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Abstract: In this work, we study the equation of the catenary curve in the context of the Caputo
derivative. We solve this equation and compare the solution with real physical models. From
the experiments, we find that the best approximation is achieved in the classical case. Therefore,
introducing a fractional parameter arbitrarily can be detrimental. However, we observe that, when
adding a certain weight to the chain, fractional calculus produces better results than classical calculus
for modeling the minimum height.
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1. Introduction and Statement of the Results

The catenary curve, that elegant and resilient shape describing the configuration of
a hanging chain, has left an indelible mark on the modern world. In the field of civil
engineering, the catenary has played a fundamental role in the design of iconic structures,
such as the Sagrada Familia church in Barcelona, Spain. Furthermore, its ability to evenly
distribute loads along its curve makes it an ideal solution for bridges, arches, and other
structures that must bear heavy weights.

The influence of the catenary extends far beyond civil engineering. In dentistry,
its shape describes the natural curvature of healthy dental arches, providing a basis for
understanding oral anatomy and designing dental prostheses. In the oil industry, the
catenary is used to optimize well drilling, ensuring an efficient and safe trajectory. Even in
the medical field, the catenary is employed to measure breast curvature in cancer diagnosis,
providing crucial information for the detection and treatment of this disease (see [1,2], or
the references mentioned therein).

The fascination with the catenary dates back to the time of Galileo Galilei, who
compared the shape of a hanging chain to a parabola. However, it was Joachim Jungius
who demonstrated that hanging chains have a distinct shape, laying the groundwork for a
deeper study of this curve. In 1691, the catenary was formally defined and named, opening
the doors to countless applications (see [3]).

The catenary curve, with its rich history and diverse applications, continues to inspire
researchers and professionals in various fields. Its still untapped potential opens up new
possibilities for designing stronger, more efficient, and more aesthetic structures, as well
as for better a understanding of natural and complex phenomena. The catenary will
undoubtedly remain a cornerstone of the modern world and a symbol of human creativity
and ingenuity.

In this context, it is natural to consider the differential equation modeling the catenary
curve in the fractional context, as we will do next to explore a new facet of the catenary. It
should be noted that the equation modeling the catenary curve has already been studied
in [4] using the Caputo–Fabrizio derivative. Here, we will use the fractional derivative in
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the sense of Caputo. The Caputo–Fabrizio derivative involves a non-singular kernel, and
in modeling, it often yields different results from the Caputo derivative (see [5]).

Nowadays, it unfortunately happens all too often that a classical differential equation
is considered, and instead of the integer-order derivative operator, it is replaced with a
fractional derivative operator. In the vast majority of these cases, it is tacitly assumed that
the fractional dynamics improve the model obtained using classical differential calculus.
Under this premise, that is, assuming there is an improvement using fractional calculus,
various authors engage in a series of theoretical developments or numerical manipulations
that later make no sense (see [6]).

To illustrate this point, we have chosen the catenary curve because, as we mentioned
before, it is an important phenomenon and relatively easy to reproduce. Using a hang-
ing chain and a scanner, one can obtain the shape of the catenary curve (see Section 3).
Furthermore, the associated differential equation is a second-order nonlinear differential
equation (see (3) and (4)). By replacing the integer-order derivative with the fractional-order
derivative (see (2) and (8)), a fractional differential equation is obtained (see (10)). This
equation is solved, and the key point here is that the fractional parameters do not model the
physical curve of the hanging chain. In other words, it is generally incorrect to think that
the fractional model improves the classical model. In some cases, such as in the study of
control systems, nonlinear and nonlocal models are often modeled by nonlinear fractional
differential equations (see [6]). In our case, we see that this is not the case; indeed, the
modeling of the catenary is a nonlinear model, and any (local) perturbation of the chain
affects the chain globally.

On the other hand, when a certain weight is applied to the center of the chain, relatively
minor compared to the total weight of the chain, it is observed that there are fractional
indices that better model the deformed curve than the classical case. This is consistent with
what is known (that it is a nonlocal phenomenon), and it opens a possible opportunity
for fractional calculus to model this phenomenon, at least improving the classical case. In
this case, as we mentioned, by modifying the weight of the chain at its center, the overall
structure of the curve is altered; changes are not limited to a neighborhood of the center of
the catenary. Since modeling the catenary curve with weight classically is a complicated
problem (see [7,8]), and we achieve it with little effort when using fractional calculus, we
can say that, for modeling this phenomenon, fractional calculus proves to be useful.

In summary, the fractional index should not be introduced into a differential equation
without real evidence that it improves the model (see [6]). At best, the fractional analytical
model represents a perturbation of the classical model. This observation should not be
taken lightly, as there is a wide variety of fractional derivatives, and theoretical aspects
are sometimes studied without any basis other than the aesthetic aspect of mathematics
(see [9,10]).

The article is organized as follows. In Section 2, we recall the derivation of the
classical catenary, which serves to introduce some concepts, and we propose the relevant
modifications in the fractional case. In Section 3, we define some concepts of fractional
calculus and state some basic properties. In Section 4, we present the fractional differential
equation in the sense of Caputo and solve it. In Section 5, we describe the physical
experiment and present some images of catenaries. Finally, in Section 6, we present some
conclusions.

2. Classical Catenary Curve

In this section, we will briefly review the classical derivation of the catenary curve.
Consider a homogeneous rope or string with linear density ρ and a length greater than a,
where a is a fixed positive number. Let T represent the tension at the midpoint a/2. The
downward displacement of the hanging chain at the point x will be denoted as y(x). With
this information, we can create a diagram similar to the one shown in Figure 1.
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Figure 1. The catenary curve, y(x).

Carrying out an analysis of the forces (see, for example, [11]), we arrive at the following
equation,

1
c

∫ x

a/2

√
1 + (u(t))2dt = u(x), x ∈ (0, a), (1)

where
u(x) = y′(x), (2)

c = T/(gρ), and g is the gravitational constant. Taking derivatives in (1), we deduce the
second-order nonlinear differential equation

1
c

√
1 + (u(x))2 = u′(x), (3)

with the initial condition
u(a/2) = y′(a/2) = 0. (4)

The general solution of (3) has the form

u(x) = sinh
(

1
c

x + c0

)
, x ∈ [0, a], (5)

where c0 is a constant. Using the initial conditions (4), we obtain

c0 = − a
2c

. (6)

Now, from (2) and using y(0) = 0, we get the classical catenary curve,

y(x) = c
{

cosh
( x

c
− a

2c

)
− cosh

( a
2c

)}
, x ∈ [0, a]. (7)

The minimum of the curve will be

y
( a

2

)
= c

{
1 − cosh

( a
2c

)}
, x ∈ [0, a].

3. Some Preliminaries on Fractional Calculus

To introduce the fractional model of the catenary curve, it is helpful to revisit some
key concepts of fractional calculus. Numerous excellent texts are available on this subject;
for our purposes, we adopted the notation and refer to the results presented in [12,13].

Definition 1. Let f : [a, b] → R be a continuous function. The left Riemann–Liouville integral,
Iα
a+ f , of f of order α ∈ R, is defined as

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a

f (t)
(x − t)1−α

dt, x ∈ (a, b).
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Now, let us suppose that α > 0 and set n := [α] + 1, where [·] is the largest integer less than
or equal to α. If f (n) exists and is continuous, then the fractional derivative of Caputo, by the left,
CDα

a+ f , is defined as

(
CDα

a+ f
)
(x) =

(
In−α
a+ f (n)

)
(x) =

1
Γ(n − α)

∫ x

a

f (n)(t)
(x − t)1+α−n dt, x ∈ (a, b).

In the above definition, Γ(α), with α > 0, represents the usual gamma function. Since
we will not be utilizing any other fractional derivative, we will omit the C in the definition
of a Caputo derivative, denoting it simply as Dα f .

Proposition 1. Let α > 0 and n := [α] + 1. If f has continuous derivatives up to order n − 1,
and f (n) is absolutely continuous, then

(Iα
a+Dα

a+ f )(x) = f (x)−
n−1

∑
k=0

f (k)(a)
k!

(x − a)k.

Proof. See Lemma 2.22 in [12].

The linearity of the classical integral implies the linearity of the fractional integral.
Furthermore, we have the following result.

Proposition 2. Let α ≥ 0 and β > 0; then,(
Iα
a+(t − a)β−1

)
(x) =

Γ(β)

Γ(β + α)
(x − a)β+α−1.

Proof. See formulas (2.1.16) of [12].

4. Fractional Catenary Curve

Let α ∈ (R+ \ N) and n := [α] + 1. A common method to extend the classical
model to the fractional context involves introducing the fractional derivative operator into
expression (2), thereby replacing the classical derivative with the fractional one; see [4,6],

u = Dα
a
2+

y. (8)

On the other hand, physical conditions require that the resulting curve be symmetric.
Keeping this in mind, we consider the following equation (see Equation (1)):

1
c

∫ x

a/2

√
1 + (u(t))2dt = u(x),

a
2
< x < a. (9)

If we take the derivative, we obtain the fractional differential equation

1
c

√
1 +

(
Dα

a
2+

y(x)
)2

= D1+α
a
2+

y(x), (10)

with boundary conditions

y(a) = 0, y′
( a

2

)
= 0, · · · , y(n)

( a
2

)
= 0. (11)

Equation (9) is the same as Equation (1); thus, the solution is given by (5),

u(x) = sinh
(

1
c

x + c1

)
,

a
2
< x < a, (12)
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for some constant, c1. From Proposition 1, we get

y(x)−
n

∑
k=0

y(k)+

( a
2
)

k!

(
x − a

2

)k
=

(
Iα

a
2+

Dα
a
2+

y
)
(x) = Iα

a
2+

u(x). (13)

On the other hand, using (12) and the linearity of fractional integral, we obtain

Iα
a
2+

u(x) =
∞

∑
k=0

1
(2k + 1)!

Iα
a
2+

(
1
c

x + c1

)2k+1
. (14)

Since(
1
c

x + c1

)2k+1
=

(
1
c

)2k+1 2k+1

∑
j=0

(
2k + 1

j

)( a
2
+ c · c1

)2k+1−j(
x − a

2

)j
,

then Propositions 2 and (11) yield

y(x) =
n

∑
k=0

y(k)
( a

2
)

k!

(
x − a

2

)k
+ Iα

a
2+

u(x)

= y
( a

2

)
+

∞

∑
k=0

(
1
c

)2k+1 2k+1

∑
j=0

1
(2k + 1 − j)! Γ(j + 1 + α)

( a
2
+ c · c1

)2k+1−j(
x − a

2

)j+α
.

By hypothesis, the n-th derivative of y exists at a/2. Since α − n < 0, then

a
2
+ c · c1 = 0,

otherwise, y(n)(a/2) would not exist. This particular value of c0 corresponds to the classical
case, as depicted in (6). Therefore, (11) suggests

y(x) =
∞

∑
k=0

(
1
c

)2k+1 1
Γ(2k + 2 + α)

[(
x − a

2

)2k+1+α
−

( a
2

)2k+1+α
]

,
a
2
≤ x ≤ a.

The fractional catenary curve yα is given by

yα(x) =

{
y(a − x), 0 ≤ x ≤ a

2 ,
y(x), a

2 ≤ x ≤ a.
(15)

When α = 1, employing the Taylor series of the hyperbolic cosine yields the classical
catenary (7). In the fractional scenario, the minimum is given by

yα

( a
2

)
= −cα

∞

∑
k=0

1
Γ(2k + 2 + α)

( a
2c

)2k+1+α
. (16)

5. Physical Experiments

The experiment consisted of capturing several images of a hanging chain to determine
the shape of the curve formed by the chain. A scanner was placed vertically with the chain
positioned in front of it. When a photograph of the hanging chain is taken with a camera,
the resulting curve depends on the angle of the photograph. However, this method avoids
any dependence on the angle in the image.

Note that the function y(x), given in (15), depends on the parameter c, which in turn
depends on the linear density of the chain. The criterion we used to determine the value of
c is the one that minimizes the error in approximating y(x) to the curve determined via
the chain, taking a fixed value of the index α. In Figure 2a,c, the classical catenary curve is
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shown in blue. As we can observe from Table 1, when α is 1, the errors are smaller compared
to the fractional case, with curves in red (α = 0.28, c = 0.9), yellow (α = 1.5, c = 0.78), and
orange (α = 0.05, c = 0.93) when a = 5.1 and in red (α = 0.1, c = 3.46), yellow (α = 1.5,
c = 11), and orange (α = 0.05, c = 3.42) when a = 14.71; see Figure 2b,d. Indeed, in the
classical case, the error is 0.042 cm when a = 5.15 cm and 0.028 cm when a = 14.71 cm,
considerably lower than in the fractional case; see Table 1. The errors in the figures were
measured using Digimizer 2024, an image analysis software package that allows precise
manual measurements (see [14]). In this way, in Figure 2b,d, we see that the fractional curves
(i.e., α ̸= 1) deviate from the curve determined according to the chain. In other words, the
fractional solution (15) does not model the curve produced via the chain.

(a) a = 5.15, c = 0.845. (b) a = 5.15, α = 0.28, 0.05, 1.5.

(c) a = 14.71, c = 6.85. (d) a = 14.71, α = 0.1, 0.05, 1.5.

Figure 2. Weightless pendant chain.

Table 1. Different values for fractional catenary parameters; see (15).

a (cm) α c Error (cm)

0.05 0.925 0.361
5.15 0.28 0.9 0.273

1 0.845 0.017
1.5 0.78 0.079

0.05 3.42 0.264
14.71 0.1 3.46 0.241

1 6.85 0.009
1.5 11 0.206

Next, we will modify the system by placing a weight of 4.344 grams at the center of
the chain in both cases, i.e., for a = 5.15 and a = 14.71. In Figure 3a,c, the classical curve,
shown in blue, corresponds to α = 1. In this case, the errors are 0.258 cm when a = 5.15
and 0.307 cm when a = 14.71. On the other hand, by selecting the fractional index α that
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best fits the curve, it turns out that, for a = 5.15, the error is 0.19 cm, and when a = 14.71,
the error is 0.16 cm; see Figure 3b,d. This means that the perturbation is better modeled
with a fractional index; see (16).

It may be of particular interest to model the minimum height of the chain with the
weight, as this can occur, for example, in a cable car cable. In this case, we see that the
actual minimum height is −8.324 when a = 5.15. In the classical case, the error is 0.252, and
in the fractional case with α = 0.28, the error is 0.012. On the other hand, when a = 14.71
cm, the minimum height is −4.668. In the classical case, the error is 0.325 cm, and in the
fractional case with α = 0.1, the error is 0.053 cm.

(a) α = 1, c = 0.85. (b) α = 0.28, c = 0.9.

(c) α = 1, c = 6.85. (d) α = 0.1, c = 3.46.
Figure 3. Weighted pendant chain.

6. Conclusions

It is well known that fractional calculus is useful for modeling certain phenomena,
such as temperature controllers [15] or battery charges [16]. However, we can conclude
that this is not always the case. Introducing a fractional index arbitrarily into a model
based on ordinary differential equations can lead to results that deviate significantly from
expectations. Some authors argue that modeling with fractional calculus provides an
advantage by adding an additional degree of freedom, the fractional index α. While this
can be true, our study shows that the best results may be obtained by not modifying this
parameter, i.e., by setting α = 1.
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In summary, the main contribution of our work lies in advocating for the rational use
of fractional calculus. The simplicity and replicability of the model studied here underline
its value, demonstrating that this approach is not merely a matter of substituting classical
derivatives with fractional ones and performing analytical or numerical manipulations
without real value. Our study, conducted with the Caputo derivative, can serve as a starting
point for analyzing the real behavior of a chain with other fractional derivatives as well;
see, for example, the excellent paper [17].

On the other hand, we have observed that fractional calculus can be useful for model-
ing a perturbation of the original phenomenon. In our case, the minimum height of the
weighted chain is better modeled using fractional calculus. Specifically, the approximation
error at the minimum point decreases by approximately twenty percent.
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