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Abstract: In today’s complex and dynamic transportation networks, increasing energy costs and
adverse environmental impacts necessitate the efficient transport of goods or raw materials across
a network to minimize all related costs through vehicle assignment and routing decisions. Vehicle
routing problems under dynamic and stochastic conditions are known to be very challenging in
both mathematical modeling and computational complexity. In this study, a special variant of the
full-truckload vehicle assignment and routing problem was investigated. First, a detailed analysis
of the processes in a liquid transportation logistics firm with a large fleet of tanker trucks was
conducted. Then, a new original problem with distinctive features compared with similar studies
in the literature was formulated, including pickup/delivery time windows, nodes with different
functions (pickup/delivery, washing facilities, and parking), a heterogeneous truck fleet, multiple
trips per truck, multiple trailer types, multiple freight types, and setup times between changing
freight types. This dynamic optimization problem was solved using an intelligent multi-agent model
with agent designs that run on vehicle assignment and routing algorithms. To assess the performance
of the proposed approach under varying environmental conditions (e.g., congestion factors and
the ratio of orders with multiple trips) and different algorithmic parameter levels (e.g., the latest
response time to orders and activating the interchange of trip assignments between vehicles), a
detailed scenario analysis was conducted based on a set of designed simulation experiments. The
simulation results indicate that the proposed dynamic approach is capable of providing good and
efficient solutions in response to dynamic conditions. Furthermore, using longer latest response
times and activating the interchange mechanism have significant positive impacts on the relevant
costs, profitability, ratios of loaded trips over the total distance traveled, and the acceptance ratios of
customer orders.

Keywords: dynamic optimization; vehicle routing; full-truck load; multi-agent modeling

MSC: 390B06

1. Introduction

The logistics sector is experiencing rapid global development. Effective logistics
management is increasingly critical due to the growing complexity of logistics systems
and the escalating share of transportation costs within total expenses [1]. One of the most
prevalent transportation challenges is the vehicle routing problem (VRP), first introduced
by [2] to address the task of finding the best set of routes for a fleet of vehicles to meet freight
orders of a set of customers in a network. The VRP encompasses various variants based on
the considered constraints, including a limited or unlimited vehicle capacity, homogeneous
or heterogeneous fleets, single or multiple vehicles, and time windows, among others [3].

One variant of the VRP is the full-truckload vehicle routing problem (FTVRP), which
entails a truck being loaded near its full capacity with identical or similar products from one
or multiple customers and directly transporting the freight from the pickup to the delivery
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point without intermediate transshipment, often termed as direct delivery service [4].
Despite its significance, the FTVRP has not received as much research attention compared
with other VRP variants.

This study addressed a special dynamic full-truckload vehicle assignment and routing
problem. The problem was defined through a comprehensive analysis of a prominent
Turkish logistics firm, which serves its clientele by overseeing a substantial fleet compris-
ing 600 long-haul trucks dedicated to full-truckload trips. The trucks are composed of
two primary components, the trailer and the tractor (tow truck), with some capable of
interchanging trailers while others are not. Freight orders comprise specific load types
transportable using a range of appropriate trailer configurations, accommodating single or
multiple trips. Given the dynamic arrival of freight orders, static optimization methods are
not suitable for addressing our problem.

In the context of load pickup and delivery, time windows are established in accordance
with customer requirements. Nodes within the distribution network serve either as loading
points, unloading points, or both, depending on the incoming demand. Trailers undergo
washing procedures as needed before carrying a new load. At specific nodes, tractors
interchange trailers based on the load type for pickup. An additional challenge arises when
vehicles travel to pickup points without freight, incurring empty fuel costs. To minimize
these expenses and optimize profitability, maximizing vehicle utilization involves assigning
the most suitable vehicles and routing orders to achieve full capacity.

Traditional static optimization algorithms entail excessively long computation times
owing to the dynamic nature of operations and the variable influx of requests. Assigning
the optimal order to the available fleet of trucks poses a particularly difficult computational
task with traditional operation research algorithms, given the multitude of unpredictable
parameters associated with incoming orders.

In today’s technological landscape, acquiring real-time solutions that can adapt to
the continuously evolving conditions of real-world problems is imperative. Throughout
the planning phase, modifications in existing information and the dynamic emergence
of new data result in substantial system changes. For logistics management systems that
necessitate immediate responses to dynamic demand fluctuations, decisions informed by
real-time data are paramount. Given the inherently distributed data and independently
operating structure of the logistics and transportation sector, decentralized decision-making
systems prove highly advantageous.

Agent-based modeling and simulation represent a recent approach to modeling intri-
cate systems comprising interacting, autonomous ‘agents.’ These agents exhibit behaviors
typically governed by simple rules and engage in interactions with other agents [5]. Multi-
agent technology is regarded as an intelligent solution offering autonomous and adaptable
problem-solving abilities in dynamic environments. Considering the decentralized, dis-
tributed, and dynamic characteristics of the transportation sector, agent-based systems are
well-suited for addressing its challenges [6].

Given the definitions and characteristics of agent-based systems, they are highly
versatile tools for research in the transportation and logistics field. The logistics sector
typically has a decentralized, distributed, and dynamic structure. In logistics systems,
agents can embody various entities such as distributors, intermediaries, senders, receivers,
carriers, cargo handlers, and more. They may also represent transportation demands,
cargoes, or loading units, alongside higher-level organizational units. By modeling these
entities as agent types, we can exploit the capabilities of agent-based modeling to reach
optimal or near-optimal solutions for dynamic problems.

The contributions of this study can be expressed as follows:

i. This study emphasizes the importance of addressing various characteristics such
as time windows, heterogeneous fleets, capacity constraints, and multiple depots
collectively during problem formulation for full-load transportation companies.
It presents a comprehensive problem formulation that incorporates a significant
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portion of these requirements, unlike previous studies that have often addressed
these characteristics separately.

ii. This study transforms the problem into a dynamic optimization challenge by consid-
ering factors such as demand dynamics, order arrival times, response times, order
sizes, and freight types. It uniquely integrates practical aspects like heterogeneous
fleets, capacity constraints, and time windows, which have not been collectively
addressed in the existing literature.

iii. Unlike previous studies that have relied on genetic algorithms, particle swarm
optimization, or savings algorithms, this study adopts an agent-based approach
to model and solve the dynamic full-truckload vehicle assignment and routing
problem. This approach offers autonomous, flexible, and efficient solutions.

iv. This study conducted a novel analysis of response times, congestion rates, and multi-
trip demand rates of the algorithms within the agent-based system under varying
conditions. It also investigated the impact of the developed interchange mechanism,
providing a comprehensive analysis of its performance across different scenarios.

The remaining sections of this paper are structured as follows: Section 2 provides
a detailed literature review, highlighting the distinctions from our study. The problem
formulation is described in Section 3. Section 4 introduces the proposed agent-based
modeling framework. Section 5 discusses the simulation experiments and their results.
Finally, Section 6 focuses on the conclusions and outlines avenues for future work.

2. Literature Review

Despite its significance, the full-truckload vehicle routing problem (FTVRP) has not
received as much attention in the research compared with other variants of the vehicle
routing problem (VRP). Only a few studies have delved into this specific issue. The
motivation for this study arose from the scarcity of literature on the FTVRP, despite its
widespread application in various domains.

The full-truckload vehicle routing problem (FTVRP), also referred to as the full-
truckload multi-depot pickup and delivery problem (FTMDPDP), was initially introduced
by Ball et al. [7]. In the literature, approaches to solving various variants of the FTVRP can
be classified into three main groups: (1) exact algorithms, (2) problem-specific heuristics or
metaheuristics, and (3) agent-based solutions. Furthermore, most papers focus on static
FTVRPs, in contrast with the stochastic, dynamic problem in our study.

In contrast with Ball et al.’s [7] heuristic approach, Desroisers et al. [8] presented an
exact method for solving the same problem. Arunapuram et al. [9] and Gronalt et al. [10]
explored the FTVRP with multiple depots and time windows (TWs), introducing new
branch-and-price algorithms and four savings heuristics, respectively. Imai et al. [11]
tackled a similar problem to Gronalt et al. [10] but without time windows, proposing a
Lagrangian relaxation approach.

Caris and Janssens [12] extended the problem formulation of Imai et al. [11] by adding
strict time windows at customer locations and the depot. They employed a two-phase
insertion heuristic coupled with local search techniques to enhance the initial solution.
Currie and Salhi [13] extended the FTVRP to accommodate heterogeneous goods and trucks.
Their approach involved hybrid methods that combined heuristics with neighborhood
operators and insertion heuristics to minimize empty truck movements. Zhang et al. [14,15]
developed cluster methods and reactive Tabu search algorithms for addressing multi-depot
container truck transportation problems. They further extended their research to encompass
multiple terminals and depots, utilizing mathematical models based on preparative graphs.

Li and Lu [16] introduced a variant of the FTVRP with multiple delivery points
originating from the same pickup point, allowing orders to be carried by the same or
different vehicles multiple times. They proposed a hybrid genetic algorithm for its solution.
Liu et al. [17] studied a full-truckload multi-depot capacitated vehicle routing problem in
carrier collaboration, proposing a mathematical programming model to minimize empty
vehicle movements and a two-phase greedy algorithm as an alternative for larger problems.
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Nossack and Pesch [18] proposed a two-stage heuristic solution for a full-truckload
pickup and delivery problem with time windows. Bai et al. [19] presented a bidirectional
multi-shift full-truckload vehicle routing problem with time windows and a single depot,
while Braekers et al. [20] studied a similar problem for drayage operations with a single
depot and homogeneous vehicles, employing deterministic annealing algorithms.

Maneengam and Udomsakdigool [21] considered full-truckload vehicle routing prob-
lems with time windows and split bulk deliveries. This study differs from our study since it
has a homogeneous vehicle fleet and a single depot. Maneengam and Udomsakdigool [22]
extended their earlier problem formulation into a collaborative bidirectional multi-period
multi-depot vehicle routing problem involving multiple shippers and carriers, terminal
and transport capability constraints, and time window constraints. They employed a
branch-and-bound algorithm to solve this problem, contrasting with our study’s focus on a
heterogeneous vehicle fleet.

Several studies related to our work were reviewed. Grimault et al. [23] addressed
the full-truckload vehicle routing problem with multiple depots, a heterogeneous fleet,
and time windows, integrating routing and synchronization decisions. They proposed
an adaptive large neighborhood search to solve this, which contrasts with our study’s
focus on synchronization decisions. Wang et al. [24] concentrated on a variation of the
full-truckload pickup and delivery problem with a single depot, using a mixed-integer
linear programming formulation for modeling and solving, differing from our homoge-
neous vehicle setting. Bouyahyiouy and Bellabdaoui [25] considered the full-truckload
selective multi-depot vehicle routing problem with time windows and heterogeneous fleet
constraints, assuming a one-to-one correspondence between pickup and delivery points
and vehicles being incapacitated. In contrast, our study allows one pickup point to cor-
respond to multiple delivery nodes and one order to be served by different vehicles at
different times.

Xue et al. [26] proposed a hybrid column generation with a genetic algorithm and
variable neighborhood search method for the FTVRPTW with a homogeneous vehicle
fleet, single depot, and multiple shifts, efficient for large-scale real-life FTL problems.
Bouyahyiouya and Bellabdaouia [27] examined a selective full-truckload multi-depot
vehicle routing problem with time windows, multi-depot, and selective orders in an empty
return scenario, aiming to maximize overall profit using a genetic algorithm. Bouyahyiouy
and Bellabdaoui [1] studied the full-truckload vehicle routing problem with multiple depots
and time windows (SFTMDVRPTWs) in an empty return scenario and order selection.
Melchiori et al. [3] investigated the full-truckload vehicle routing problem with multiple
depots and synchronization decisions for a homogeneous vehicle fleet. These studies differ
from ours in terms of homogeneous truck usage, single-depot settings, and the requirement
for vehicles to return to the starting node after completing their routes.

Deep learning algorithms have been extensively applied to various vehicle routing
problems over the past 15 years. Two recent survey papers by Tsolaki et al. [28] and
Bai et al. [29] highlight the growing number of studies on machine learning-assisted
vehicle routing algorithms. Most studies utilize artificial neural networks combined with
reinforcement learning. However, there are only a few studies that have focused on
applying machine learning to full-truckload routing problems.

Agent-based modeling for dynamic vehicle routing problems has been proposed in
several studies (Baykasoglu and Kaplanoglu [6]; Martin et al. [30]) with promising results.
Most agent-based studies focus on less-than-truckload (LTL) problems. Mes et al. [31]
employed agent-based scheduling using look-ahead heuristics for a specific FTL problem
that does not include many of the problem characteristics addressed in our study. In a
similar FTL problem, Mes et al. [32] proposed a multi-agent model in which shipper agents
send jobs to sequential auctions, and vehicle agents bid on these jobs.
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3. Problem Description

To formulate a meaningful decision problem that meets the practical needs of firms, we
first analyze the logistics processes of a leading logistics firm in Turkey, which transports
full-truckload (FTL) freights (e.g., liquid foods and chemicals) between pairs of points
within a large distribution network. The firm manages its operations through branches
across Turkey, utilizing a large fleet of trucks and various types of trailers, including
steel, chrome, aluminum, heated, and insulated units. Pickup and delivery operations are
conducted daily on a 24 h/7 days a week basis.

Firm data are used to assign values to the parameters in our model, such as freight
tonnages, load types, trailer washing times, tractor speed, and trailer capacity. Fuel costs
for full and empty travel, washing costs, and trailer replacement costs are obtained from
the firm’s accounting records.

Table 1 introduces the notation used in the problem’s definition and methodology.

Table 1. Notation definitions.

Sets Indices

I Set of nodes i Pickup node index of an
order (i ∈ I)

K Set of vehicles j Delivery node index of an
order (j ∈ I)

D Set of trailer types k Vehicle index (k ∈ K)
O Set of order agents m Order agent index
F Set of freight types f Freight type index ( f ∈ F)
pw Set of washing nodes t Trip index
pt Set of trailer change nodes om Order agent m (om ∈ O)
h f Set of suitable trailer types for freight f omt T.th trip of order agent m

Parameters

OAk Accepted order list of vehicle agent k Q Capacity of a trailer (ton)
OA∗k Temporary order list of vehicle agent k lk Current node of vehicle k
Cost(OAk) Cost function of oak uk Current trailer type of vehicle k

Ck Total cost of vehicle k yk
Whether vehicle k has changeable
trailer (1: yes; 0: no)

Ck
o Cost of order o in vehicle k lw Nearest washing node

bidk
o Cost offer of vehicle k for order o lp Nearest trailer change node

dk Current trailer type of vehicle k wo Weight of order o (ton)
c f Unit loaded trip cost (TL/km) po Pickup node of order o
ce Unit empty trip cost (TL/km) do Delivery node of order o
cp Trailer change cost tAVL

o Earliest pickup time of order o
cs Annual fixed cost of a vehicle tALN

o Latest pickup time of order o
WM Trailer washing cost matrix tDVL

o Earliest delivery time of order o
WT Trailer washing time matrix tDLN

o Latest delivery time of order o

TM Travel time matrix between any two
nodes tARV

o Request time of order o

IM Revenue matrix between any two nodes tRES
o Latest time to respond order o

DM Distance matrix between any two nodes

Freight orders arrive randomly, and upon arrival, there is a specified latest response
time by which decisions must be made regarding the assignment of vehicles to an order
or its rejection. Acceptance decisions are influenced by system dynamics, including the
trailer’s compatibility with the freight type, transportation plans, profitability, and available
vehicle capacities. The primary decision variables involve the assignment of trips within
an order to vehicles and the sequencing of these trips for a specific vehicle. For instance,
consider an order consisting of seven trips. We can assign all trips to a single vehicle or
distribute the trips among three vehicles, with the distribution being two trips, three trips,
and two trips, respectively. At the vehicle level, the assigned trips must be sequenced to
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maximize profitability and meet time window constraints. Thus, our problem encompasses
both fleet assignment and routing decisions.

Figure 1 illustrates a typical vehicle route where the vehicle completes trip o32 after
finishing trip o11 and then proceeds to node 4 to load trips o21 and o22. To load a different
type of freight for trip o41 at node 7, the vehicle goes to node 6 to wash its trailer. After com-
pleting trip o41, the vehicle proceeds to a trailer change location at node 9 to accommodate
the different trailer type required for trip o52, which starts at node 9.
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Making vehicle assignment and routing decisions at the arrival of an order and not
modifying them thereafter may result in missing better alternatives that could emerge
over time due to the dynamic nature of our problem. Therefore, our problem formulation
permits revisions to early decisions until the latest response time for an order, tRES

o , as
shown in Figure 2, in relation to the pickup time window of an order. The latest response
time can vary for each order and is set by either the customer or the carrier. This time
may extend beyond the start time (tAVL

o ) of the pickup time window, indicating that any
assigned but not yet started trip can be considered for the interchange mechanism, which
identifies better alternative solutions with lower costs. The execution of the interchange
mechanism will be explained in more detail in Section 3.
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Based on the aforementioned discussions, the basic characteristics of the problem are
summarized as follows:

i. The transportation network consists of pickup, delivery (warehouses, seaports, and
factories), trailer washing, and trailer changing nodes.

ii. Each order may need multiple trips which can be carried out by one or multiple
vehicles.

iii. Each request contains a single type of freight.
iv. There are separate time windows for the pickup and delivery of each order.
v. Vehicles can be either trucks or semi-trucks with removable trailers.
vi. Certain types of trailers can be used to carry specific types of freight.
vii. When necessary, removable trailers can be changed to carry specific types of freight

at predetermined locations.
viii. If the freight type changes for the subsequent trip, a trailer washing time and cost

may be required depending on the previous type of freight.
ix. The following cost factors are considered: (1) the unit variable cost per kilometer

with freight or empty (including fuel cost, maintenance cost, etc.); (2) the trailer
washing cost, if needed; (3) the trailer change cost; and (4) the monthly fixed cost of
vehicles.

Although agent-based modeling permits models with fewer assumptions, we make
some assumptions to reach a reasonable and practical problem formulation. Most of these
assumptions can be easily removed. Our assumptions are as follows:

i. Environmental factors (e.g., traffic and accidents) are ignored in movement times
between nodes, and all travel times are known in advance.

ii. Order arrival times, freight sizes, freight types, and pickup and delivery nodes are
generated from appropriate random distributions.

iii. There are always enough suitable trailers available at any time.
iv. There is a sufficient number of drivers to meet the legal working time limits of

drivers.
v. The fleet size does not change over time.
vi. The vehicles are identical in terms of speed and the types of freight they can carry.
vii. Transport times are computed based on the average speed of the vehicles.
viii. While the vehicles are loaded and on the move, they cannot be directed to another

node for another order.
ix. When a new order arrives, all vehicle assignments can be changed to improve the

current solutions until the predefined response time for each order.
x. All unit costs and transportation tariffs between two nodes do not change over time.
xi. All unit costs and transportation tariffs between two nodes are the same for all

vehicles.

4. Methodology

In logistics and industrial operations, problems rarely occur in static environments
where all parameters are known in advance. On the contrary, numerous unpredictable
events (such as order cancellations, vehicle breakdowns, delayed deliveries, and new
customer arrivals) are the fundamental characteristics of real-world problems. The op-
timization of systems with such a high number of unknowns is the primary concern of
dynamic optimization (DO). DO problems are a type of problem in which the feasible
solution space and/or the value of the objective function changes due to dynamic events
occurring over time.

This study addresses a dynamic optimization problem, given that the interarrival
times of orders, freight sizes, freight types, and time windows are all random variables.
Furthermore, these random variables may not follow stationary distributions. When a
new order arrives in the system, previous vehicle assignments and routes need to be
reconsidered, as the feasible solution space changes over time.
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Perhaps the first approach that comes to mind to solve DO problems is to re-optimize
the problem for the remaining time horizon using the same optimization technique, taking
into account the emerging dynamic events. For example, a new transportation request
can be responded to as soon as it arrives, or the system can be re-optimized once a certain
number of requests have been received. In DO problems, the concept of an immutable
optimal solution does not exist. In fact, the re-optimization policy itself can turn into
a dynamic optimization problem. Instead of responding instantaneously to emerging
dynamic events, responding by accumulating them can lead to better solutions in terms of
more efficient use of limited resources (Karami et al. [33]).

Therefore, the goal of methods used to solve dynamic optimization problems is
not to find a static optimal solution but to locate high-quality solutions while closely
monitoring the time-dependent movement of the feasible solution space. The aim here is to
develop optimization policies that can closely track these changes. Traditional methods
developed for deterministic optimization do not possess such characteristics. Among
meta-heuristics, population-based methods, such as evolutionary algorithms or particle
swarm optimization, have been proposed as alternatives that can adapt to this field with
the necessary updates and adjustments. However, evolutionary algorithms do not perform
well in rapidly changing environments, as they require numerous fitness evaluations, and
there is limited time to find satisfactory solutions (Lu et al., [34]).

There is no consensus on how to assess the performance of an algorithm or solution
approach for solving a dynamic optimization problem. Karami et al. [33] propose that
a dynamic optimization algorithm is considered optimal if its objective function value
matches that of its static counterpart. They acknowledge that this is not a reasonable
benchmark but serves as a tangible reference. Solving the static counterpart of our problem,
even for small problem sizes, is very time-consuming due to the np-hard nature of the
computational complexity. This study focuses on investigating the influence of the latest
response time, along with the developed interchange mechanism, on the solution quality.

Agent-based models addressing dynamic optimization problems have allowed for
various optimization mechanisms to track optima moving through the search space. This
has led many researchers to utilize agent-based modeling for the optimization of dynamic
systems. As noted by Baykasoglu and Kaplanoglu [6], the agent paradigm has proven to be
a promising approach for developing intelligent systems due to its features of autonomy,
flexibility, and collaborative problem-solving behavior. Multi-agent systems consist of a
series of autonomous agents that interact with each other and their environment. The
term autonomy here implies that the agents are active entities capable of making their
own decisions.

4.1. Agent-Based Framework
4.1.1. Framework Architecture and Operation

This study proposes an auction-based logistics planning system. There are three types
of agents in this system: vehicle agents, order agents, and a dispatcher agent. Figure 3
illustrates the interactions between these three types of agents.

Order Agent

Order agents represent each dynamic transportation request arriving in the system.
The attributes of an order agent include the pickup and delivery nodes, time windows for
pickup and delivery, the response time to receive the final bid, the order weight, and the
freight type. The order agents remain in the system either throughout the response time
( tRES

o
)

or until the end of their transportation time, depending on acceptance by the vehicle
agents. At the end of the response time, an order agent is either rejected or accepted.
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Dispatcher Agent

When an order agent enters the system, it directly communicates with the dispatcher
agent to initiate the auction-bidding system. The dispatcher agent holds a list of available
vehicle agents in the system and determines the suitable vehicle agents when an order agent
enters the system. The dispatcher agent is responsible for coordinating vehicle assignment
decisions and managing the bidding and negotiation processes. Therefore, the dispatcher
is responsible for generating alternative transportation plans with lower costs through an
interchange mechanism.

Vehicle Agent

A vehicle agent has attributes including vehicle number, weight capacity, current
location, current freight type, and trailer type. Upon receiving a bid request from the
dispatcher agent, the vehicle agent calculates the cost of carrying a new order request
and sends its bid to the dispatcher agent. Vehicle agents also revise their bids within the
response time of all active orders when requested by the dispatcher agent upon the arrival
of a new order.

4.1.2. Agent Algorithms

All agents in the system execute defined algorithms to perform various operations
and share information based on the outcomes of these algorithms. The interrelationships
between agents are illustrated in Figure 4.
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Figure 4. Flowchart of the agent algorithms.

When a new order (o) arrives in the system, it initiates Algorithm 1, StartAuction(o,
K), which collects bids from the vehicles in set K through Algorithm 2, GenerateBid(k, o).
Algorithm 1 selects the best bid, (bid∗o ), and stores it until the end of the order response time
(tRES

o ). GenerateBid(k, o) checks the trailer type, pickup/delivery time window constraints
using Algorithm 3, TimeWindowControl(k, o), and the profitability of carrying the order.
If these constraints cannot be met or the order is not profitable for the vehicle, no bid is
sent to the dispatcher agent. Otherwise, the bid is added to the list of accepted orders
for that vehicle (OAk). Algorithm 6, InterchangeMechanism(δ), is then called to generate
a better assignment of previous orders with the addition of the new order, where the
term δ represents the number of iterations for randomly selected pairs of assignments to
interchange. We will explain how InterchangeMechanism(δ) works in more detail using an
example later in this section.

Algorithm 1 StartAuction(o, K)

input: o; K
local: B [(k1,C

k1
o ), . . ., (kn,Ckn

o )] list of bids for order o; tnow current time; bid∗o the best bid for order o
B←
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wait tRES
o −

(
tnow − tARV

o
)

if bid∗o ̸=

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 23 
 

 

for that vehicle (OAk). Algorithm 6, InterchangeMechanism(δ), is then called to generate a 

better assignment of previous orders with the addition of the new order, where the term 

δ represents the number of iterations for randomly selected pairs of assignments to inter-

change. We will explain how InterchangeMechanism(δ) works in more detail using an ex-

ample later in this section. 

Algorithm 1 StartAuction(o, K) 

input:  o; K 

local: B [(𝑘1,𝐶𝑜
𝑘1), …,(𝑘𝑛,𝐶𝑜

𝑘𝑛) ] list of bids for order o; tnow current time; 𝑏𝑖𝑑𝑜
∗  the best bid for  

            order o 

B ← ⦰ 

for all k ∊ K do 

  𝑏𝑖𝑑𝑜
𝑘 ← GenerateBid (k, o) 

  B  ← B ∪ {𝑏𝑖𝑑𝑜
𝑘} 

end 

 

𝑏𝑖𝑑𝑜
∗   ←  Min {𝐶𝑜

𝑘𝑖} in B 

wait   𝑡𝑜
𝑅𝐸𝑆 − ( 𝑡𝑛𝑜𝑤 − 𝑡𝑜

𝐴𝑅𝑉) 

if 𝑏𝑖𝑑𝑜
∗  ≠ ⦰ then 

  send msg(‘order accepted’) 

else 

  send msg(‘order rejected’) 

end 

 

Algorithm 2 GenerateBid (k, o) 

input: o; k 

local: 𝐼𝑜, revenue of order;  𝐶𝑜
𝑘, order cost 

output: 𝑏𝑖𝑑𝑜
𝑘 

if  𝑦𝑘  =  0 and 𝑑𝑘 ∉ ℎ𝑓 then 

        𝑏𝑖𝑑𝑜
𝑘 = ∅ 

else 

          if  TimeWindowControl (k, o ) = false then 

              𝑏𝑖𝑑𝑜
𝑘 = ∅ 

          else 

        OrderCostCalculation (k, o) 

       𝑏𝑖𝑑𝑜
𝑘  ← { k, 𝐶𝑜

𝑘 }      

    /* profitability control */ 

 𝐼𝑜 ←  𝐼𝑀[ 𝑝𝑜 , 𝑑𝑜 ] 

                    if  𝐼𝑜 < 𝐶𝑜
𝑘 then  

                              𝑏𝑖𝑑𝑜
𝑘 = ∅ 
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Algorithm 2 GenerateBid (k, o)

input: o; k
local: Io, revenue of order; Ck

o , order cost
output: bidk

o
if yk = 0 and dk /∈ h f then

bidk
o = ∅

else
if TimeWindowControl (k, o) = false then

bidk
o = ∅

else
OrderCostCalculation (k, o)
bidk

o ← {k, Ck
o }

/* profitability control */
Io ← IM[ p o, do]

if Io < Ck
o then
bidk

o = ∅
else

OAk ← OAk∪ {o}
call InterchangeMechanism(δ)

end
end

end
return bidk

o

Algorithm 3 TimeWindowControl (k, o)

input: k ∈ K vehicle; o ∈ O order
output: true or false
local: OA∗k , temporarily accepted order list of vehicle agent;
OAk

* ← copy OAk | | {}
if OAk

* =
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then
return true

end
for o← 0 to | OAk

* | do
if o = 0 then

if tALN
o > tDVL

o + TM[do, po] then
return true

end
else if i = | OAk

* | then
if tDVL

o + TM[do−1, po] < tALN
o then

return true
end

else
if TM[do−1, po] + TM[do, po] < tALN

o − tDVL
o−1 and tDVL

o < tALN
o +

TM[do, po] and
tALN
o > tDVL

o−1 + TM[do−1, po] then
return true

end
end

end
return false

In Algorithm 4, OrderCostCalculation (k, o), the vehicle agent calculates its bid for order
o by determining the difference between the total cost of all currently assigned orders and
the total using cost Algorithm 5 after adding the new job to the current list.
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Algorithm 4 OrderCostCalculation (k, o)

input: k ∈ K vehicle; o ∈ O order
output: Ck

o : cost of order o in vehicle k
local: Ck: total cost of vehicle k; OAk

* ⊆ O accepted orders list of vehicle k
Ck ← TotalCostForAllAcceptedOrders (k, OAk)
OAk

* ← OAk ∪ {o}
Ck

* ← TotalCostForAllAcceptedOrders(k, OAk
*)

Ck
o ← Ck

* −Ck
return Ck

o

Algorithm 5 TotalCostForAllAcceptedOrders (k, OAk)

input: k; OAk
output: Ck, total cost of transportation plan for vehicle k
local: uk

* ⊆ T, the last trailer type on vehicle k; lk* ∈ P, the last node of vehicle k; lw∈ Pw, nearest
washing point; lp∈ Pt, the nearest trailer replacement node

Ck ← 0
uk

* ← {uk}
lk* ← lk
OAk ← sort (OAk)

for m← 1 to | OAk | do
if m > 1 and fm−1 ̸= fm then

if lk* ∈ Pw then
lw ← lk*

else
lw ← NP(pw, po)

end
Ck ← Ck + WM[fm−1, fm]

Ck ← Ck + (DM[lk*, lw] * ce)
lk* ← lw

end
if yk = 1 and uk

* ̸⊆ h f then
if lk* ∈ Pt then

lp ← lk*

else
lp ← NP(pt, po)

end
Ck ← Ck + cp

Ck ← Ck + (DM[lk*, lp] * ce)
lk* ← lp
uk

* ← h f
end
if lk* ̸= pm then

Ck ← Ck + (DM[lk*, pm] * ce)
end

Ck ← Ck + (DM[pm, dm] * c f )
lk* ← dm

end
Ck ← Ck + cs

k
return Ck

4.1.3. Interchange Mechanism

Algorithm 6, InterchangeMechanism (δ), outlines the steps that are taken when a new
order arrives in the system, potentially leading to better assignment solutions. The FleetCost
(K) function in Algorithm 7 computes the cost of all currently assigned orders for the
entire fleet of vehicles, establishing a base cost for comparison with alternative assignments.
Subsequently, a random vehicle (the incumbent vehicle) and a random order assigned to
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this vehicle are selected. The algorithm seeks to find a better solution by performing a
pairwise comparison between the fleet cost of keeping the incumbent vehicle’s assignment
and the cost of reassigning that order to another vehicle. This random comparison iteration
is repeated δ times.

Algorithm 6 InterchangeMechanism(δ)

input: δ number of iterations
local: K* temporary copy of the vehicle list, Ko∗ order alternative vehicle list

K* ←copy K
C← FleetCost (K)
for i← 1 to δ do

k∗ = random K*

o∗ = random OAk∗

Ko∗ ←
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Ck∗
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Ck
o∗ ← OrderCostCalculation(k, o∗)

if Ck
o∗ < Ck∗

o∗ then
C∗ ← FleetCost(K*)
if C∗ < C then

OAk ← OAk ∪ {o∗}
OAk∗ ← OAk− {o∗}

Ko∗ ← Ko∗∪ {k}
end

end
end
if |Ko∗| > 0 then

call StartAuction(o∗, Ko∗ )
return

end
end

Algorithm 7 FleetCost (K)

input: K
output: C: total transportation cost of all vehicles in the system
C← 0
for all k ∈ K do

Ck ← TotalCostForAllAcceptedOrders (k, OAk)
C← C + Ck

end
return C

To illustrate how the interchange mechanism works, Table 2 provides an example
dataset for five freight orders. The dataset includes information on freight types, pickup
and delivery nodes, pickup and delivery time windows, and the response time for the
dispatcher agent to send the final bid to the order agent, respectively.

Figure 5 illustrates the interchange mechanism in two distinctive cases using the
example dataset. In Figure 5a; Order o1, requiring two trips (o11 and o12), is assigned to
vehicles 1 and 3, respectively, which offer the lowest bids. When order o2, with a single trip
o21, enters the system, no suitable vehicle is available that meets both the freight type and
time window requirements. Consequently, order o2 continues to search for a vehicle by
participating in regular auctions. When order o3 enters the system, it is assigned to vehicle
2, thereby activating the interchange mechanism. As shown in the Gantt chart, trip o11 is
transferred from vehicle 1 to vehicle 2 via the interchange mechanism. Trip o21, re-entering
the auction-based system, is then placed in the vacant slot in vehicle 1’s transport plan.
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Upon the arrival of order o4, which is unprofitable for all vehicles, it is temporarily assigned
to vehicle 4, which submitted the lowest cost bid. In Figure 5b; Order o4 remains in a
waiting status until the end of the response time. Subsequently, with the assignment of
order o5 to vehicle 1, the interchange mechanism is activated again, and vehicle 1 submits
a new bid for o41. Thus, as shown in Figure 5, order o4 moves from vehicle 4, where it is
unprofitable and temporarily assigned, to vehicle 1, where it becomes profitable.

Table 2. Freight orders and their attributes.

oi
Freight

Type po do
wo

(ton) tAVL
o tALN

o tDVL
o tDLN

o
tRES

o
(min)

o1 Glue N5 N15 16 Day 1 14:00 Day 3 22:00 Day 1 16:00 Day 2 22:00 240
o2 Petrol N8 N15 8 Day 1 14:00 Day 1 15:00 Day 1 22:00 13.4.23 22:00 120
o3 Glue N7 N5 8 Day 1 11:00 Day 2 1:00 Day 1 2:00 12.4.23 1:00 030
o4 Cooking oil N2 N6 8 Day 3 11:00 Day 3 20:00 Day 3 20:00 14.4.23 20:00 180
o5 Cooking oil N15 N2 8 Day 2 8:00 Day 3 17:00 Day 4 17:00 14.4.23 17:00 60Mathematics 2024, 12, x FOR PEER REVIEW 16 of 23 
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Figure 5. A numerical example of the proposed interchange mechanism (a) search for a feasible
vehicle, (b) search for a vehicle with profitable assignment.
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5. Simulation Experiments
5.1. Design of Simulation Experiments

A simulation model was developed to test our multi-agent-based vehicle assignment
and routing approach under different conditions. In this model, order weights are gen-
erated from a discrete uniform distribution. Order arrival times are generated from a
Poisson arrival process. The response time to requests is assumed to follow an exponential
distribution. For the simulation tests of the developed system, an application interface
was developed using the C# programming language in the Microsoft Asp.Net Core li-
brary infrastructure, which ran on one virtual machine (VM) in the Microsoft Azure cloud
infrastructure, each with 2.7 GHz, 2 core processors, and an 8.0 GB cache capacity. The
combinations of the following parameters were used to generate simulation scenarios.

5.1.1. Multiple-Trip Order Ratio (%)

As our system does not allow the partial fulfillment of orders with multiple trips, it
was important to investigate the impact of the multiple-trip order ratio on the performance
of the agent-based model. This ratio was varied at three levels: 20%, 30%, and 40%. For
example, at a 20% ratio, 80% of orders involve a single trip, while the remaining 20% of
orders involve multiple trips uniformly distributed between 2 and 15.

5.1.2. Congestion Factor (ρ)

The congestion factor is the level of congestion that may be experienced in assigning
orders to vehicles, considering the intensity of orders and the number of trips that can be
made with the available number of vehicles. When this ratio exceeds 1, it signifies that
there are more orders than the system can accommodate with the available vehicle capacity.
This ratio is calculated as:

ρ =
λd × s
K× (1)

where λd is the average number of orders received per week, s is the average number of
trips per order, µ is the average service rate per vehicle (trips/week), and K is the number
of vehicles in the fleet. The values of 84, 168, and 336 orders/week were taken as λd. The
average number of trips per order was calculated as 2.5, 3.25, and 4.0 for multi-trip demand
rates of 20%, 30%, and 40%, respectively.

The experimental design was based on a 17-node distribution network. Table 3 shows
the probability distribution of the order pickup nodes, indicating that most order pickups
originated from nodes 8, 12, and 14.

Table 3. Probability distribution of order pickup nodes.

Pickup Node Number Probability (wi)

8 0.24
12 0.24
14 0.24

Remaining 14 nodes 0.02

The average distance per one-way trip between pickup and delivery is calculated as
shown in Equation (2):

d= ∑17
i=1 wi

[
∑17

j=1 i ̸=j dij

16

]
(2)

Assuming that most trips return to the same pickup node after delivery, the average
time per trip can be calculated as 2d/v, where v is the average speed assumed for all
vehicles. Assuming that all vehicles operated 24 h a day, 7 days a week, the average
service rate per vehicle (trips/week) was 12.74 trips/week in our case. Table 4 displays the
congestion factors for different scenarios.
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Table 4. Congestion rates for different scenarios.

Multi-Trip Rate
(%) 20 20 20 30 30 30 40 40 40

s 2.50 2.50 2.50 3.25 3.25 3.25 4.00 4.00 4.00
λd 336 168 84 336 168 84 336 168 84
λs 840 420 210 1092 546 273 1344 672 336
µ 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74

Congestion Factor (ρ) 0.94 0.47 0.24 1.22 0.61 0.31 1.50 0.75 0.38

5.1.3. Response Time (tRES
o )

Response time levels of 30, 60, 120, and 240 min were utilized in the analysis.

5.1.4. Interchange Mechanism

This mechanism is toggled between on and off states in the system, and its impact on
system performance metrics was analyzed.

The following key performance indicators were used to evaluate the solutions gener-
ated by the agent-based algorithms:

i. Unit cost (TL/km): The ratio of the total system cost to the total distance traveled by
vehicles.

ii. Unit profit (TL/km): The ratio of the total profit generated in the system to the total
distance traveled by vehicles.

iii. Order acceptance ratio (%): The percentage of orders approved for transportation at
the end of the response time.

iv. Loaded trip ratio (%): The percentage of the total distance traveled by all vehicles
when loaded, compared with the total distance traveled when loaded or empty.

5.2. Analysis of Simulation Results

Figure 6a shows that a higher congestion factor reduces the unit cost, thereby increas-
ing the unit profit per kilometer. This is attributed to simultaneous improvements in the
order acceptance ratio and the loaded trip ratio. Activating the interchange mechanism
results in a significant reduction in the unit cost, with a maximum reduction of 22.9% and
an increase in the unit profit of 21.7%, as depicted in Figure 6b. The interchange mechanism
dynamically improves current solutions throughout the response time.
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Conversely, Figure 6c demonstrates that an increase in the ratio of orders with multiple
trips leads to a rise in the unit cost and a decline in the unit profit. This is because the system
prohibits the partial fulfillment of orders with multiple trips, resulting in a higher refusal
rate for such orders. For the same reason, the order acceptance ratio and the loaded trip
ratio significantly decrease as the ratio of orders with multiple trips increases, as illustrated
in Figure 6d.

Figure 7a–f illustrate the impact of the response time on performance measures under
varying conditions. Firstly, longer response times consistently have a positive impact on
the unit cost, unit profit, order acceptance ratio, and loaded trip ratio in all cases. These
positive effects on performance are further enhanced when the interchange mechanism
is active, and the congestion factor increases. For example, Figure 7a,b show that at the
longest response time of 240 min and the highest congestion factor of 1.22, the unit cost
decreases by 35.7%, and the unit profit increases by 36.8%. Additionally, activating the
interchange mechanism along with longer response times has a substantial synergistic
positive impact on all performance measures, as seen in Figure 7c,d, due to the reasons
explained earlier for Figure 6a,b. The adverse effect of a large ratio of orders with multiple
trips is significantly reduced by longer response times across all performance measures, as
seen in Figure 7e,f.
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Similarly, the negative impact of an increased ratio of orders with multiple trips
can be mitigated to a certain degree by activating the interchange mechanism across all
performance measures. For instance, at the highest ratio of orders with multiple trips of
40%, the interchange mechanism can reduce the unit cost by 5% and increase the unit profit
by 7.3%. This improvement is due to enhancements in the order acceptance ratio and the
loaded trip ratio when the interchange mechanism is active, as seen in Figure 8a,b.

5.3. CPU Time Analysis

In an empirical computation time analysis, the CPU time spent by the developed vehi-
cle assignment and routing algorithms in solving problems of different sizes is evaluated.
The problem size is related to the number of vehicles and the number of trips that need
to be planned per unit of time. Figure 9a shows that for a large fleet of vehicles, more
bids need to be collected and more vehicles need to be screened, leading to an increase in
the CPU time. However, this increase is not exponential. Figure 9b illustrates that as the
number of trips to be assigned per week increases, the number of auctions and the number
of trips to be interchanged also increases, leading to an approximately polynomial increase
in CPU time.
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6. Conclusions

In this study, a new dynamic full-truckload vehicle routing problem was investigated,
featuring a more comprehensive problem formulation compared with most previous stud-
ies. Due to the stochastic and dynamic nature of the problem, an agent-based approach
was adopted to flexibly model and solve it, aiming to achieve autonomous, flexible, and
fast solutions. To assess the performance of the proposed approach under varying environ-
mental conditions (e.g., the system congestion factor and the ratio of orders with multiple
trips) and different algorithmic parameter levels (e.g., the latest response time to orders
and activating the interchange of trip assignments between vehicles), a detailed scenario
analysis was conducted based on a set of designed simulation experiments.

The simulation results indicate that the proposed dynamic approach was capable of
providing good and efficient solutions in response to dynamic conditions. Additionally,
the activation of the interchange mechanism substantially impacted unit costs and unit
profitability. An increase in the multi-trip order ratio led to a decrease in order acceptance
ratios, resulting in lower profitability and higher costs. Finding alternative solutions to
boost acceptance rates at high multiple-trip order ratios becomes challenging. An increase
in profitability is possible if a portion of orders with a large number of trips is permitted. In
the case of high congestion, the interchange mechanism allows more alternative orders to be
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evaluated simultaneously, significantly maximizing profitability. Furthermore, using longer
latest response times and activating the interchange mechanism always had a significantly
positive impact on the relevant costs, profitability, ratios of loaded trips over the total
distance traveled, and the acceptance ratios of customer orders in all cases. The success
of multi-agent-based approaches in solving the complex logistics problem addressed in
this study was observed with a more detailed and realistic model. The developed vehicle
assignment and routing algorithms maintained reasonable CPU times, which increased at
an approximate polynomial rate with the number of vehicles and order density.

In future research, alternative solution methods such as genetic algorithms, particle
swarm optimization, and ant colony algorithms can be investigated. Artificial intelligence
methods can be incorporated into agents’ decision-making algorithms. Additionally, incor-
porating dynamic events like disruptive events (e.g., traffic jams and vehicle breakdowns),
order changes, or cancellations can also be considered.
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