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Abstract: The classical Rolle’s theorem establishes the existence of (at least) one zero of the derivative
of a continuous one-variable function on a compact interval in the real line, which attains the same
value at the extremes, and it is differentiable in the interior of the interval. In this paper, we generalize
the statement in four ways. First, we provide a version for functions whose domain is in a locally
convex topological Hausdorff vector space, which can possibly be infinite-dimensional. Then, we deal
with the functions defined in a real interval: we consider the case of unbounded intervals, the case of
functions endowed with a weak derivative, and, finally, we consider the case of distributions over an
open interval in the real line.
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1. Introduction

The celebrated Rolle’s theorem, familiar to undergraduate students in Analysis (see,
e.g., [1] just to quote a book, or the book by the second author [2]), can be stated as follows:

Let f be a function that is continuous on the closed interval [a, b] and differentiable on the
open interval ]a, b[. If f (a) = f (b), then there exists a point c in ]a, b[ for which f ′(c) = 0.

This theorem appeared in a primitive form in a book dated 1690 (see a translation
in [3]), and it has an interesting story (see [4–6]) because Rolle is known paradoxically for
his attack on infinitesimal calculus for its “lack of rigour”. Since its first appearance, it
has attracted the attention of researchers, who have published generalizations in several
directions, variants, or also less-standard proofs (see, e.g., a constructive proof in [7]). It
had a role in all the levels of study in Mathematics, from school instruction (see, e.g., the
experiments in Nepal [8]) to some variants of interest for first-year calculus classes ([9–11])
and for second-year calculus classes ([12]) until dynamical systems (see, e.g., [13]). A large
body of literature concerns the functions defined in more abstract structures. For instance,
the theorem has been considered for complex valued functions in the framework of the
complex plane (see, e.g., [14–17]) and for functions defined in finite-dimensional spaces
(see, e.g., [18]). Moreover, there exists an “approximate version” for the functions defined in
the closure of open connected bounded sets in Banach spaces (see [19–21]) because Rolle’s
theorem cannot be applied to the functions defined in the closure of the unit ball in infinite-
dimensional Banach spaces, where continuous functions may not have minimum and
maximum values (because compactness is lost; see, e.g., [22] and the references therein,
and also [23]). At last, we mention a version for real functionals defined in a whole real
Banach space, which appears in [24], a study on the range of the derivative of functions
with bounded support in [25], and the recent contributions [26–32].

The aim of this paper is to prove four results that generalize the classical result.
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First, we point out that Rolle’s theorem has much broader validity than the classical
theorem; in fact, it can be applied to functions whose domain is a closed set endowed with
interior points, of any locally convex topological Hausdorff vector space (see the precise
statement of Theorem 1); in particular, as already known, it can be applied to real functions
of several variables, and to functions of a single variable not necessarily defined in an
interval. Then, with reference to the functions defined in an interval of R, the classical
theorem is generalized from different points of view.

The second result (see Theorem 2) shows that, in Rolle’s theorem, the function can also
be defined in an unbounded interval under the assumption that the limits in the extremes,
assumed to exist, are equal (see Figure 1); we do not exclude that there exist points at
which the function has an infinite derivative (see Figure 2), and, moreover, when it is
finite, there is no need for the continuity in the extremes; at last, there is also no need for
the interval to be closed. As an application, we prove Theorem 3, which also generalizes
Lagrange’s theorem.

Figure 1. Unbounded intervals.

Figure 2. Bounded intervals.

If in Rolle’s theorem we assume the function of class C1 (i.e., a continuous first deriva-
tive) in a compact interval, the integral mean of the derivative is equal to zero (it suffices
to use the fundamental formula of integral calculus); this trivial observation suggests the
thesis of the third theorem (see Theorem 4), which cannot be the same as that of Rolle’s the-
orem because the function, instead of being endowed with a derivative defined pointwise,
is assumed to be endowed with a weak derivative belonging to L1 (i.e., whose modulus
is integrable).

Finally, Theorem 5 can be considered Rolle’s theorem for distributions over an open
interval of R.

2. The Main Results

We begin by recalling the classical notion of a Gateaux differential, which is a gen-
eralization of the concept of a directional derivative in differential calculus. Let S be a
topological Hausdorff vector space, Ω be an open subset of S, and f be a real and continuous
function defined in Ω. For each x0 ∈ Ω, the function f is said to be Gateaux-differentiable
at the point x0 ∈ Ω, where, for each y ∈ S, there exists a finite limit

ℓy = lim
t→0

f (x0 + ty)− f (x0)

t
,
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and the map y ∈ S → ℓy ∈ R is a linear and continuous operator. If f is Gateaux-
differentiable at the point x0, then the map y ∈ S → ℓy ∈ R is denoted by d f (x0), and it is
called the Gateaux differential of f at the point x0. In the particular case S = Rn, the Gateaux
differentiability is equivalent to derivability according to any direction, and d f (x0) is the
differential of f in the classical sense.

By using the same argument as in calculus, we show that the following generalized
Rolle’s theorem holds as follows:

Theorem 1. Let S be a locally convex topological Hausdorff vector space, D a proper subset of
S, closed and with nonempty interior; let f be a real function defined in D, continuous in D and
Gateaux-differentiable in the interior points. Then, if f is constant on the boundary of D, and if
there exist min f and max f (for instance, in the case D is a compact set), then there exists at least
one interior point x0 of D such that d f (x0) = 0.

Proof of Theorem 1. Let us rule out the case that f is constant because, in such a case, the
differential is zero for every interior point and the assertion is trivial.

By assumption, which is always satisfied in the case that D is a compact set, by the
Weierstrass theorem (see, e.g., Theorem 4.16, p. 89 [33]), the function has a minimum and a
maximum; let x0, x1 be points of D such that f (x0) = min f and f (x1) = max f . At least
one of the points x0, x1, e.g., x0, is interior to D; if they were both boundary points (note that
the boundary of D is nonempty because D is a proper subset of S), by the assumption that
f is constant on the boundary of D, it would be min f = max f and therefore the function
f would be constant; i.e., this would be the eventuality ruled out above.

Now, since x0 is point of local minimum for f interior to the domain of f , as we are
going to recall, we have d f (x0) = 0 and the assertion will be proved.

A point of local extreme interior in D is such that d f (x0) = 0 and can be proved in
the framework of locally convex topological Hausdorff vector spaces by an argument very
close to the standard one; nevertheless, there are a few details.

Let x0 ∈ D be, e.g., a point of local minimum. Since it is interior in D, there exists a
neighborhood I ∋ x0, I ⊂ D, such that f (x) ≥ f (x0) ∀x ∈ I, and, since S is a locally convex
topological space, there exists a convex neighborhood Ic ∋ x0, Ic ⊂ I, satisfying

f (x) ≥ f (x0) ∀x ∈ Ic; (1)

on the other hand, by the continuity of the addition in the vector space S, we have

lim
t→0

x0 + ty = x0,

and therefore there exists δ > 0 such that |t| < δ ⇒ x0 + ty ∈ Ic. By (1), we obtain

|t| < δ ⇒ f (x0 + ty)− f (x0) ≥ 0,

so that, by the known argument involving signs (the ratio is nonnegative when 0 < t < δ
and nonpositive when −δ < t < 0), we have (the existence of the limit is ensured by the
assumption of differentiability)

lim
t→0

f (x0 + ty)− f (x0)

t
= 0.

Since y is arbitrary, we obtain d f (x0) = 0.

Remark 1.
1. The requirement of the closure of D in the assumptions of Theorem 1 appears just for the sake

of simplicity. In fact, the statement holds as well assuming only that the set of the boundary points
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of D that belong to D are nonempty; if such set consists of a singleton, obviously, the assumption of
f to be constant on the boundary must be dropped.

2. From Theorem 1, in the case S = Rn, n > 1, we obtain the classical Rolle’s theorem extended
to functions of several variables, and we stress that, in the case n = 1, the classical assumption that
the domain of the function is an interval can be dropped.

3. In the special case in which S is a Hilbert space, by Riesz’s theorem, the linear operator
d f (x0) is identified with the gradient of f (element of S), and, therefore, in the assumptions of the
theorem, there exists at least one point x0 interior to D such that f ′(x0) = 0. Moreover, we note that
Theorem 1 can also be applied in the framework of infinite-dimensional Hilbert spaces to a function
defined in the non-compact domain D = {x ∈ S : ∥x∥ ≤ 1}; in fact, by (8.24 p. 267 [34]),
the function f (x) = ∥x∥2 is Fréchet-differentiable at every point, and, therefore, we hold that f is
in particular Gateaux-differentiable. This is well-known; however, for the sake of completeness, we
recall here the short proof. We will apply the fact that, for all x ∈ S, it is ∥x∥2 = x • x, where by •
we denote the scalar product in S. Since

lim
t→0

f (x + ty)− f (x)
t

= lim
t→0

∥x + ty∥2 − ∥x∥2

t
= lim

t→0

(x + ty) • (x + ty)− ∥x∥2

t

= lim
t→0

t2∥y∥2 + 2tx • y
t

= lim
t→0

t∥y∥2 + 2x • y = 2x • y,

we have
d f (x) : y ∈ S → 2x • y.

The value of f is 1 on the boundary of D, and, in this case, the point x = 0 is minimum for f and
d f (0) = 0.

4. The existence of min f and max f , which appear in the assumptions of Theorem 1, is
essential for the validity of the thesis. In fact, if we denote by D′ the closure of the complementary
set of the unitary ball D considered in the previous point 3., the function

g : x ∈ D′ → ∥x∥2

satisfies all the assumptions of Theorem 1 except the existence of the maximum, and no point x0
exists, interior to D′, such that dg(x0) = 0. It should be noted that, if x0, y0 ∈ S\{0}, and x0
interior to D′ are orthogonal, we have < dg(x0), y0 >= 2x0 • y0 = 0, but the thesis states that the
whole operator d f (x0) is identically zero.

5. We stress that Theorem 1 can be applied not only in the framework of Hilbert spaces but also
in a class of Banach spaces (which again, as in the previous point 3., can be infinite-dimensional).
Namely, from Theorem 8.13 p. 247, [34], we know that every separable Banach space admits an
equivalent norm that is Gateaux-differentiable in every point x ̸= 0. This implies that the function
f (x) = ∥x∥2 is Gateaux-differentiable at every point (see, e.g., 8.18 p. 265, [34]), and, therefore,
the same example shown in the previous point 3. works also in this case.

6. Recently ([35]), Rolle’s theorem has been extended to functions of several variables using
a new definition of differentiability, which allows the thesis to be obtained even for points not
necessarily interior to the domain.

7. The conclusion of Theorem 1 still holds in the case of real functions that are continuous
and Fréchet-differentiable in the interior points because, as already observed, they are also Gateaux-
differentiable and the Fréchet differential equals the Gateaux differential.

Theorem 2. Let f be a function defined in an interval I ⊆ R (closed, open, or semi-open) of
extremes a and b (not excluding a = −∞, nor b = +∞), continuous at interior points of I and
endowed therein with a derivative, finite or not; in the extremes, let f be endowed with limit (finite
or not).

If the limits
lim
x→a

f (x), lim
x→b

f (x) (2)
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are equal, then there exists at least one interior point x0 of I such that f ′(x0) = 0.

Remark 2. In Theorem 2, the assumption that f has derivative at all interior points is essential for
the validity of the thesis (see Example 3 below).

Proof of Theorem 2. In the proof, we will rule out the existence of an interval I1 ⊆ I in
which the function is constant since in such an eventuality the derivative is zero at all points
of I1 and therefore the thesis is trivially verified.

Denoted by ℓ, the limit of f in the extremes of I, we first prove that

∃ ]α, β[⊆ I : f (x) ̸= ℓ ∀ x ∈]α, β[ (3)

lim
x→α

f (x) = ℓ, lim
x→β

f (x) = ℓ. (4)

In order to prove (3), we assume ℓ ̸= ±∞ because otherwise (3) is trivially verified
with α = a and β = b. Having chosen a point c ∈]a, b[ such that f (c) ̸= ℓ (it exists since f is
not constant), let us consider the sets

Ac = {t ∈]a, c[ : f (x) ̸= ℓ ∀ x ∈]t, c]}, Bc = {t ∈]c, b[ : f (x) ̸= ℓ ∀ x ∈ [c, t]};

since by continuity of f there exists a neighborhood of c in which the function does not
take the value ℓ, such sets are nonempty, and setting

α = inf Ac, β = sup Bc, (5)

we have α < c < β; we show that in ]α, β[ the condition required in (3) is satisfied. On the
contrary, let us assume that there exists ξ ∈]α, β[\{c} such that

f (ξ) = ℓ. (6)

If ξ ∈]α, c[, since ξ is not a minorant of Ac, there exists t ∈ Ac such that t < ξ; then, we
have f (ξ) ̸= ℓ (by the meaning of t ∈ Ac), which is in contrast with (6); on the other hand,
if ξ ∈]c, β[, since ξ is not a majorant of Bc, there exists t ∈ Bc such that t > ξ; then, we have
f (ξ) ̸= ℓ (by the meaning of t ∈ Bc), which is in contrast with (6). Hence, (3) follows.

Now, in order to prove the first of (4), let us assume α > a (if α = a, then the first of (4)
holds because of the meaning of ℓ) so that α is an interior point of the interval I; then, by the
continuity of f , the limit in the left-hand side exists and is equal to f (α); if it were f (α) ̸= ℓ,
there would exist δ > 0 such that f (x) ̸= ℓ ∀ x ∈]α − δ, α] and therefore also ∀ x ∈]α − δ, c];
hence, it would be (α − δ) ∈ Ac in conflict with the first of (5). By a similar argument, we
can prove the second of (4).

Let us now denote by g the restriction of f to the interval J =]α, β[ so that from (4)
we have

lim
x→α

g(x) = lim
x→β

g(x) = ℓ. (7)

By the continuity of g, the range g(J) is an interval since ℓ ̸= g(J); the interval g(J) is
contained in one of the intervals ] − ∞, ℓ[, ]ℓ,+∞[, precisely in the former if ℓ = +∞
and in the latter if ℓ = −∞ (we take these eventualities into account because it could be
[α, β] = [a, b]). It will suffice to examine the case g(J) ⊆]− ∞, ℓ[ since for the other case the
argument is entirely analogous.

We will prove that, in the present case, the function g is endowed with a minimum,
and that the minimum is attained at a point x0 interior to J; after that, it will be easy to
establish, by a classical argument, that g′(x0) = 0. In the other case, where the proof is entirely
analogous, the function is endowed with a maximum, attained at a point interior to J.

Setting e1 = inf g and e2 = sup g, we have e1 < e2; this is trivial if e1 or e2 is infinite; if
both were finite, it would be e1 = e2; the function would be constant, which we ruled out
from the beginning.



Mathematics 2024, 12, 2157 6 of 12

Let us show that ℓ = e2, which is obvious if ℓ = +∞ since in such case the function is
not upper-bounded; if ℓ ∈ R, having assumed g(J) ⊆]− ∞, ℓ[, the number ℓ is a majorant
of g, and it is the minimum of majorants; in fact, by (7), taking into account the definition
of limit, for every ε > 0, there exist points x ∈ I such that g(x) > ℓ− ε.

Having shown that ℓ = e2, (7) becomes

lim
x→α

g(x) = lim
x→β

g(x) = e2. (8)

On the other hand, if e1 is finite [if e1 = −∞], for every n ∈ N, there exists xn ∈ J such that

e1 ≤ g(xn) < e1 +
1
n

[g(xn) < −n],

and therefore
lim

n→∞
g(xn) = e1. (9)

We may assume that the sequence {xn} is regular since there exists in any case a convergent
or divergent extract sequence that can be denoted by the same symbol; hence, we are
allowed to set x0 = limn→∞ xn.

We show that x0 is not an extreme of the interval ]α, β[; if it were x0 = α, since the limit
of g(x) exists as x → α and {xn} is a sequence of points of the open interval ]α, β[ having α
as limit, by (9), we would have

lim
x→α

g(x) = e1,

which is contrary to (8) since e1 < e2; similarly, we conclude that x0 ̸= β.
Therefore, as to the point x0 of the interval ]α, β[, we have

lim
n→∞

xn = x0, lim
n→∞

g(xn) = e1;

hence, by the continuity of g,

g(x0) = lim
x→x0

g(x) = lim
n→∞

g(xn) = e1.

Therefore, g(x0) is the minimum of the function g.
By assumption, the following limit exists (finite or infinite):

lim
x→x0

g(x)− g(x0)

x − x0
= g′(x0) = f ′(x0),

and we can conclude that f ′(x0) = 0; if it were f ′(x0) > 0[ f ′(x0) < 0], there would exist a
neighborhood I1 ⊆ I such that in I1 \ {x0} the difference quotient of g would be positive
[negative], which is absurd because the numerator is nonnegative while the denominator
is positive for x > x0 and negative for x < x0. The theorem is thus acquired.

Example 1. The function f , known as the Witch of Agnesi, defined by (see, e.g., [36])

f : x ∈ R → f (x) =
1

1 + x2 ,

satisfies the assumptions of Theorem 2. We note that f ′(0) = 0.

Example 2. The function f : x ∈ R → 3
√

x2 − 1 satisfies the assumptions of Theorem 2. We note
that the derivative is infinite in the points −1, 1, and that f ′(0) = 0.

Example 3. The function f : x ∈ [−1, 1] → |x| satisfies the assumptions of Rolle’s theorem except
for the existence of the derivative at every point inside the definition interval since at point 0 (only
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at point 0) f is not derivable. The example proves that the thesis cannot hold because the derivative
function of f is not zero at any point.

The standard application of Rolle’s theorem is Lagrange’s theorem with distinct limits
in the extremes of the interval of definition of f (in the case of equal limits, Lagrange’s
theorem becomes exactly Rolle’s theorem). In an analogous fashion, we have

Theorem 3. Let f be a function defined in a bounded interval I ⊆ R (closed, open, or semi-open)
of extremes a and b, continuous at interior points of I and endowed therein with the derivative
function having a limit (finite or not) at every point of [a, b], finite or not; in the extremes, let f be
endowed with limit (finite or not).

If the limits
lim
x→a

f (x), lim
x→b

f (x) (10)

are distinct, then there exists at least one point ξ ∈ [a, b] such that

lim
x→b

f (x)− lim
x→a

f (x) = (b − a) lim
x→ξ

f ′(x). (11)

Remark 3.
1. In Theorem 3, the assumption that the interval I is bounded is essential for the validity of

the thesis (see Example 4 below).
Since each of the limits in (10) can be ±∞, it should be noted that the left-hand side of (11) is not

an indeterminate form (recall that by assumption the two limits are distinct). Furthermore, if the point
ξ is interior to the interval or it is an extreme belonging to the interval, the limit on the right-hand side
is equal to f ′(ξ), even if f ′(ξ) = ±∞; in fact, this can be deduced from the definition of derivative at
the point ξ, applying L’Hospital’s theorem (see, e.g., Theorem 5.13 p. 109, [33]).

Moreover, it is obvious that, if ξ is an extreme of the interval and it does not belong to it,
the function is not defined there and therefore it does not make sense to consider f ′(ξ).

2. If the limits in the left-hand side of (11) are finite and, at the interior points of I, the function
f is derivable, the point ξ in the right-hand side is interior to [a, b], and it is sufficient to apply
Lagrange’s classical theorem to the continuous extension on [a, b] of the restriction of f to ]a, b[.

Proof of Theorem 3. For any compact interval [a′, b′] ⊂]a, b[, if f is derivable at the interior
points of [a, b], by the classical Lagrange’s theorem, there exists at least one point c interior
to [a′, b′] such that

f (b′)− f (a′) = (b′ − a′) f ′(c);

we observe that this assertion is valid also in the case that there are points interior to [a′, b′]
where the derivative of f is infinite; this can be proved, using Theorem 2 acquired above,
by the same procedure usually carried out to prove the classical Lagrange’s theorem.

Now, for each n ∈ N, n > 2/(b − a), let us consider the restriction of f to the compact
interval In = [a + 1/n, b − 1/n] ⊂]a, b[; because of what has just been observed, there exists
at least one point cn interior to In such that

f
(

b − 1
n

)
− f

(
a +

1
n

)
=

(
b − a − 2

n

)
f ′(cn). (12)

Since the subsequence {cn} is bounded because the interval I is bounded, we can assume
that it is convergent (since in the opposite case we can replace {cn} by a convergent extract
sequence); on the other hand, denoted by ξ the limit of {cn}, by our assumption, there
exists limx→ξ f ′(x) so that the limit of the subsequence { f ′(cn)} also exists and we have

lim
n→∞

f ′(cn) = lim
x→ξ

f ′(x).
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Therefore, from (12), passing to the limit as n → ∞, we deduce (11), and the assertion
is proved.

Example 4. The arcotangent function satisfies the assumptions of Theorem 3, except that the
domain is bounded; it is immediate to see that for this function the thesis of the theorem does not
hold. In fact, it asserts the existence of a point ξ ∈ [−∞,+∞] for which

lim
x→+∞

arctan x − lim
x→−∞

arctan x = (+∞) · lim
x→ξ

1
1 + x2 ,

i.e.,

π = (+∞) · lim
x→ξ

1
1 + x2 . (13)

If ξ ∈ R, the limit on the right-hand side is a positive number and (13) is false, while, if ξ = ±∞,
the limit is 0 and (13) does not make sense.

Considering the restriction of the arcotangent function at the interval [0,+∞[, we obtain an
example with the domain lower-bounded but not upper-bounded in which the thesis of the theorem
does not hold. Analogously, we could consider the restriction of the arcotangent function at the
interval ]− ∞, 0], obtaining an example with the domain upper-bounded but not lower-bounded.

Next result involves the well-known notion of weak derivative of a function f . For
a given function f ∈ L1

loc(I) (i.e., f is in L1 over all compact sets contained in the open
interval I ⊆ R), a function w ∈ L1

loc(I) is said to be weak derivative of f if∫
I

wφ = −
∫

I
f φ′ ∀ φ ∈ C∞

0 (I),

where, as usual, by C∞
0 (I), we denote the set of functions differentiable infinitely many

times, and having compact support in the interior of I. Since this notion extends the classical
notion of derivative and it agrees with the classical one whenever the classical derivative
exists and is continuous (see, e.g., [37] and Theorem 6.10, p. 136, [38]), the function w,
which can be proved to be uniquely determined, is denoted by the standard symbol f ′.

Theorem 4. Let f be a continuous function at the interior points of the interval (a, b) (closed, open,
or half-open, and bounded or not bounded), endowed in ]a, b[ with a weak derivative belonging to
L1. If f is convergent in the extremes of the interval and

lim
x→a

f (x) = lim
x→b

f (x), (14)

then ∫ b

a
f ′ = lim

x→b
f (x)− lim

x→a
f (x) (15)

and therefore ∫ b

a
f ′ = 0.

Obviously, under the assumptions of the theorem, in the case the interval is bounded,
the thesis means that the mean integral of f ′ is equal to zero.

In the special case in which f ′ has a continuous representative in ]a, b[, let us again
call it f ′; the thesis implies that there exists a point x0 ∈]a, b[ such that f ′(x0) = 0; hence,
for such class of functions, Theorem 4 is a generalization of Rolle’s theorem.
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Proof of Theorem 4. Fixed two sequences {an} and {bn} of points of (a, b) such that lim an = a
and lim bn = b; we will use the relation∫ b

a
f ′ =

∫ an

a
f ′ +

∫ b

bn
f ′ +

∫ bn

an
f ′. (16)

The function f , being endowed in ]a, b[ with a weak derivative in the compact inter-
val [an, bn] ⊂]a, b[, is absolutely continuous; hence, it is derivable so there exists a set
Xn ⊂ [an, bn] of null Lebesgue measure such that f is derivable in [an, bn] \ Xn; conse-
quently, setting X0 = ∪n∈NXn, the function f is derivable in every point of (a, b) \ X0;
hence, it is derivable a.e. in (a, b). Denoting by f ∗ the classical derivative of f , and by f ′0 a
representative of the class f ′ (which denotes the weak derivative of f ), we have

f ∗ = f ′0 a.e. in (an, bn). (17)

On the other hand, since in the interval [an, bn] the function f is an absolutely continuous
function, primitive of f ∗, we have

∫ bn
an

f ∗ = [ f (x)]bn
an , and, therefore, by (17),

∫ bn

an
f ′ =

∫ bn

an
f ′0 =

∫ bn

an
f ∗ = [ f (x)]bn

an .

Hence, (16) becomes ∫ b

a
f ′ =

∫ an

a
f ′ +

∫ b

bn
f ′ + [ f (bn)− f (an)].

Such relationship holds for every n ∈ N, and, passing to the limit as n → ∞ and taking into
account (14), we obtain (15), and the theorem is proved.

Example 5. The function f : x ∈ [−1, 1] → |x| does not satisfy the assumptions of Theorem 2
(see Example 3), but it satisfies the assumptions of Theorem 4 because its weak derivative is
(see, e.g., Theorem 6.17, p. 152, [38])

f ′(x) =

{
1 if x ∈]0, 1[

−1 if x ∈]− 1, 0[
.

We note that the integral of f ′ over (−1, 1) equals zero.

Remark 4. The standard application of Rolle’s theorem is Lagrange’s theorem. In the assumptions
of Theorem 4, and if, moreover, the interval (a, b) is bounded, denoting by µ f (a, b) the integral
mean of f ′ in (a, b), the thesis (15) can be written equivalently as

lim
x→b

f (x)− lim
x→a

f (x)

b − a
= µ f (a, b)

so that Theorem 4 is a generalization of Lagrange’s theorem because on the right-hand side the value
of f ′ in a suitable point of (a, b) (which would be meaningless) is replaced by the integral mean of f ′

in (a, b). Hence, Theorem 4, with the further assumption of the boundedness of the interval, can
also be considered an application of Rolle’s theorem.

Let us now denote by I an open interval of R and by C∞
0,0(I) the following subspace

of C∞
0 (I):

C∞
0,0(I) =

{
φ ∈ C∞

0 (I) :
∫

I
φ = 0

}
.

We have
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Theorem 5. Let I ⊆ R be an open interval, T be a distribution over I, and T′ be the derivative of
T. If there exist φ1, φ2 ∈ C∞

0 (I) such that φ1 − φ2 ∈ C∞
0,0(I) and Tφ1 = Tφ2, then there exists

ψ ∈ C∞
0 (I) such that

T′ψ = 0. (18)

Proof. Let ]a, b[ denote the open interval I. We will prove the assertion setting ψ equal to
the primitive function of φ1 − φ2 defined by

ψ(x) =
∫ x

a
[φ1(t)− φ2(t)]dt ∀ x ∈]a, b[.

In order to show that ψ ∈ C∞
0 (I), first, we observe that ψ ∈ C∞(I). Then, denoted by [a′, b′],

an interval in ]a, b[ containing the supports of φ1 and φ2, it is obvious that ψ ≡ 0 in ]a, a′];
on the other hand, ψ ≡ 0 also in ]b′, b] because φ1 − φ2 ∈ C∞

0,0(I), and, therefore, for each
x ∈ [b′, b[, we have

ψ(x) =
∫ x

a
[φ1(t)− φ2(t)]dt =

∫ b

a
[φ1(t)− φ2(t)]dt −

∫ b

x
[φ1(t)− φ2(t)]dt = 0.

Property (18) is a direct consequence of the definition of derivative of a distribution and of
the assumption Tφ1 = Tφ2; in fact, T′ψ = −Tψ′ = T(φ2 − φ1) = 0.

At last, we highlight a special case of Theorem 5. Let f ∈ L1
loc(]a, b[) (i.e., f is L1 over

all compact sets contained in ]a, b[), Tf be the distribution on ]a, b[ associated with f , i.e.,

Tf φ =
∫ b

a
f φ ∀ φ ∈ C∞

0 (]a, b[),

and, finally, let T′
f be the derivative of Tf :

T′
f : φ ∈ C∞

0 (]a, b[) → −
∫ b

a
f φ′,

that is, the derivative of f in the sense of distributions.
In the case T = Tf , Theorem 5 reads as follows.

Theorem 6. Let f ∈ L1
loc(]a, b[). If φ1, φ2 ∈ C∞

0 (]a, b[) are such that φ1 − φ2 ∈ C∞
0,0(I) and

∫ b

a
f φ1 =

∫ b

a
f φ2,

then there exists ψ ∈ C∞
0 (]a, b[) such that

∫ b

a
f ψ′ = 0.

In particular, if f has a weak derivative, then there exists ψ ∈ C∞
0 (]a, b[) such that

∫ b

a
f ′ψ = 0.

Example 6. The functions

f (x) =

{
|x| if |x| < 1
0 if x ∈]− 2, 2[\]− 1, 1[

,
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φ1(x) =

{
− exp

(
− 1

1−x2

)
2x

(1−x2)2 if |x| < 1

0 if x ∈]− 2, 2[\]− 1, 1[
,

and φ2 ≡ 0 on ]− 2, 2[ satisfy the assumptions of Theorem 6 after noticing that φ1 and f φ1 are
odd functions. The expression of φ1 has been chosen to be equal to the derivative of the well-known
Friedrichs mollifying kernel (see, e.g., p. 258, [39])

ψ(x) =

{
exp

(
− 1

1−x2

)
if |x| < 1

0 if x ∈]− 2, 2[\]− 1, 1[
,

which is known to be C∞
0 (]− 2, 2[). We note that f ψ′ = f φ1 is odd, and, therefore,

∫ 2

−2
f ψ′ = −

∫ 2

−2
f ′ψ = 0.
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