.NET syntax, ChatGPT
incorrectly classifies the code as belonging to the ASP.NET Razor view engine used in
conjunction with the C# programming language. This misclassification underscores the
model’s challenge in precisely identifying VB.NET code constructs and its tendency to
associate ASP.NET Razor syntax more strongly with C# rather than VB.NET.

In Figure 2b, the code snippet presents an HTML structure, defining a container with
an id of ’bottomcontent,’ styled using inline CSS properties. The container is configured for
a fixed position at the bottom-left corner of its containing element. Within this container,
there is a child div named ’bottomleftbutton’ containing the text “stuff here” and set with
a left margin. However, ChatGPT’s classification as “CSS” in the response is incorrect,
as the provided code is, in fact, an HTML structure incorporating inline CSS styling.
This misclassification highlights the challenge in distinguishing between HTML and CSS,
especially when examining code snippets that involve both languages.

In Figure 2c, ChatGPT has made an incorrect classification by identifying it as Swift,
while the actual programming language is Objective-C. This misclassification can be at-
tributed to the syntactic similarities between Objective-C and Swift, leading to confusion
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in certain scenarios. Specifically, Swift allows for interoperability with Objective-C code,
and their syntax can overlap, making it challenging to distinguish between the two lan-
guages accurately. In this case, the use of square brackets and the NSString class may have
contributed to the misclassification. This underscores the importance of considering con-
textual cues and nuances in the code when relying on syntax-based language classification,
especially in cases where languages share similar syntax features.

Mathematics 2022, 1, 0 8 of 12

Prompot: Specify the programming language (just mention the name) for the follow-
ing code snippet given that it should belong to one of the 19 following programming
languages (Bash, C, C#, C++, CSS, Haskell, Java, Javascript, Lua, Objective-C, Perl,
PHP, Python, R, Ruby, Scala, SQL, Swift, VB.net).

1 Code Snippet:
2 <% Dim FormObject As Form = (Form)Model %>

4 <% Dim FormObject As Form = DirectCast(Model , Form)%>

6 Response:
7 this code snippet belongs to the asp.net razor view engine , which

is used in conjunction with the c# programming language

(a) An incorrect ChatGPT classification for a VB.net code snippet

1 Code Snippet:
2 <div id= 'bottomcontent ' style="float: left; position: absolute;

left: 0; bottom: 0; background-color :#0 b0b0b; height :100px;
width :796px;">

3
4 <div id="bottomleftbutton" style="margin-left: 25px;">stuff here

</div>
5 </div>
6
7 Response:
8 CSS

(b) An incorrect ChatGPT classification for an HTML code snippet

1 Code Snippet:
2 static NSString const *const viewControllerClassName [3] = {@"one"

, @"two", @"three"};
3 const NSString *className = viewControllerClassName [1];
4 Class class = NSClassFromString (( NSString *) className);
5 UIViewController *controller = [[ class alloc]

initWithContainer:self ];
6
7 Response:
8 this code snippet belongs to Swift

(c) An incorrect ChatGPT classification for a Swift code snippet

Figure 2. Three examples of queries, each accompanied by code snippets, and the incorrect corre-
sponding responses processed with ChatGPT for classifying programming languages

Figure 2. Three examples of queries, each accompanied by code snippets, and the incorrect corre-
sponding responses processed with ChatGPT for classifying programming languages.

To investigate the robustness of the SCC-GPT model to noisy or incomplete code
snippets, we conducted a detailed analysis of the correlation between the length of code
(measured in the number of words) and the correctness of predictions across various
programming languages. We calculated the Pearson correlation coefficient and p-value
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for each language, enabling us to determine the strength and statistical significance of
these relationships.

Our results revealed that, for most programming languages, including Bash, C++, C,
Haskell, JavaScript, Java, Lua, Objective-C, Perl, PHP, Python, Ruby, R, Scala, SQL, Swift,
and VB.NET, there is a statistically significant positive correlation between the number of
words in the code snippet and the correctness of the model’s predictions. This suggests
that, as the length of the code increases, the likelihood of correct predictions by SCC-GPT
also increases. Conversely, for C# and CSS, we observed a significant negative correlation,
indicating that longer code snippets are associated with a decrease in prediction accuracy.

The findings of our study have significant implications for software engineering
practices, particularly in automated code analysis, bug detection, and code complexity
prediction. The superior performance of SCC-GPT in accurately classifying code snippets
enhances the reliability of automated tools in these areas. For automated code analysis,
accurate classification ensures that tools can correctly identify and analyze code from differ-
ent programming languages, improving the precision of code reviews and analysis. In bug
detection, the model’s ability to accurately identify the programming language can enhance
the performance of bug-finding algorithms by applying language-specific heuristics and
patterns. For code complexity prediction, the improved classification accuracy supports
better identification of complex code segments, enabling more targeted and effective code
optimization and refactoring efforts. Overall, SCC-GPT’s ability to leverage generative
pre-trained transformers for precise code classification contributes to more efficient and
reliable software engineering workflows.

5. Threats to Validity

We acknowledge potential threats to the validity of our study. Firstly, ChatGPT is a
dynamically evolving model, and, during our research, a significant update was released.
While we found similar classification results before and after the update, future releases
could yield different outcomes. Moreover, as ChatGPT allows for interactive conversations,
the choice of questions asked may influence the results. To mitigate this, we reported
the questions that we asked to ensure that there would not be any significant impact on
the outcomes.

Furthermore, ChatGPT sometimes outputs more than the expected programming
language, which may be considered incorrect if we are checking for an exact match. To over-
come this issue, we instructed ChatGPT more explicitly to only output the programming
language name, and complemented this approach by implementing a postprocessing
stage where the model’s responses are analyzed to only include the exact match of the
programming language.

Additionally, the results obtained might be influenced by factors such as the pro-
gramming language. Some programming languages, like CSS and PHP, have specific
characteristics that can impact the classification results. CSS, often embedded within
HTML, presents challenges in accurately differentiating CSS-specific snippets from HTML
or JavaScript code. Similarly, PHP’s integration with other scripting languages adds com-
plexity to the classification process, making it more difficult to differentiate PHP code from
code written in alternative scripting languages.

ChatGPT may struggle with code snippets that contain multiple programming lan-
guages due to context mixing, where different languages (e.g., HTML with embedded
JavaScript) are blended, making accurate classification challenging. Limited training data
on mixed-language snippets further reduces the model’s ability to generalize, while syntax
similarities between languages can lead to misclassifications. To address these issues, incor-
porating specialized preprocessing steps to separate different languages within a snippet,
enhancing training datasets with more examples of mixed-language snippets, and em-
ploying ensemble models that combine predictions from language-specific classifiers can
improve accuracy.
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Finally, the size and distribution of the dataset can impact the model’s performance
and generalizability. In our study, the dataset comprised 224,107 code snippets across
19 programming languages, with some languages having fewer examples. This imbalance
can lead to biased learning, where the model performs well on languages with more
data and poorly on those with less, increasing the risk of overfitting for languages with
fewer examples. To mitigate these issues, we took steps to ensure that the data are as
well-balanced as possible and maintained an acceptable minimum number of examples
for each programming language by excluding Markdown language, which included only
1210 code snippets compared to 12,000 code snippets for the other programming languages.
Additionally, we leveraged GPT’s pre-training on diverse data for better generalization and
used the F1-score to ensure fair performance evaluation across languages.

6. Conclusions and Future Work

In this study, we addressed the critical challenge of accurately classifying code snippets
from Stack Overflow posts into their respective programming languages. Acknowledging
the limitations of manual tagging and recognizing the variations in code length and context,
we introduced a novel approach that utilizes generative pre-trained transformers (GPT).
Leveraging the capabilities of ChatGPT-3.5 with the text-davinci-003 model, our pro-
posed model, SCC-GPT, demonstrated remarkable effectiveness in classifying 224,107 code
snippets across 19 programming languages.

The empirical evaluation revealed significant improvements in classification accu-
racy, with SCC-GPT consistently outperforming existing methods. The median F1-score
improvement, ranging from +6% to +31%, underscores the practicality and efficiency of
our GPT-based model. This study not only advances the state-of-the-art in code snippet
classification but also addresses the unique challenges posed by varied snippet lengths and
contextual intricacies in online programming forums.

As developers increasingly rely on platforms like Stack Overflow for code-related
queries, our findings contribute a valuable tool in enhancing the accuracy of programming
language classification. The success of SCC-GPT opens avenues for improved resource
discovery and effective knowledge sharing within the programming community, marking
a substantial step toward more precise and automated code snippet tagging.

The future work directions for the SCC-GPT model are promising and offer numerous
opportunities for extending its application. One potential direction is using SCC-GPT for
large-scale software repository mining and analysis. As the first step for many mining
and analysis tasks is to identify the programming language, accurately doing so can help
provide insights into programming language trends, code reuse patterns, and developer
practices, thereby informing better decision-making for project management and tooling.
Another direction is integrating SCC-GPT with Integrated Development Environments
(IDEs) to offer real-time language classification and contextual code suggestions, improv-
ing coding efficiency and reducing errors. This integration can also facilitate automated
refactoring and code optimization by accurately identifying language-specific patterns and
best practices. Additionally, GPT’s application can be extended to suggest tags beyond
programming languages based on the textual information in Stack Overflow posts. This
expansion may leverage GPT’s capabilities to provide valuable insights and enhance the
tagging process in diverse contexts, further broadening the utility of the model.
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