
Citation: Jin, J.; Yan, L.; Zou, Y.; Li, J.;

Yu, Z. Research on Smart Contract

Verification and Generation Method

Based on BPMN. Mathematics 2024, 12,

2158. https://doi.org/10.3390/

math12142158

Academic Editor: Florin Leon

Received: 12 April 2024

Revised: 29 May 2024

Accepted: 27 June 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Smart Contract Verification and Generation Method
Based on BPMN
Jun Jin 1 , Le Yan 1, Yidan Zou 1, Jie Li 1,2 and Zhen Yu 1,*

1 School of Information, Beijing Wuzi University, Beijing 101149, China; jinjun@bwu.edu.cn (J.J.)
2 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
* Correspondence: yz_bwu@163.com

Abstract: The post-deployment challenges in developing and upgrading blockchain smart contracts
necessitate a high level of accuracy in their development and business logic. However, current
methodologies for verifying the business logic of smart contracts frequently fail to address their
alignment with end-user business requirements. This paper introduces a two-step language trans-
formation process to bridge this gap. Initially, we establish a transformation rule from the Business
Process Model and Notation (BPMN) to Prolog, enabling the translation of business processes into
a Prolog representation. This step not only validates the business process logic but also ensures
it meets user specifications. Subsequently, we introduce a transformation rule from the BPMN to
Go, which facilitates the transformation of the BPMN model, once validated, into a Go language
smart contract. To enhance usability, we have engineered a dedicated tool that streamlines this
transformation process. We present a case study involving a banking loan process to exemplify the
utility of our tool in creating BPMN diagrams, conducting requirement and syntax validations, and
effecting the transformation to Go smart contracts. The case study and empirical results suggest that
our methodology and the accompanying tool mitigate the complexities inherent in smart contract
development. They also ensure the fidelity of business logic to user demands, thereby promoting the
broader adoption of blockchain smart contract technology.

Keywords: BPMN modeling; business logic validation; user requirements verification; smart contract
generation; language transformation consistency

MSC: 03B70

1. Introduction

A smart contract is a code script that operates within a blockchain network. Developers
must utilize programming languages such as Solidity and Go, adhering to their respective
syntax rules. As business requirements become increasingly complex, if developers do not
have a good understanding of business logic, the implemented code logic is likely to be
inconsistent with the business logic proposed by the user. Traditional business systems can
be continuously corrected through version upgrades, but upgrading smart contracts after
deployment is very difficult.

To reduce the difficulty of developing smart contracts, improve their correctness, and
ensure consistency with business requirements, extensive research has been conducted
both domestically and internationally on visual business logic modeling, model valida-
tion, and the generation of accurate models for smart contracts. References [1–4] propose
graphical development methods and tools for Solidity language smart contracts. Refer-
ences [4–8] propose the verification of the structure and behavior of business models and
process diagrams, but only focus on the basic structure of their models or process diagrams
themselves, without considering and verifying whether user requirements are consistent
with the model. Petri nets are mainly used for system behavior analysis and property
verification, and are especially suitable for large-scale concurrent systems [9]. Prolog is a

Mathematics 2024, 12, 2158. https://doi.org/10.3390/math12142158 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12142158
https://doi.org/10.3390/math12142158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-1858-3075
https://doi.org/10.3390/math12142158
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12142158?type=check_update&version=3

Mathematics 2024, 12, 2158 2 of 15

declarative programming language that uses pattern matching and logical reasoning to
validate rules [10]. Therefore, Prolog is more suitable for determining whether the structure
and functions provided by smart contracts meet user requirements.

As a widely used business process modeling tool, a standard BPMN provides busi-
nesses with the capability of understanding their internal business procedures in a graphical
notation and gives organizations the ability to communicate these procedures in a standard
manner. Furthermore, the graphical notation facilitates the understanding of the perfor-
mance collaborations and business transactions between the organizations [11]. Therefore,
this paper chooses a BPMN and first uses the BPMN to model the business process of smart
contracts, proposes transformation rules from the BPMN (xml format [12]) to Prolog, and
uses Prolog to verify whether the BPMN is legal and meets user needs. Then, a set of trans-
formation rules from the BPMN to Go programming language is proposed to transform the
validated BPMN into a Go language smart contract. Finally, a case study is presented to
demonstrate how to use developed tools to complete the above process, and experiments
are conducted to demonstrate that the time required for the above transformation process
is reasonable. This paper makes the following contributions:

1. To verify the correctness of the BPMN and its alignment with business requirements,
we propose a set of transformation rules from the BPMN to Prolog. The Swish [13]
supports Prolog-based validation, which enables the detection of errors in both syntax
and the business description within the BPMN models.

2. To generate a Go smart contract, we propose a set of transformation rules from the
BPMN to Go programming language.

3. We propose a new development process model that encompasses the design of visual
requirements, their verification, and the subsequent generation of smart contract code.
Demonstrated through a typical bank loan assessment case and experiments, this
development paradigm alleviates the communication challenges between requirement
specifiers and smart contract developers, providing a valuable enhancement to the
existing paradigms in software engineering.

The rest of this paper is organized as follows. Section 2 discusses related work on
model verification and visualization technologies for smart contracts. In Section 3, we
propose a set of transformation rules from the BPMN to Prolog and from the BPMN
to Go. Accordingly, the soundness and completeness of these transformation rules are
demonstrated. Section 4 presents a case study on how to use our developed tool to
generate a bank loan assessment smart contract, along with experiments that show the
transformation time to be relatively short, thus meeting the requirements for practical
applications. Section 5 provides a summary and outlines future work.

2. Related Works

To ensure the normal operation of business processes, it is necessary to examine the
structure and behavior of business models and process diagrams, including organizational,
resource, functional, and data modeling, to ensure that type attributes, associations, and
instance logic are correct for static structures. For dynamic behavior, it is necessary to check
the state transition and semantic tracking logic [14].

However, with the increasing complexity of business models, it is difficult to ensure
the correctness of the models. So, we need to validate the model. Yamasathien S et al. [15]
used Petri nets to model time business processes and discussed their constraint attributes,
but did not provide a validation process or address how to handle constraint violations.
Du Y H and Xiong P C et al. [16] extended Petri nets based on time and established relevant
business processes. Then, they used model checking to verify the properties of the UPPAAL
tool. However, the time complexity of the generated graph constructed by this method is
not satisfactory, and its overall constraint consistency does not meet the requirements.

Prolog can describe complex information and has excellent descriptive and logical
reasoning abilities, which enable it to effectively describe and validate business processes.
Therefore, this paper conducts research based on the business process model BPMN and

Mathematics 2024, 12, 2158 3 of 15

selects Prolog as the business process description language for the verification of business
process consistency.

In recent years, researchers have proposed new visualization technologies to help pro-
fessionals better develop smart contracts. At present, smart contract generation is mainly
aimed at Solidity contracts, such as the open source tool Caterpillar jointly developed
by López Pinado O et al. [3], which can build, monitor, and optimize business processes
through graphical methods, including graph transformation and generating Solidity smart
contracts through BPMN-to-Solidity. Tran A B et al. [4] developed a smart contract visu-
alization generation tool called Lorikeet based on Caterpillar, which can generate smart
contracts based on the requirements of the business process model BPMN and registration
data system through the BPMN to Policy transformation algorithm.

However, using these tools to graphically generate smart contracts lacks the necessary
business logic verification process, and deploying them to blockchain without reliable
verification may lead to security, demand, and other issues. Therefore, it is necessary
to first verify the business logic of the visual smart contract. Then, in response to the
many differences in the syntax between the business flow language BPMN and Go, a
transformation rule for BPMN2Go was defined to achieve the transformation from XML-
based BPMN models to Go smart contracts.

3. Smart Contract Modeling, Validation, and Generation
3.1. Method Overview

In order to validate the BPMN model and generate Go language smart contracts, this
paper proposes the transformation from the BPMN flowchart to Prolog statements, two
types of validation, and the transformation rules from the BPMN to Go language. As
shown in Figure 1, the overall process is divided into four steps. 1⃝ Use BPMN notations
on a graphical interface to model business logic as a BPMN model; 2⃝ Transform the BPMN
model to Prolog statements and validate the basic rules of the BPMN model; 3⃝ Verify
whether the BPMN is legal and consistent with the user’s business requirements based
on basic rules and customized business requirement rules; 4⃝ According to the proposed
transformation rules from the BPMN to Go language, transform the BPMN model into a
smart contract.

Figure 1. Framework for smart contract design and verification method.

3.2. Rules Based on Sequent Calculus

Sequent is a deductive formal statement [17] that can be represented by H as a premise,
consisting of a finite number of predicates, and G as a target, consisting of a single predicate.
The semantics of Formula (1) is that the target G holds if the premise H holds.

H ⊢ G (1)

Inference rules are used to generate proofs of sequents, consisting of two parts: the
antecedent and consequent. The antecedent represents a finite set of sequents, while the

Mathematics 2024, 12, 2158 4 of 15

consequent represents a single sequent. An inference rule R1, which includes the antecedent
A and consequent C, can be written in the following form. Its semantics is the following: as
long as there is a proof of all the successive equations in antecedent A, inference rule R1
generates a sequent proof of consequent C. Using < > to represent the derivation process of
program semantics, the general form is shown in Formula (2).

<
A
C

> R1 (2)

When the antecedent is an empty set denoted as •, it can be written in the form of
Formula (3) with the semantics that the inference rule R2 produces as a proof of the sequent C.

<
•
C

> R2 (3)

The proof of a sequent can be seen as a finite tree, with each node in the form of
(s, r), consisting of a sequent s and an inference rule r. And the consequent of r is s. The
sequents of all child nodes of this node (s, r) constitute the antecedent of r. For example,
the following inference rules are given in Formulas (4)–(10).

<
•

S2
> R1 (4)

<
S7
S4

> R2 (5)

<
S2 S3 S4

S1
> R3 (6)

<
•

S5
> R4 (7)

<
S5 S6

S3
> R5 (8)

<
•

S6
> R6 (9)

<
•

S7
> R7 (10)

The proof of S1 is shown in Figure 2. The root node is (S1, R3) and S1 is the expected
sequent proof, which is also the consequent of R3. For a node such as (S3, R5), its two child
nodes include S5 and S6, which are the antecedents of R5. The semantics of this proof tree
is the following: in order to prove S1, according to R3, it is necessary to prove S2, S3, and
S4. Because S2 and R1 have no antecedents, it can be directly proven. By following this
example, it can be proven that other sequences are used in the inference rule, which can be
used to construct the transformation from child elements to the entire program through the
setting of multiple rules.

Figure 2. Sequent proof tree.

Mathematics 2024, 12, 2158 5 of 15

3.3. Definition of Transformation Operators

To describe the transformation, the three programming languages are represented as a
five-tuple automaton M = (Q, Σ, δ, q0, F), where Q represents the finite state set described
by the language, δ represents the transition function, and q0 and F represent the initial
and ending state sets, respectively. Formulas (11)–(13) show the BPMN, Prolog, and Go
language automata, respectively.

Mb = (Qb, Σb, δb, q0b, Fb) (11)

Mp = (Qp, Σp, δp, q0p, Fp) (12)

Mg = (Qg, Σg, δg, q0g, Fg) (13)

The transformation of language is essentially the transformation between state ma-
chines. The state machine of the BPMN is transformed into a Prolog automaton through
transformation rules, and the process from the BPMN to Go is similar. Next, define the
operators to describe the above transformation rules. From Mb to Mp and from Mb to Mg,
there exists semantic consistency in the state sets of the three automata before and after the
transformation.

1. Definition 1 (transformation operator φ)

The transformation rules for transforming from the BPMN to Prolog language, i.e.,
Mp = φ(Mb).

2. Definition 2 (transformation operator ψ)

The transformation rules for transforming from the BPMN to Go language, i.e.,
Mg = ψ(Mb).

3. Characteristic 1 (semantic consistency in language transformation)

If the state set and state transition function of the source language state machine and
the target language state machine can be consistent through the transformation operator,
it can be considered that the transformation process of the two languages has semantic
consistency.

Taking the task element in the BPMN as an example, designing the transition rule
as two types of corresponding language state transitions, using a sequent expression, can
yield Formulas (14) and (15).

<
BPMN2Prolog(bpmn2 ⊢ task id ⊢ TaskID name ⊢ TaskName)

task(TaskName, TaskId)
> task (14)

<
BPMN2Go(bpmn2 ⊢ task id ⊢ TaskID name ⊢ TaskName)

func(t ∗ (Structure name)) TaskName
> task (15)

3.4. Smart Contract Modeling Based on BPMN

By using the BPMN to model the business logic of smart contracts, nodes form the
foundation of the business process model. These nodes encompass tasks, events, network
connections, and flow connections. Therefore, using the BPMN can easily build various
different business process models. According to the BPMN 2.0 requirements, a process
model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider
application in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step 1⃝ in
Figure 1). Generally, the program execution process can be categorized into three types:
sequential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of

Mathematics 2024, 12, 2158 6 of 15

blockchain smart contracts [18], this paper temporarily does not consider the transforma-
tion of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start nodes,
end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table 1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start
The starting point of the
process, defines how the

process starts

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 15

model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider ap-
plication in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step ① in Fig-
ure 1). Generally, the program execution process can be categorized into three types: se-
quential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of
blockchain smart contracts [18], this paper temporarily does not consider the transfor-
mation of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start
nodes, end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table
1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start The starting point of the process,
defines how the process starts

exclusive
gateway

Modeling decisions in a pro-
cess

task
An atomic activity that represents

an action that needs to be per-
formed

 end The end of a branch in a pro-
cess or subprocess

Sequence
flow

A connector between two nota-
tions in a process

3.5. Transformation and Validation of BPMN to Prolog
Prolog is a logical language mainly used for the rapid validation of business pro-

cesses. By formulating rules, it can achieve the validation of the BPMN models. Its auto-
mation level is high, and it can not only use backtracking and a non-deterministic search
to explore possible solutions but also accurately describe business logic and inference val-
idation. The formulation of validation rules needs to consider two aspects: BPMN model
attributes and business scenarios; the former is the basic rule of the BPMN’s own struc-
ture, used to check whether the BPMN model is legal. For example, a BPMN model only
has one start event and one end event; the latter is a custom rule written based on specific
business scenarios and logic. For example, in a bank lending scenario, users need to verify
whether the existing model does not grant loans to people with low credit, and can cus-
tomize rules according to their needs. Prolog can verify both types of rules mentioned
above.

Next, transform the BPMN flowchart into Prolog language description, and simulta-
neously generate structural basic rules that can be used for validation (step ② in Figure
1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start
node, while StartEventName denotes the name of the start node. Rule 3 is the transfor-
mation of the task nodes in the BPMN model, where TaskId is the task node id and
TaskName is the end node name. Rule 4 is the transformation of business flows in the
BPMN model, where FlowId is the business flow ID, SourceId is the starting node ID of
the business flow connection, and TargetId is the pointing node ID of the business flow
connection. Rule 5 is the transformation of mesh nodes in the BPMN model, where Gate-
wayName is the gateway node name and GatewayId is the gateway node ID. The BPMN
model has been transformed into the basic rules for Prolog and the BPMN. During verifi-
cation, in conjunction with the business requirement rules written by the user, use Prolog
to determine whether the BPMN structure is legal and meets the business requirements
proposed by the user (step ③ in Figure 1).

exclusive
gateway

Modeling decisions in
a process

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 15

model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider ap-
plication in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step ① in Fig-
ure 1). Generally, the program execution process can be categorized into three types: se-
quential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of
blockchain smart contracts [18], this paper temporarily does not consider the transfor-
mation of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start
nodes, end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table
1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start The starting point of the process,
defines how the process starts

exclusive
gateway

Modeling decisions in a pro-
cess

task
An atomic activity that represents

an action that needs to be per-
formed

 end The end of a branch in a pro-
cess or subprocess

Sequence
flow

A connector between two nota-
tions in a process

3.5. Transformation and Validation of BPMN to Prolog
Prolog is a logical language mainly used for the rapid validation of business pro-

cesses. By formulating rules, it can achieve the validation of the BPMN models. Its auto-
mation level is high, and it can not only use backtracking and a non-deterministic search
to explore possible solutions but also accurately describe business logic and inference val-
idation. The formulation of validation rules needs to consider two aspects: BPMN model
attributes and business scenarios; the former is the basic rule of the BPMN’s own struc-
ture, used to check whether the BPMN model is legal. For example, a BPMN model only
has one start event and one end event; the latter is a custom rule written based on specific
business scenarios and logic. For example, in a bank lending scenario, users need to verify
whether the existing model does not grant loans to people with low credit, and can cus-
tomize rules according to their needs. Prolog can verify both types of rules mentioned
above.

Next, transform the BPMN flowchart into Prolog language description, and simulta-
neously generate structural basic rules that can be used for validation (step ② in Figure
1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start
node, while StartEventName denotes the name of the start node. Rule 3 is the transfor-
mation of the task nodes in the BPMN model, where TaskId is the task node id and
TaskName is the end node name. Rule 4 is the transformation of business flows in the
BPMN model, where FlowId is the business flow ID, SourceId is the starting node ID of
the business flow connection, and TargetId is the pointing node ID of the business flow
connection. Rule 5 is the transformation of mesh nodes in the BPMN model, where Gate-
wayName is the gateway node name and GatewayId is the gateway node ID. The BPMN
model has been transformed into the basic rules for Prolog and the BPMN. During verifi-
cation, in conjunction with the business requirement rules written by the user, use Prolog
to determine whether the BPMN structure is legal and meets the business requirements
proposed by the user (step ③ in Figure 1).

task
An atomic activity that

represents an action that
needs to be performed

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 15

model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider ap-
plication in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step ① in Fig-
ure 1). Generally, the program execution process can be categorized into three types: se-
quential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of
blockchain smart contracts [18], this paper temporarily does not consider the transfor-
mation of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start
nodes, end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table
1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start The starting point of the process,
defines how the process starts

exclusive
gateway

Modeling decisions in a pro-
cess

task
An atomic activity that represents

an action that needs to be per-
formed

 end The end of a branch in a pro-
cess or subprocess

Sequence
flow

A connector between two nota-
tions in a process

3.5. Transformation and Validation of BPMN to Prolog
Prolog is a logical language mainly used for the rapid validation of business pro-

cesses. By formulating rules, it can achieve the validation of the BPMN models. Its auto-
mation level is high, and it can not only use backtracking and a non-deterministic search
to explore possible solutions but also accurately describe business logic and inference val-
idation. The formulation of validation rules needs to consider two aspects: BPMN model
attributes and business scenarios; the former is the basic rule of the BPMN’s own struc-
ture, used to check whether the BPMN model is legal. For example, a BPMN model only
has one start event and one end event; the latter is a custom rule written based on specific
business scenarios and logic. For example, in a bank lending scenario, users need to verify
whether the existing model does not grant loans to people with low credit, and can cus-
tomize rules according to their needs. Prolog can verify both types of rules mentioned
above.

Next, transform the BPMN flowchart into Prolog language description, and simulta-
neously generate structural basic rules that can be used for validation (step ② in Figure
1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start
node, while StartEventName denotes the name of the start node. Rule 3 is the transfor-
mation of the task nodes in the BPMN model, where TaskId is the task node id and
TaskName is the end node name. Rule 4 is the transformation of business flows in the
BPMN model, where FlowId is the business flow ID, SourceId is the starting node ID of
the business flow connection, and TargetId is the pointing node ID of the business flow
connection. Rule 5 is the transformation of mesh nodes in the BPMN model, where Gate-
wayName is the gateway node name and GatewayId is the gateway node ID. The BPMN
model has been transformed into the basic rules for Prolog and the BPMN. During verifi-
cation, in conjunction with the business requirement rules written by the user, use Prolog
to determine whether the BPMN structure is legal and meets the business requirements
proposed by the user (step ③ in Figure 1).

end The end of a branch in a
process or subprocess

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 15

model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider ap-
plication in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step ① in Fig-
ure 1). Generally, the program execution process can be categorized into three types: se-
quential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of
blockchain smart contracts [18], this paper temporarily does not consider the transfor-
mation of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start
nodes, end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table
1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start The starting point of the process,
defines how the process starts

exclusive
gateway

Modeling decisions in a pro-
cess

task
An atomic activity that represents

an action that needs to be per-
formed

 end The end of a branch in a pro-
cess or subprocess

Sequence
flow

A connector between two nota-
tions in a process

3.5. Transformation and Validation of BPMN to Prolog
Prolog is a logical language mainly used for the rapid validation of business pro-

cesses. By formulating rules, it can achieve the validation of the BPMN models. Its auto-
mation level is high, and it can not only use backtracking and a non-deterministic search
to explore possible solutions but also accurately describe business logic and inference val-
idation. The formulation of validation rules needs to consider two aspects: BPMN model
attributes and business scenarios; the former is the basic rule of the BPMN’s own struc-
ture, used to check whether the BPMN model is legal. For example, a BPMN model only
has one start event and one end event; the latter is a custom rule written based on specific
business scenarios and logic. For example, in a bank lending scenario, users need to verify
whether the existing model does not grant loans to people with low credit, and can cus-
tomize rules according to their needs. Prolog can verify both types of rules mentioned
above.

Next, transform the BPMN flowchart into Prolog language description, and simulta-
neously generate structural basic rules that can be used for validation (step ② in Figure
1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start
node, while StartEventName denotes the name of the start node. Rule 3 is the transfor-
mation of the task nodes in the BPMN model, where TaskId is the task node id and
TaskName is the end node name. Rule 4 is the transformation of business flows in the
BPMN model, where FlowId is the business flow ID, SourceId is the starting node ID of
the business flow connection, and TargetId is the pointing node ID of the business flow
connection. Rule 5 is the transformation of mesh nodes in the BPMN model, where Gate-
wayName is the gateway node name and GatewayId is the gateway node ID. The BPMN
model has been transformed into the basic rules for Prolog and the BPMN. During verifi-
cation, in conjunction with the business requirement rules written by the user, use Prolog
to determine whether the BPMN structure is legal and meets the business requirements
proposed by the user (step ③ in Figure 1).

Sequence flow A connector between two
notations in a process

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 15

model consists of a series of notations, including the start event, end event, task, exclusive
gateway, and business flow, typically saved in XML format. The BPMN has a wider ap-
plication in the field of smart contracts, especially in multiple industries such as finance,
credit, and asset trading that have strict security requirements.

Firstly, the user-proposed business logic is modeled using the BPMN (step ① in Fig-
ure 1). Generally, the program execution process can be categorized into three types: se-
quential execution, selective execution, and parallel execution. Due to the special pro-
cessing required to ensure a consistent state across all nodes for the parallel execution of
blockchain smart contracts [18], this paper temporarily does not consider the transfor-
mation of parallel gateway nodes in the BPMN. Instead, it focuses on modeling start
nodes, end nodes, task nodes, exclusive gateways, and sequence flows, as shown in Table
1.

Table 1. BPMN model notation.

Name Description Symbol Name Description Symbol

start The starting point of the process,
defines how the process starts

exclusive
gateway

Modeling decisions in a pro-
cess

task
An atomic activity that represents

an action that needs to be per-
formed

 end The end of a branch in a pro-
cess or subprocess

Sequence
flow

A connector between two nota-
tions in a process

3.5. Transformation and Validation of BPMN to Prolog
Prolog is a logical language mainly used for the rapid validation of business pro-

cesses. By formulating rules, it can achieve the validation of the BPMN models. Its auto-
mation level is high, and it can not only use backtracking and a non-deterministic search
to explore possible solutions but also accurately describe business logic and inference val-
idation. The formulation of validation rules needs to consider two aspects: BPMN model
attributes and business scenarios; the former is the basic rule of the BPMN’s own struc-
ture, used to check whether the BPMN model is legal. For example, a BPMN model only
has one start event and one end event; the latter is a custom rule written based on specific
business scenarios and logic. For example, in a bank lending scenario, users need to verify
whether the existing model does not grant loans to people with low credit, and can cus-
tomize rules according to their needs. Prolog can verify both types of rules mentioned
above.

Next, transform the BPMN flowchart into Prolog language description, and simulta-
neously generate structural basic rules that can be used for validation (step ② in Figure
1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start
node, while StartEventName denotes the name of the start node. Rule 3 is the transfor-
mation of the task nodes in the BPMN model, where TaskId is the task node id and
TaskName is the end node name. Rule 4 is the transformation of business flows in the
BPMN model, where FlowId is the business flow ID, SourceId is the starting node ID of
the business flow connection, and TargetId is the pointing node ID of the business flow
connection. Rule 5 is the transformation of mesh nodes in the BPMN model, where Gate-
wayName is the gateway node name and GatewayId is the gateway node ID. The BPMN
model has been transformed into the basic rules for Prolog and the BPMN. During verifi-
cation, in conjunction with the business requirement rules written by the user, use Prolog
to determine whether the BPMN structure is legal and meets the business requirements
proposed by the user (step ③ in Figure 1).

3.5. Transformation and Validation of BPMN to Prolog

Prolog is a logical language mainly used for the rapid validation of business processes.
By formulating rules, it can achieve the validation of the BPMN models. Its automation
level is high, and it can not only use backtracking and a non-deterministic search to explore
possible solutions but also accurately describe business logic and inference validation. The
formulation of validation rules needs to consider two aspects: BPMN model attributes
and business scenarios; the former is the basic rule of the BPMN’s own structure, used
to check whether the BPMN model is legal. For example, a BPMN model only has one
start event and one end event; the latter is a custom rule written based on specific business
scenarios and logic. For example, in a bank lending scenario, users need to verify whether
the existing model does not grant loans to people with low credit, and can customize rules
according to their needs. Prolog can verify both types of rules mentioned above.

Next, transform the BPMN flowchart into Prolog language description, and simultane-
ously generate structural basic rules that can be used for validation (step 2⃝ in Figure 1).

Therefore, this paper proposes six transformation rules from the BPMN to Prolog, as
outlined in Table 2. Specifically, rules 1 and 2 pertain to the transformation of the start and
end nodes within the BPMN model. StartEventId represents the identifier of the start node,
while StartEventName denotes the name of the start node. Rule 3 is the transformation
of the task nodes in the BPMN model, where TaskId is the task node id and TaskName is
the end node name. Rule 4 is the transformation of business flows in the BPMN model,
where FlowId is the business flow ID, SourceId is the starting node ID of the business flow
connection, and TargetId is the pointing node ID of the business flow connection. Rule 5 is the
transformation of mesh nodes in the BPMN model, where GatewayName is the gateway node
name and GatewayId is the gateway node ID. The BPMN model has been transformed into
the basic rules for Prolog and the BPMN. During verification, in conjunction with the business
requirement rules written by the user, use Prolog to determine whether the BPMN structure is
legal and meets the business requirements proposed by the user (step 3⃝in Figure 1).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1.
The algorithm traverses and evaluates each element within the input BPMN file bfile. It
employs two structures: elist and flist. The elist retains all critical notation elements, and any
element not in elist is created and added upon encounter, as illustrated in lines 3, 6, 13, etc.
The flist is utilized to store ‘flow pairs’ consisting of a node element and a flow element
that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15,
etc. For elements of type startEvent, task, endEvent, and exclusiveGateway, once added to
elist, corresponding Prolog statements are generated and written to the Prolog file plfile, as
illustrated in lines 3, 7, 13, etc. If a flow element flowX in flist matches the incoming or outgoing
value of an element, the flow pair containing flowX is extracted, concatenated with the element
to form a connectionLink structure, and then outputted to the plfile, as shown in lines 5, 12, 18,

Mathematics 2024, 12, 2158 7 of 15

etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist
and the sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and
the flow element is concatenated with sourceRef and targetRef to generate a connectionLink
structure, which is subsequently outputted to the plfile, as shown in line 22. If there is complex
process logic (such as loop parallelism) in the BPMN process, or if the data objects and data
mappings are incompatible with the data representation of the Prolog, inconsistent versions
and other issues can lead to transformation failure.

Table 2. Transformation rules from BPMN to Prolog statements.

BPMN Statement Prolog Statement

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”> startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”> endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId” targetRef=“TargetId”/> connectionLink(FlowId,SourceId,TargetId).

<bpmn2:exclusiveGateway id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,GatewayId).

Algorithm 1: BPMN to Prolog Statements Transformation

Input: BPMN file bfile (.xml)
Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)
3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist && nodeZ

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then <flowOutY,nodeZ >→flist;
5 else <flowOutY,nodeZ >← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;
7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist || flowOutZ

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then
9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN>← flist;
11 if (flowX==flowInY || flowX==flowOutZ) then
12 connectionLink(flowInY, nodeN,exGateX).||connectionLink(flowOutZ, exGateX, nodeN).→plfile;
13 case task: taskN→elist ; task(TaskName).→plfile; taskName(TaskName,TaskId).→plfile;
14 if (flowInY

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist && flowOutZ

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then
15 flowInY&& flowOutZ→elist; < flowInY, taskN> && <flowOutZ, taskN>→flist;
16 else <flowX, taskN>← flist;
17 if (flowX== flowInY || flowX== flowOutZ) then
18 connectionLink(flowInY, taskN, nodeN). or connectionLink(flowOutZ, nodeN, taskN).→plfile;
19 case sequence flow: if (flowX

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then flowX→elist;
20 if (sourceRefX

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist && targetRefX

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then
21 <flowX, sourceRef >← flist; <flowX, targetRef >← flist;
22 connectionLink(flowX, sourceRefX, targetRefX).→plfile;
23 else if (sourceRefX

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist || targetRefX

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then
24 sourceRefX|| targetRefX→elist; <flowX, sourceRefX> || < flowX, targetRefX>→flist;
25 case endEvent: endN→elist; endNode(EndEventName).→plfile;
26 if (flowInY

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 41

<bpmn2:startEvent id=“StartEventId”
name=“StartEventName”>

startNode(StartEventName).

<bpmn2:endEvent id=“EndEventId”
name=“EndEventName”>

endNode(EndEventName).

<bpmn2:task id=“TaskId”
name=“TaskName”>

task(TaskName).
taskName(TaskName,TaskId).

<bpmn2:sequenceFlow id=“FlowId”
sourceRef=“SourceId”
targetRef=“TargetId”/>

connectionLink(FlowId,SourceId,Target
Id).

<bpmn2:exclusiveGateway
id=“GatewayId”
name=“GatewayName”>

gateway(GatewayName).
gatewayName(GatewayName,Gateway

Id).

The algorithm for transforming the BPMN to Prolog statements is shown in Algorithm 1. The algorithm traverses
and evaluates each element within the input BPMN file bfile. It employs two structures: elist and flist. The elist
retains all critical notation elements, and any element not in elist is created and added upon encounter, as
illustrated in lines 3, 6, 13, etc. The flist is utilized to store 'flow pairs' consisting of a node element and a flow
element that have not yet established connections with two nodes, as demonstrated in lines 4, 9, 15, etc. For
elements of type startEvent, task, endEvent, and exclusiveGateway, once added to elist, corresponding Prolog
statements are generated and written to the Prolog file plfile, as illustrated in lines 3, 7, 13, etc. If a flow element
flowX in flist matches the incoming or outgoing value of an element, the flow pair containing flowX is extracted,
concatenated with the element to form a connectionLink structure, and then outputted to the plfile, as shown in lines
5, 12, 18, etc. For elements of type sequence flow, if a flow pair composed of the element exists in flist and the
sourceRef or targetRef of the element is present in elist, that flow pair is retrieved, and the flow element is
concatenated with sourceRef and targetRef to generate a connectionLink structure, which is subsequently outputted
to the plfile, as shown in line 22. If there is complex process logic (such as loop parallelism) in the BPMN process,
or if the data objects and data mappings are incompatible with the data representation of the Prolog, inconsistent
versions and other issues can lead to transformation failure.

Algorithm 1: BPMN to Prolog Statements Transformation
Input: BPMN file bfile (.xml)

Output: Prolog statement description file plfile(. pl)
1 Traverse all notations in bfile until the end;
2 switch (type of the notation)

3 case startEvent: startX→elist; startNode(StartEventName).→plfile ;
4 if (flowOutY ∉ elist && nodeZ ∉elist) then <flowOutY,nodeZ >→flist;

5 else <flowOutY,nodeZ > ← flist; connectionLink(flowOutY, startX, nodeZ).→plfile;
6 case exclusiveGateway: exGateX→elist;

7 gateway(GatewayName).→plfile; gatewayName(GatewayName,GatewayId).→plfile;
8 if (flowInY ∉elist || flowOutZ ∉elist) then

9 <flowInY, exGateX>→flist; <flowOutZ, exGateX >→flist;
10 else <flowX, nodeN> ← flist;

elist) then
27 flowInY→elist ; <flowInY, endN>→flist;
28 else <flowInY, nodeX>← flist;
29 connectionLink(flowInY, nodeX, endN).→plfile;
30 end switch
31 Output: plfile

Mathematics 2024, 12, 2158 8 of 15

The basic rules of the BPMN model and the user-defined rules are described using
Prolog statements. If the input BPMN model does not meet the above rules, it cannot pass
validation. The verification process is shown in Algorithm 2, which includes eight rules.
The first rule is used to verify that there is no connection between all start nodes. The
second clause is similar to the first clause, and is used to verify that there is no connection
between all endpoints. Line 3: Verify that there is no connection between any start and
end nodes. Lines 4 and 5, respectively, verify that all start and end nodes are not isolated
nodes and must have connections with other non-start or end nodes. Line 6: Verify that
all gateway nodes are not isolated nodes and must be the starting or ending nodes of a
connection. Line 7: The other end of the connection where the gateway node is located
must be a task node and cannot be another gateway node (the BPMN2.0 does not allow
two exclusive gateways to be connected). The eighth validation checks whether there are
node pairs in the given task node pair (Tasknodes) that are not connected.

Algorithm 2: BPMN Verification

Input: BPMN file (.xml)
Output: Correctness
1 IsAnyEndnodePairNotConnected()
2 IsAnyStartnodePairNotConnected()
3 IsAnyStartEndNodePairNotConnected(Startnode,Endnode)
4 IsStartnodeConntected(Startnodes)
5 IsEndnodeConntected(Endnodes)
6 IsAllGatewaynodesConnected(Gatewaynodes)
7 IsGatewayandTaskNodesConnected(Tasknode1,Tasknode2,Gatewaynode)
8 IsAnyTasknodePairNotConnected(Tasknodes)

3.6. BPMN Transformation and Smart Contract Generation

After the BPMN model has been verified, the transformation to a Go language smart
contract is realized in accordance with the semantic consistency between the BPMN model
and logical and imperative languages such as smart contracts (step 4⃝ in Figure 1).

To achieve this, this paper establishes transformation rules for Go smart contracts based
on the five types of notations present in the BPMN model, as illustrated in Table 3. This
enables the generation of Go smart contracts by transforming each notation individually.

Rule 1: Transformation of the BPMN model root notation definitions, where Contract-
Name is the name of the BPMN model and becomes the name of the Go smart contract
after transformation.

Rule 2: The transformation of the BPMN business process task nodes involves trans-
forming their name, id, and constraints into Go smart contract functions. Additionally, it is
important to note that the XML file of a BPMN business process must consist of at least one
task node.

Rule 3: The third rule involves the transformation of the start node in the BPMN
file, known as startEvent, into the main function of the Go smart contract. This includes
translating the name, id, and constraints utilized to construct the BPMN model. Typically,
the XML file of a BPMN contains just one line of code that represents the startEvent notation
as an entry function, which is analogous to the main function in the Go smart contract code.

Rule 4: The BPMN business process sequence flow notation, namely sequenceFlow,
along with its attributes id, sourceRef, targetRef, and constraints, is translated into a call
relationship between functions within the Go smart contract. The sourceRef attribute
denotes the starting point of the sequence flow, while the targetRef attribute signifies
the endpoint of the sequence stream. Consequently, the TargetId function is executed
subsequent to the function whose task ID is SourceId.

Rule 5: The BPMN employs a transformation for the selection gateway notation. The
selection gateway file in the BPMN can comprise several notations, such as id, name, and
the constraints used to construct the BPMN model. Each BPMN gateway possesses two

Mathematics 2024, 12, 2158 9 of 15

sequences. If condition 1 is met, sequence flow 1 is executed; otherwise, sequence flow 2 is
executed. This rule maps the judgment criteria for selecting a gateway in the BPMN model
to a selection statement for the Go smart contract code.

Table 3. Notation mapping rules from BPMN to Go smart contracts.

Index BPMN Notation Notations of Go Smart Contract

1
<bpmn2:definitions name=“ContractName”
other notations......
</bpmn2:definitions>

ContractName.go

2
<bpmn2:task id=“TaskID” name=“TaskName”>
other notations......
</bpmn2:task>

func TaskName(// Parameters for function)
(return value, error){

task specific logic...
}

3
<bpmn2:startEvent
id=“ StartEventId “ name=“StarteventName”>
</bpmn2:startEvent>

func main(){
main function code...

}

4
<bpmn2:sequenceFlow id=“StartEventId” sourceRef=“SourceId”
targetRef=“TargetId”>
</bpmn2:sequenceFlow>

func SourceIdName(){
task function code corresponding to SourceId. . .}

func TargetIdName(){
task function code corresponding to TargetId. . .}

5

<exclusiveGateway id=“GatewayName”>
<documentation>
Determine whether condition 1 is met
</documentation>
</exclusiveGateway>
<sequenceFlow id=“flow1 “ sourceRef=“gate”
targetRef=“Target Node”>
<![CDATA[Condition 1]]>
</sequenceFlow>

if(Condition 1){
business function code...

}
else{

business function code...
......

}

Task node reuse rule: If multiple identical tasks exist in a BPMN model, their trans-
formations do not need to be repeated. Instead, the transformed result can be directly
reused. As illustrated in Figure 3, the BPMN model comprises four tasks, with three being
TaskA and one being TaskB. In such a case, the transformation of TaskA is not subject to
redundancy; post-transformation, the resultant Go language function can be successively
invoked. Consequently, this rule can amplify the efficiency of smart contract generation.

Figure 3. BPMN example of task transformation reuse.

3.7. Soundness and Completeness
3.7.1. Soundness

Although the BPMN is not an executable language, it still has precise definitions for
notations. In the BPMN statement of Table 2, the definition of the task is expressed as
Formula (16), and its core is actioni, which is used to describe the state transition action that
needs to be executed. After receiving inputi and executing actioni with its name taskName,

Mathematics 2024, 12, 2158 10 of 15

the state changes from statei−1 to the new statei, provided that the prerequisite condition
satisfies preConditioni.

task ::=
inputi(taskName, statei−1){actioni} ∧ preConditioni

actioni ↷ statei
(16)

For the Prolog statements after task transformation, it can be seen from the transformation
of the two types of task and sequenceFlow in Table 2 that the corresponding Prolog contains
both the preceding and succeeding tasks with TaskName and TaskID, and the relationship
between the preceding and succeeding is determined by the two sequenceFlows in the
inbound and outbound directions. Its actual semantics can be expressed as Formula (17),
which represents the end state of the previous task, TargetIdi−1 or SourceIdi, which is the
initial state of this task. It should be consistent with the initial state of the task corresponding
to the transformed prolog statements, that is, TargetIdi−1 = statei−1 (statei−1 that appears in
Formula (16)) and their actioni must perform the same operation. According to the principle
of Turing machines, the same input and execution process will inevitably get the same result,
that is, TargetIdi and statei that appears in Formula (16) are equivalent.

taskName ::=
TargetIdi−1

actioni ↷ TargetIdi
(17)

Similarly, the semantics of the corresponding Go language in Table 3 can be expressed
as Formula (18).

function ::=
f unctionName(statei−1, actioni)

actioni ↷ newStatei
(18)

In summary, since Go and the BPMN both have statei−1 as the initial state and actioni as
the execution process, the results obtained should also be consistent, that is, TargetIdi = statei
and newStatei = statei. It can be assumed that if the input for each step is the same and the
user implements the same state transition process, the results obtained for the three languages
must be the same. For other notations such as gateways, they also have similar properties. It
can be seen that this line-by-line language transformation method for different notations can
achieve consistent logic and can be considered to have soundness.

3.7.2. Completeness

Considering the practical characteristics of smart contracts, the transformation in this
article does not cover all notations of the BPMN language. For example, due to the issue that
smart contracts cannot be executed in parallel, the definition and transformation of parallel
gateways and Merge gateways were not considered. The core notations, such as task, flow,
exclusiveGateway, start event, etc., can be used to cover the complete functional descriptions of
smart contract functions, branch statements, beginning and ending statements of the contract,
etc. Guided by practical requirements, removing unnecessary notation definitions helps
reduce the code for transformation and also standardizes user input.

4. Experimental Analysis
4.1. Application Cases

Smart contract verification and generation are applied in numerous fields, particularly
in finance, credit, asset trading, and other sectors with stringent security requirements. This
paper demonstrates how users can employ the implemented tools, ranging from BPMN
modeling to generating Go smart contracts, using a bank loan assesment application as
an example.

First, the user proposes the business requirements for a loan application, assessment
and issuance, using the BPMN modeling function in the tool, as shown in Figure 4. The
process involves a lender applying for a loan at the bank, where the bank conducts a credit
assessment based on the lender’s credit status and information provided. The bank gives
the loan plan according to the credit evaluation: no loan if the evaluation fails (credit less

Mathematics 2024, 12, 2158 11 of 15

than 60), a petty loan (credit greater than or equal to 60 and less than 80), or a large loan
(credit greater than or equal to 80). If the credit assessment is passed, the lender signs a
loan contract with the bank, and then handles mortgage registration in accordance with
relevant national laws and regulations, and finally the bank issues loans according to the
assessment limit and relevant regulations.

Figure 4. Model the bank loan assessment process as a BPMN diagram using the toolbar on the left
side of the implemented modeling tool.

Next, the system validates the model, and users can enter custom rules. In a Prolog
statement, the symbol “:-” is the clause indicator, used to distinguish the head and body.
The symbol “\+” is the negation operator, representing “not“ or “does not have“. For
example, to determine whether the BPMN process defines a person with a credit below 60
who cannot pass loan approval, the custom rule section can be entered:

cannot_loan(Person):-
credit_score(Person, Score), Score < 60;
To query whether a loan can be made, the custom rule is:
loan_eligibility(Person):-\+cannot_loan(Person).
After the BPMN model is validated, a Go language smart contract is generated through

the transformation rules in Table 3, with some of the code shown in Figure 5.

Figure 5. Go language smart contract for the bank loan assessment business process.

Mathematics 2024, 12, 2158 12 of 15

4.2. Experimental Analysis

The performance of key steps in business processes, including model transformation,
validation, and smart contract generation, can be influenced by the simplicity or complexity
of these processes. This section presents three experiments designed to measure the
duration of model transformation. The first experiment involves transforming a BPMN
model into Prolog statements and rules, while the second one focuses on transforming a
BPMN model into a Go smart contract with repeated task nodes reused. The last one tests
the time reduction effect of reusing duplicate task nodes. The experimental environment is
configured with an Intel i5-1135 G7 CPU and a Windows 11 operating system.

4.2.1. Analysis of Model Transition Time from BPMN to Prolog

The transformation of the BPMN model to Prolog mainly lies in the transformation of
task nodes and gateway nodes. To evaluate the transformation time for business processes,
an experiment was conducted where the number of task nodes ranged from 10 to 50. This
representation aimed to depict a progression from simple to complex business processes.
The total time taken for model transformation and the average time per transformation
were both measured and calculated.

The experiment tests the model transformation time from the BPMN to Prolog.
Figure 6a,b, respectively, show the total time required for model transformation when
the BPMN model contains 10–50 task nodes and 5–25 gateway nodes. Figure 6a shows a
roughly linear relationship between the transformation time and the number of task nodes
included within the model, indicating that the change in the number of task nodes does
not affect the transformation time for a single task node. Meanwhile, Figure 6b shows
an approximate square increase in the transformation time of the model as the number
of network nodes increases. The primary reason is that during the transformation of the
gateway node, it is essential to verify the correctness of the generated flow path. If the flow
path is incorrect, the process must revert to the gateway node’s branch point and conduct a
conditional assessment or a backtracking review of the business logic involved.

Figure 6. Transformation time of BPMN to Prolog statements.

In the transformation from the BPMN to Prolog, the time taken for transforming task
nodes remains relatively constant. However, the transformation time for gateway nodes
increases at a rate slightly faster than linear, in proportion to the increase in the number of
gateway nodes. Nonetheless, for a straightforward business scenario with no more than
40 task nodes and 20 gateway nodes in the BPMN model, the transformation time from
the BPMN model to the Prolog model is under 0.5 s. This meets the time requirement
for business process verification. The proposed method for model transformation and
verification from the BPMN to Prolog is thus deemed feasible.

Mathematics 2024, 12, 2158 13 of 15

4.2.2. Transition Time Analysis of BPMN to Go Language Smart Contract

This section evaluates the transformation time of BPMN models to the Go smart
contracts, considering scenarios with 10–50 task nodes and gateways. The experimental
results in Figure 7 show that the transformation time from the BPMN to Go language smart
contract, similar to the case of transforming to Prolog, also increases with the number of
task nodes and gateway nodes. If the number of task nodes exceed 50 or more, the reuse
rules described in Section 3.6 can be employed to optimize the overall transformation time.

Figure 7. Transformation time of BPMN to Go smart contract.

4.2.3. Analysis of Transformation Time before and after Code Reuse

In the context of a large number of task nodes (e.g., more than 50) or multiple task
nodes performing the same task, there are five scenarios where the proportion of identical
task nodes in the total number of nodes within a BPMN process ranges from 52% to 60%:
six identical nodes in 10 task nodes, 11 identical nodes in 20 task nodes, 16 identical nodes
in 30 task nodes, 21 identical nodes in 40 task nodes, and 26 identical nodes in 50 task nodes
are tested both before and after code reuse. In Figure 8, when the process contains 50 task
nodes, the transformation time after code reuse is reduced by about 30% (from 95 ms to
63 ms) compared to before code reuse, indicating that the task node reuse rule proposed in
Section 3.6 is effective.

Figure 8. Comparison of transformation time before and after code reuse.

From the experimental results of the above three sections, it can be seen that under
normal conditions where the application is not too complex, the number of task nodes and
branch gateway nodes included in the model is not large. Therefore, the time required to

Mathematics 2024, 12, 2158 14 of 15

convert from the BPMN to Prolog will be within 0.5 s, and the time for conversion from the
BPMN to Go language will be within 0.3 s. The entire process of verification and generation
of Go language smart contracts will be completed within 1 s, which can meet the needs of
most applications.

5. Conclusions

In this paper, we proposed the transformation rules from the BPMN to Prolog state-
ments and from the BPMN to smart contract of Go programming language, as well as
a business logic verification scheme based on the BPMN. Through formal description,
case studies, and experiments, it has been proven that business logic verification can be
achieved, and the transformation time from the BPMN to Prolog and Go smart contracts
is within 1 s, which can meet the requirements of most practical applications. By using
the above BPMN transformation rules and verification scheme, the user can effortlessly
accomplish the design of requirements, the verification of these requirements, and the
generation of a smart contract code. This novel development process paradigm mitigates
communication impediments between requirement stakeholders and contract developers,
effectively complementing the established practices in software engineering.

The current research is dedicated to the transformation of the BPMN models into the
Go programming language. Subsequent endeavors are projected to broaden the scope to
encompass advanced constructs in the BPMN and more smart contract languages, with the
objective of optimizing the smart contract generation process.

Author Contributions: Methodology, J.J. and Z.Y.; Software, L.Y.; validation, J.L. and Z.Y.;
writing—original draft, Y.Z.; writing—review and editing, J.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Beijing Natural Science Foundation (grant number
M22040), the Youth Fundation of Beijing Wuzi University (grant number 2022XJQN24), the Science
and Technique General Program of Beijing Municipal Commission of Education (grant number
KM201910037003), the Research Base Project of Beijing Municipal Social Science Foundation (grant
number 18JDGLB026).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Graphical Smart Contract Generation Editor. Available online: http://www.lianmenhu.com/blockchain-4658-1 (accessed on

16 December 2023).
2. Li, Y.S.; Li, Y.; Jin, X. Visual Blockchain Smart Contract Framework and Deployment Methods for Smart Contract Development.

CN112148278A, 29 December 2020.
3. López-Pintado, O.; García-Bañuelos, L.; Dumas, M.; Weber, I. Caterpillar: A Blockchain-Based Business Process Management

System. Bus. Process Manag. 2017, 172, 1–5.
4. Tran, A.B.; Lu, Q.; Weber, I. Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based Business Process Execution and

Asset Management. In Proceedings of the International Conference on Business Process Management, Sydney, NSW, Australia,
9–14 September 2018.

5. Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification; Springer: New
York, NY, USA, 2009; pp. 49–111.

6. Baier, C.; Katoen, J.P. Principles of Model Checking; MIT press: Cambridge, MA, USA, 2008; pp. 25–40.
7. Cosenz, F.; Rodrigues, V.P.; Rosati, F. Dynamic Business Modeling for Sustainability: Exploring a System Dynamics Perspective to

Develop Sustainable Business Models. Bus. Strateg. Environ. 2020, 29, 651–664. [CrossRef]
8. Yu, W.S. Research on task-oriented business process modeling and verification method. Master's Thesis, Nanjing University of

Aeronautics and Astronautics, Jiangsu, China, 2015.
9. Ghilardi, S.; Gianola, A.; Montali, M.; Rivkin, A. Petri Nets with Parameterised Data: Modelling and Verification. In Proceedings

of the International Conference on Business Process Management, Seville, Spain, 13–18 September 2020.
10. Hermenegildo, M.V.; Morales, J.F.; Lopez-Garcia, P.; Carro, M. Types, Modes and so Much More—The Prolog Way. In Prolog: The

Next 50 Years, 1st ed.; Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R., Rossi, F., Eds.; Springer Nature: Cham,
Switzerland, 2023; Volume 13900, pp. 23–37.

http://www.lianmenhu.com/blockchain-4658-1
https://doi.org/10.1002/bse.2395

Mathematics 2024, 12, 2158 15 of 15

11. Business Process Model and Notation. Available online: http://www.bpmn.org/ (accessed on 14 May 2024).
12. Maqbool, B.; Azam, F.; Anwar, M.W.; Butt, W.H.; Zeb, J.; Zafar, I.; Nazir, A.K.; Umair, Z. A Comprehensive Investigation of BPMN

Models Generation from Textual Requirements—Techniques, Tools and Trends. In Proceedings of the Information Science and
Applications (ICISA), Hong Kong, China, 20–22 March 2018.

13. Swish. Available online: https://www.swi-prolog.org/ (accessed on 14 May 2024).
14. Liu, Y.; Ma, Z.Y.; He, X.; Shao, W.Z. A conversion method from UML model to reliability analysis model. J. Softw. 2010, 21,

287–304. [CrossRef]
15. Yamasathien, S.; Vatanawood, W. An Approach to Construct Formal Model of Business Process Model from BPMN Workflow

Patterns. In Proceedings of the 2014 Fourth International Conference on Digital Information and Communication Technology and
its Applications (DICTAP), Bangkok, Thailand, 6–8 May 2014.

16. Du, Y.; Xiong, P.; Fan, Y.; Li, X. Dynamic Checking and Solution to Temporal Violations in Concurrent Workflow Processes. IEEE
Trans. Syst. Hum. Cybern. A 2011, 41, 1166–1181.

17. Downen, P.; Ariola, Z.M. A Tutorial on Computational Classical Logic and the Sequent Calculus. J. Funct. Program 2018, 28, e3.
[CrossRef]

18. Shi, J.F.; Wu, H.; Gao, H.R.; Zhang, W.B. Overview on Parallel Execution Models of Smart Contract Transactions in Blockchains.
J. Softw. 2022, 33, 4084–4106.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.bpmn.org/
https://www.swi-prolog.org/
https://doi.org/10.3724/SP.J.1001.2010.03792
https://doi.org/10.1017/S0956796818000023

	Introduction
	Related Works
	Smart Contract Modeling, Validation, and Generation
	Method Overview
	Rules Based on Sequent Calculus
	Definition of Transformation Operators
	Smart Contract Modeling Based on BPMN
	Transformation and Validation of BPMN to Prolog
	BPMN Transformation and Smart Contract Generation
	Soundness and Completeness
	Soundness
	Completeness

	Experimental Analysis
	Application Cases
	Experimental Analysis
	Analysis of Model Transition Time from BPMN to Prolog
	Transition Time Analysis of BPMN to Go Language Smart Contract
	Analysis of Transformation Time before and after Code Reuse

	Conclusions
	References

