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Abstract: Accurate flight training trajectory prediction is a key task in automatic flight maneuver
evaluation and flight operations quality assurance (FOQA), which is crucial for pilot training and
aviation safety management. The task is extremely challenging due to the nonlinear chaos of
trajectories, the unconstrained airspace maps, and the randomization of driving patterns. In this work,
a deep learning model based on data-driven modern koopman operator theory and dynamical system
identification is proposed. The model does not require the manual selection of dictionaries and can
automatically generate augmentation functions to achieve nonlinear trajectory space mapping. The
model combines stacked neural networks to create a scalable depth approximator for approximating
the finite-dimensional Koopman operator. In addition, the model uses finite-dimensional operator
evolution to achieve end-to-end adaptive prediction. In particular, the model can gain some physical
interpretability through operator visualization and generative dictionary functions, which can be
used for downstream pattern recognition and anomaly detection tasks. Experiments show that the
model performs well, particularly on flight training trajectory datasets.

Keywords: Koopman neural operator; nonlinear trajectories; flight trajectory prediction

MSC: 37M10

1. Introduction

Trajectory data refer to spatial-temporal data generated by a moving object in ge-
ographic space [1,2]. They are typically represented by a series of spatial points with
temporal order and their associated attributes. In the real world, trajectory data originate
mainly from human activities, wild animals’ migrations, transportation vehicle movements,
and natural phenomena. Flight trajectories are categorized into flight transportation tra-
jectories and flight training trajectories. Flight training trajectories are generated from the
training of civil aviation pilots using fixed-wing aircraft, without considering the multi-
target interaction problem. Currently, the assessment of a pilot’s operational proficiency is
typically carried out by instructors who observe the pilot’s performance and assign scores
based on flight regulations. This manual method of evaluation is relatively subjective and
inefficient. Automated flight assessment technology can assist instructors in evaluating the
core competencies of pilot training more efficiently, systematically, and comprehensively.
The predictive analysis of flight trajectories is an integral part of this technology. It enables
the automatic identification and assessment of the flight maneuvers that pilots are trained
on, allowing for a more objective evaluation of the quality of a pilot’s training exercises.
Moreover, flight trajectory prediction plays a significant role in various aspects of flight
safety, such as preventing mid-air collisions, responding to adverse weather conditions,
planning for emergency responses, and optimizing flight paths. Consequently, the accurate
prediction of flight training trajectories is a critical task for both automated flight maneuver
assessment and Flight Operation Quality Assurance (FOQA), which are essential for pilot
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training and aviation safety management. The scientific content of this task involves flight
trajectory data modeling [3] and anomaly identification [4]. However, due to the difficulty
of the tasks and the high level of data confidentiality, there is little research disclosing
related work. In contrast, there are many studies on vehicle transportation trajectories [5–7]
and flight transportation trajectories. Research on flight transportation trajectories has
focused on 4D trajectory prediction in the field of air traffic management (ATM) [8–13].

As shown in Figure 1, the flight training trajectory demonstrates the complexity of
aircraft motion. The aircraft, with its six degrees of freedom and multiple coordinate
systems, including the ground axis system, the airfares axis system, the trajectory axis
system, and the airflow axis system [14], is not confined by the topology of the map.
The pilot’s decision-making process does not follow a fixed pattern and must consider safety
conditions, making it more challenging than studying the trajectory of ground vehicles.
Furthermore, flight trajectories are nonlinear due to the aerodynamic characteristics of
the vehicle and engine thrust. Experiments [15] have confirmed the chaotic nature of
these trajectories. Nonlinear trajectories are prevalent in nature [16], and their predictive
modeling holds significant academic and practical value. This issue has been a focal point of
research in the fields of human motion [17], trajectory tracking, and optimal control [18–21].

Figure 1. Flight training trajectories from the CAFUC dataset.

In 1931, Koopman proposed the theory of Koopman operators to address the issue of
observables for Hamiltonian systems [22]. This theory was later expanded by Koopman
and von Neumann in 1932 to encompass systems with continuous eigenvalue spectra [23].
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This 1931 paper is the most famous central proof of the ergodic theorem formulated by
von Neumann. It establishes a connection between Koopman’s eigenvalue spectrum and
conserved quantities, integrability, and ergodicity. The ergodic theorem is a branch of
mathematics that examines the statistical properties of deterministic dynamical systems. It
formally investigates the states of dynamical systems with invariant measures, such as the
movements of the planets in the solar system. In this context, the planets move, but the
rules governing their motions remain constant. In two papers published in 1932 [24,25],
von Neumann made fundamental contributions to the theory of such systems, including
von Neumann’s mean ergodic theorem, which is considered to provide the first rigorous
mathematical foundation for the statistical mechanics of liquids and gases.

Flight trajectory prediction has always been a key issue in air traffic management. In a
paper by Zneg et al. [8], flight trajectory prediction methods were roughly divided into state
estimation methods, dynamic methods, and machine learning methods. State estimation
models are relatively simple. It only establishes equations based on the position, velocity,
and acceleration of the aircraft, which will cause large errors and can only work for a short
time. Dynamic methods analyze from the perspective of the aircraft, but most of them are
implemented under the force state. Due to the large model parameters and the fact that
the data are often limited, there will be large uncertainties and errors. Machine learning
models do not need to display the modeling of the aircraft but only need to learn rules
from massive amounts of data. These methods make it possible to mine complex trajectory
patterns and extract important features because they can obtain a large amount of flight
trajectory data. Different from the above methods, we propose a deep learning model based
on data-driven modern Koopman operator theory and dynamic system identification.

Today, the Koopman operator has become an effective method for studying dynamical
systems. Even strongly nonlinear systems, such as chaos systems, can be analyzed using
the infinite-dimensional nonlinear Koopman operator, which is a linear observable function.
Its spectral decomposition fully characterizes the behavior of nonlinear systems. Unlike
the previous method of nonlinearization through local linearization, the Koopman theory
demonstrates that the spectral characteristics of the linear operator can fully represent
the characteristics of the nonlinear dynamical system. This allows for the creation of a
global linearization model and the derivation of insightful analysis results using various
established technical frameworks in linear analysis. In fact, in 2020, Lange et al. devel-
oped a nonlinear, data-driven model of a complex dynamical system using the Koopman
theory. A nonlinear, data-driven spectral decomposition algorithm was validated for its
effectiveness through predictive experiments on real-world power systems [26].

In addition, Fatemeh Daneshfar et al. [27] proposed a deep autoencoder with adaptive
elastic loss (EDA-TEC) for text embedding clustering. Elahe Nasiri et al. [28] introduced
an attribute embedding method to predict protein–protein interactions (PPI) in grids,
improving prediction accuracy.

To address the nonlinear flight trajectory prediction problem, we developed a unified
deep learning framework: Deep Embedding Koopman Neural Operator (DE-KNO) based
on data-driven Koopman theory. This framework enables us to (1) construct and analyze
models using only raw data obtained from observations, eliminating the need for manual
feature function selection; and (2) accurately predict nonlinear flight trajectories and ap-
proximate neural operators for downstream tasks such as pattern recognition and anomaly
detection in flight subjects. Our contributions are the following: (1) Examined the spatial
transformation mapping of nonlinear trajectories and their properties in various spaces.
(2) Implemented automatic trajectory modeling using a purely data-driven approach to
avoid the manual selection of feature functions. (3) Attained some physical interpretability
through generative physical models and visualization of neural operators. (4) Developed
a unified deep learning framework for Koopman neural operators with generalization
capabilities. (5) The proposed model performs outstandingly on the flight trajectory dataset
compared to a state-of-the-art model.
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2. Preliminaries
2.1. Koopman Operators

Koopman operator theory provides the dynamical equations for general discrete
nonlinear systems:

xk+1 = f (xk), xk ∈ Rn, f ∈ F (1)

where k ∈ N is the time step, f is the state-to-state mapping function in state space Rn, F is
the mapping function space, and xk represents the state of the system.

Define Koopman operator K as a a linear operator acting on the observation function
Θ of infinite dimensions and satisfying the following conditions:

KΘ(xk) = Θ( f (xk)), ∀Θ : H −→ R (2)

That is, the Koopman operator acting on this set of observation functions is

KΘ = Θ ◦ F ⇒ KΘ(xk) = Θ(xk+1) (3)

The above definition indicates that the Koopman operator is linear and infinite-
dimensional. It only requires the use of the Koopman operator for direct matrix multiplica-
tion under the observation space to the state variable xk for time recursion. In obtaining
the observation function and the Koopman operator, a linear prediction of the state of the
dynamical system can be achieved. This is more intuitively expressed in Figure 2 below.

Figure 2. Koopman measure-invariant subspace.

This approach offers clear physical interpretability and relies solely on data-driven
characteristics, compensating for the opaque nature of machine learning and deep learning.
It also avoids the necessity for complex mathematical models. The essence of this approach
is to transform the nonlinear system into an infinite-dimensional linear space, utilizing
infinite dimensions to achieve linear properties. However, the practical implementation of
infinite-dimensional computation poses challenges. Therefore, the primary focus of this
method lies in the finite-dimensional approximation of the infinite-dimensional Koopman
operator. The most commonly used methods for this problem are dynamic mode decom-
position (DMD) [29] and extended dynamic mode decomposition (eDMD) [30]. DMD
algorithms were initially used to decompose spatial-temporal coherent structures, enabling
the solution or approximation of dynamical systems with structures that evolve, decay,
and oscillate over time.

However, DMD relies on linear measurement functions and cannot adequately capture
nonlinear changes in coordinates within strongly nonlinear systems. To address this
limitation, Williams et al. [30] proposed extended dynamic mode decomposition (eDMD).
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In eDMD, the traditional linear DMD regression is adapted not directly to raw data but to
augmented matrices containing nonlinear measurement states.

Since the augmentation vector z ∈ Rp may diverge significantly from the nonlinear
measurement state X, Williams proposed a computational method that incorporates the
kernel trick. This method draws inspiration from the kernel method used in DMD ap-
proximations to compute the Koopman operator, which has emerged as a pivotal research
area [31–33]. Theoretically, the functions {Θk}

p
k=1 form a robust basis for approximat-

ing Koopman operators. Under infinite data conditions, eDMD matrices converge to
Koopman operators for subspaces consisting of mapping functions. However, if these
functions do not span Koopman-invariant subspaces, the projection operators may yield
spurious eigenvalues and eigenvectors that differ from those of the true operators [34].
Therefore, validation and cross-validation are essential to prevent overfitting. Additionally,
methods like the Sparse Identification of Nonlinear Dynamics (SINDy) [35], HAVOK [16],
and Hankel-DMD [36] offer similar approaches.

In summary, dynamic mode decomposition (DMD) serves as an initial straightfor-
ward algorithm. Extended DMD (eDMD) requires an additional input of basis functions,
or dictionaries, within the Koopman operator’s subspace. The Sparse Identification of
Nonlinear Dynamics (SINDy) employs sparse identification for simpler system modeling,
HAVOK adapts well to chaotic systems without a predefined basis, and Hankel-DMD is
suited for turbulent and quasi-periodic iterative system problems. Recently, scholars have
increasingly explored neural networks for developing Koopman prediction models [37,38]
and have focused on anomaly detection algorithms based on Koopman operator theory [39].
Ishikawa et al. [40] proposed an estimation method called JetDMD (Jet Dynamic Mode De-
composition), which enhances the estimation of the Koopman operator using the intrinsic
structure of Reproducing Kernel Hilbert Spaces (RKHSs) and geometric concepts related
to jets. This method improves upon EDMD (empirical dynamic mode decomposition)
particularly in numerical estimation of eigenvalues. While the incorporation of RKHS
methods represents a novel approach, it currently only considers exponential and Gaussian
kernels, leaving room for exploration in other directions.

In practice, modern techniques for representing dynamical systems prioritize identi-
fying relevant eigenfunctions for prediction rather than merely approximating Koopman
invariant subspaces [41]. While current data-driven methods effectively capture tran-
sient and quasi-periodic behaviors of nonlinear systems, further research is needed for
nondissipative dynamical systems and continuous spectra. The efficient mastery of this
computational paradigm could substantially simplify downstream analysis and control
tasks. This motivates a new research direction: DeepKoopman, the deep neural Koopman
operator [42,43]. This approach aims to develop lightweight, mesh-independent neural
operator models using Koopman’s global linearization theory combined with neural opera-
tors to solve the partial differential equations (PDEs) of nonlinear systems. Solving scientific
PDEs is a fundamental challenge in many fields, and the neural operator method, based on
the Koopman operator, combines theoretical completeness with the high performance of
neural networks. Future developments in this area are anticipated.

2.2. Neural Operator

Neural operators are not a new concept, originating from physics-informed AI (PIM)
research, where physics-informed neural network (PINN) [44] approaches are most promi-
nent. The latest designs for solving partial differential equations (PDEs) or modeling
dynamic systems are now beginning to incorporate Fourier [45,46] neural operators or
Koopman neural operators, with the DeepONet method proposed by Lu in 2019 [47]. These
methods not only learn the solution operators of the overall PDE family but also determine
solutions to nonlinear dynamic systems of equations. The essence of their operator learning
is to improve the neural network so that it learns not just an ordinary approximation
function, but a mapping relation, i.e., an operator. The generalization error is significantly
reduced compared to fully connected networks, which encompass a complete set of ap-
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proximation modeling workflows for arbitrary dynamical systems. In other words, training
a well-established network structure with neural operators using measurement data can
result in generalized dynamical system models. Theoretically, trajectories generated by
dynamical systems should also be modeled and predicted.

2.3. Trajectory Prediction

Trajectory data consist of a series of chronologically arranged points, sampled from the
motion process of one or more moving objects. They typically include location information
(latitude, longitude, altitude, etc.), timestamps, and other attributes such as velocity, acceler-
ation, direction, and power parameters. Trajectories can be categorized based on predicted
outputs as uni-modal, multi-modal, or interactive. According to motion characteristics,
they can also be classified as linear or nonlinear trajectories. Nonlinear trajectories are
sequences of continuous or discrete observable points generated by nonlinear dynamical
systems over time, commonly observed in the real world. Flight trajectories, for instance,
fall under this category. From a dynamics standpoint, vehicle motion descriptions require
nonlinear dynamics equations incorporating mass and rigid body dynamics and that are
influenced by various aerodynamic forces and moments. Modeling these equations is
highly complex. Additionally, vehicle dynamic behavior is represented by state-space
models encompassing variables such as position, velocity, acceleration, and attitude, neces-
sitating the consideration of multiple parameters. Vehicle dynamical systems are highly
nonlinear and involve uncertainties like model errors, sensor noise, and external pertur-
bations, significantly complicating prediction tasks. Traditional physical models may not
fully capture all dynamic behaviors. While machine learning and data-driven approaches
can learn flight patterns and behaviors from historical data, effectively integrating these
methods remains a challenge. Fortunately, more and more attention is now being paid to
combining machine learning and other methods for flight trajectory prediction. Addressing
the prediction uncertainties caused by various interferences has also become a hot research
topic. Shafienya et al. [48] proposed a hybrid deep learning model combining a CNN-GRU
and 3DCNN for 4D flight trajectory prediction. This model excels in extracting and pre-
dicting spatio-temporal features, offering high prediction accuracy, extended prediction
time, and comprehensive spatio-temporal feature extraction. Jia et al. [49] introduced an
attention-based LSTM trajectory prediction model that utilizes a sliding window approach,
which enhances the model training efficiency. Choi et al. [50] presented a trajectory pre-
diction framework integrating machine learning and physics. Their approach, called the
Residual Mean Interaction Multiple Model (RIMM), combines machine learning predic-
tions with measurements using a physics-based estimation algorithm to explain current
aircraft motions.

Nonlinear systems involve independent variables in a unique form of change, resulting
in a mapping relationship that differs from traditional ones. This may include iterative
functions and algorithms where the mapping of independent variables from one step
to the next cannot be directly expressed using a linear function. It can be said that a
linear relationship is a mutually exclusive and independent connection, while a nonlinear
relationship embodies interactions. The central mathematical feature here is that the
superposition theorem no longer applies. It is defined as follows: If the operator N(φ)
does not satisfy the equation L(aφ + bψ) = aL(φ) + bL(ψ) for some a, b or φ, ψ, then it is
a nonlinear operator.

The study of multivariate nonlinear time series, stemming from nonlinear dynamical
systems, has a long and challenging history. This is because it is often crucial to analyze
complex nonlinear dynamical systems across various scientific fields, such as the trajectory
of a double pendulum system, the pattern of geomagnetic variation, or the human electro-
cardiogram (as referenced in [16]). These dynamical systems reflect real-world phenomena
influenced by multiple variables. Directly observing time series from only a subset of
these variables typically does not allow for the direct establishment of a comprehensive
analytical mathematical model. Therefore, the study of complex dynamical systems often
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focuses on analyzing these time series, leading to the emergence of research into nonlinear
multivariate time series. However, there is currently no unified mathematical framework
explicitly explaining and describing their general characteristics.

In summary, we leverage the measure invariance of the Koopman neural opera-
tor, combined with dynamical system identification methods, to develop and deploy a
comprehensive prediction model with interpretability using a data-driven approach, with-
out requiring additional human intervention.

3. Deep Embedding Koopman Neural Operator (DE-KNO)
3.1. General Framework

Following the convention, the general framework can be divided into three parts: the
encoder, the approximator, and the decoder.

The Koopman operator is defined as follows in reference [42]:

KεΘ(gt) = Θ(gt+ε), ∀gt ∈ Rdg × T (4)

where g is the state variable of the dynamical system mapped to the space of observable
functions, encoded from the sampling points by the encoder. The subscript t represents
the moment, ε ∈ Z represents the number of evolutionary steps over time, T represents
the overall trajectory time length, K is the infinite-dimensional linear Koopman operator,
and Θ represents the observation function. The learning objective of this model is the
observation function Θ and the Koopman operator K, and the general framework is shown
in Figure 3.

Figure 3. Deep Embedding Koopman Neural Operator (DE-KNO) general framework.

The whole-model forward prediction is

X̃t+ε = HK
‡
(
D−1(KεΘ(D(HK(Xt)))Ξ)

)
(5)

The overall loss function is
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Lossall = α + β (6)

α =
T

∑
t=1

∥X̃t − Xt∥2 =
T

∑
t=1

∥HK
‡
(
D−1(D(HK(Xt)))

)
− Xt∥2 (7)

β =
T

∑
t=1

∥HK
‡
(
D−1(KεΘ(D(HK(Xt)))Ξ)

)
− Xt+ε∥2 (8)

where Xt represents a moment in the original state X ∈ RT×d, Xt+ε represents the actual
evolutionary outcome state, X̃t+ε represents the evolutionary outcome predicted by the
model, HK is the Koopman modified form of the Hankel matrix for time-delayed em-
bedding, and HK

‡ is the Hankel matrix restoring operation; α and β are the weighting
values, where α is driven to zero using optimization to learn the approximate Koopman
operator, and β is driven to zero using optimization to learn the dictionary function of the
recognition system.

The encoder’s task is to capture variables in the new function space and transform the
input space into a measurement-invariant function space through the preprocessing of the
input data, time-embedded coding, and identification of the dynamical system.

The role of the approximator is to approximate the Koopman operator that drives
the system forward and the observation function, enabling the provision of physical
explanations through the visualization of the operator module.

The decoder serves as the inverse of the encoder, restoring the function space to the
original space. The summary of the DE-KNO model is presented in Algorithm 1.

Algorithm 1 DE-KNO

Input: Time series data Xt and Xt+ε

Output: Predicted data X̃t+ε and X̃t
1: Step 1: Encoder
2: Apply temporal delay embedding to input time series data Xt, generating embedding

vector γt.
3: Convert embedding vector γt into state variable γt using the dynamical system identi-

fication module D(·).
4: Generate dictionary function space variables gt and its derivative ġt based on state

variable γt.
5: Step 2: Approximator
6: Perform windowing on input data to generate training data and labels.
7: Train observation function Θ, mapping dictionary function space variable gt to the

observation space.
Compute the approximate matrix K for the Koopman operator K.

8: Alternate training of observation function Θ and the approximate matrix K of the
Koopman operator K, optimizing the loss function L.

9: Step 3: Decoder
10: Predict the future state of the system using predicted observation space variable g̃t+ε

through observation function Θ and Koopman operator K.
Reverse decode predicted observation space variable g̃t+ε using the inverse of dy-
namical system identification module D−1(·), restoring it to the original state variable
γ̃t+ε.

11: Use the inverse matrix H‡
K of the temporal delay embedding to retrieve original input

space data X̃t+ε from state variable γ̃t+ε.
12: Output: X̃t+ε and X̃t.

3.2. Encoder

The practical implication of Koopman’s theory is that we do not need to measure
the actual state of the system. Instead, we seek functions from the eigenspace of the
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Koopman operator as our measurements, thereby transforming the task of nonlinear system
identification into one of linear system identification. However, acquiring the eigenspace
of the Koopman operator or the invariant subspace of the state variable locus remains a
challenge. While we can find them through direct observation for some simple nonlinear
systems assuming the form of the dynamical equations is known, it is exceedingly difficult
for most nonlinear systems. Even if discovered, they often result in an infinite-dimensional
linear system.

According to Takens’ embedding theorem, for an infinite-length, noise-free scalar time
series of d-dimensional chaotic attractors {x(t)}, we can always find an n-dimensional
embedding phase space in a topologically invariant sense as long as n ≥ 2d + 1. This
theorem guarantees that we can reconstruct a phase space equivalent to that of its prime
mover from a chaotic sequence, in a topological sense. Packard et al. [51] proposed both
derivative reconstruction and coordinate delay reconstruction for the phase space recon-
struction of chaotic nonlinear trajectories. However, in practical applications, a posteriori
information is often lacking, and numerical differentiation is too error-sensitive. Therefore,
most applications utilize the coordinate-delayed phase space reconstruction method.

Under certain assumptions, Takens’ embedding theorem allows us to recover complete
system information by observing a system state along with a delayed embedding method.
This method is considered applicable in other nonlinear systems. Hence, we employ a trick:
construct the Hankel matrix to approximate the full state of the dynamical system using
the time delay embedding method associated with the coordinate-delayed phase space
reconstruction technique.

The inputs to this model are the following nonlinear trajectories:

Xt =
[

x(1)t x(2)t · · · x(d)t

]
1×d

(9)

Xt+ε =
[

x(1)t+ε x(2)t+ε · · · x(d)t+ε

]
1×d

(10)

The Hankel matrix is generated after time-delayed embedding, where the embedding
dimensions are n = (τ + 1)d, τ ≥ 1:

HK(Xt) =


Xt Xt+1 · · · Xt+τ

Xt+1 Xt+2 · · · Xt+τ+1
...

...
...

...
Xt+τ Xt+τ+1 · · · Xt+2τ


(τ+1)d×(τ+1)d

= γt (11)

HK(Xt+ε) =


Xt+ε Xt+ε+1 · · · Xt+ε+τ

Xt+ε+1 Xt+ε+2 · · · Xt+ε+τ+1
...

...
...

...
Xt+ε+τ Xt+ε+τ+1 · · · Xt+ε+2τ


(τ+1)d×(τ+1)d

= γt+ε (12)

The final generated tensor full state γ ∈ RT×(τ+1)d×(τ+1)d can represent the overall
physical state of the dynamical system, where T = T − d + 2. However, there is still no
clear physical explanation, and it is still a nonlinear system, so we analogize the SINDy
algorithm idea through the selection of data-driven dictionary libraries without the need
for physical a priori knowledge (of course, CustomLibrary can be added) and according to
the dynamical system identification method to learn the appropriate augmentation and
generalization functions through sparse regression methods to obtain the full state of the
system model.
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We utilized PolynomialLibrary and FourierLibrary as a foundation for deriving dictio-
nary functions and generalization functions following dynamical system identification:

gt =

 | | | | | | | | |
1 γt γt

2 · · · sin(γt) cos(γt) sin(2γt) cos(2γt) · · ·
| | | | | | | | |

 (13)

γ̇d×1 = D(γ) = Ξd×N gN×1 (14)

γ̇ =


γ0
γ1
...

γd

 =

 Ξ0,0 · · · Ξ0,N−1
...

. . .
...

Ξd−1,0 · · · Ξd−1,N−1


d×N



γ0
γ1
...

γd
γ0

2

...
sin(γ0)
cos(γ0)

...
cos(mγd)


N

= Ξd×N


g0
g1
...

gN

 (15)

The state variables of the dynamical system at this time have been mapped from the
nonlinear γt to the gt of the dictionary function space, and the variables of this function
space have eliminated the nonlinear characteristics to a certain extent, where D is the
augmentation and generalization function, Ξ is the matrix of the discrimination parameter,
and N is the total number of the variables of gt of the dictionary function space, and we
define the dynamical system at this time to be

S1 : (P , T ,D),P ⊆ RN , T ∈ Z,D : P → P (16)

where P is the phase space, and the values therein are the states. T ∈ Z is discrete time,
D: M → M is an evolution operator, and Fγt = γt+1, where γt, γt+1 ∈ M. γt ∈ M
represents a flight state using the evolution operator F.

3.3. Approximator

The Koopman operator is a mapping of functions from the state space to functions
in the state space, rather than from states to states. It essentially defines a completely new
dynamical system:

S2 : (Q, T ,K),Q ⊆ CNk , T ∈ Z,K : Q → Q, Θ ∈ Q, Θ : P → Q (17)

controls the evolution of the observables in discrete time. Where Q is the space of observable
functions, unlike the P state space, the operator K acts on the function, and Θ is the
observable function responsible for the spatial mapping of the P → Q so that even though
Θ is finite-dimensional nonlinear, K is still infinite-dimensional linear.

Fortunately, the finite-dimensional matrix K of the approximation approximation is
reasonably truncated K, which does not lose much accuracy. Therefore, the actual com-
putation to find its approximation matrix K ∈ CN×N for approximating the K operator is
conducted by taking the encoder-generated dictionary function space variable gt as the
input to the approximator and feeding the training data to the two parts of the approxima-
tor, the regular block and the operator block, in batches using the sliding window method.
The regular block can be customized with any neural network layer to be superimposed
for finding the observation function Θ in the space of gt, and the operator block is used to
compute the approximation matrix K. The two blocks are trained alternately using an itera-
tive method, and finally, the trained neural network is obtained as the observation function
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Θ, which is used jointly with the approximation matrix K to realize the reconstruction of
the dynamical system.

For the dynamical system S1, where phase space M is a state space, we consider this
dynamical system of the form

d
dg

g(t) = D(g(t)) (18)

Its induced discrete dynamical systems are

gt+1 = D(gt) (19)

We know that according to Koopman operator theory,

KΘ ≜ Θ ◦ D ⇒ KΘ(gt) = Θ(gt+1) (20)

gt+1 = D(gt) =
Nk

∑
k=1

νk φk(gt) (21)

D(g) = Θ(g)a (22)

where νk is the Koopman mode, and φk is the kth Koopman eigenfunction, D ∈ D. With (3),
it is known that the evolutionary values can be obtained through operator advancement:

g̃t+ε = Θ(g̃t+ε) = KεΘ(gt) = (Θ ◦ D)(gt) = Θ(gt)(Kεa) + r(gt) (23)

To determine K, we need to minimize the residuals:

J = ∥((Θ ◦ D)(gt)− Θ(gt)Kε)a∥2 = ∥(Θ(gt+ε)− Θ(gt)Kε)a∥ (24)

Since both K and Θ are unknown, the overall training object is

(K, Θ) = argminJ
(

K, Θ̃
)
=

T
∑
ε=1

∥Θ̃(gt+ε)− Θ̃(gt)Kε∥2 + λ∥K∥2 (25)

where the loss function is

Loss =
T
∑
ε=1

∥Θ̃(gt+ε)− Θ̃(g̃t+ε)∥2 =
T
∑
ε=1

∥Θ̃(gt+ε)− Θ̃(gt)Kε∥2 (26)

In referring to the EDMD algorithm, the least squares method is used to minimize
Equation (21), where the Koopman operator K can be approximated as K:

K ≜ G+A (27)

where G+ is pseudo-reverse

G =
1
T

T
∑
t=1

Θ̃(gt)
T · Θ̃(gt) (28)

A =
1
T

T
∑

t=0,ε=1
Θ̃(gt)

T · Θ̃(gt+ε) (29)

We use a fully connected deep neural network (DNN) with three hidden layers to
reconstruct a new variable space, which is common for regression tasks. The observation
function Θ is then obtained by parameterizing the dense neural network:

Θ = ω(out)h(3) + b(out) (30)

hl+1 = tanh
(

ω(l)h(l) + b(l)
)

, l = 0, 1, 2 (31)
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where ω(out) is the weight of the output layer, b(out) is the bias of the output layer, h(3) is the
value of the third layer, and hl+1 represents the value of the l + 1 layer obtained through
an activation function from the lth layer. Θ is important as the hidden projection function
in DNN regression and as the spatial mapping function connecting the reconstructor and
predictor. Through training, the observation function Θ and the approximation matrix K
are successively obtained, and the forward prediction is obtained:

g̃t+ε = Θ̃(gt+ε) = Θ̃(gt)Kε (32)

3.4. Decoder

The decoder is the inverse of the encoder, restoring the predicted g̃t+ε back to the
original space:

γ̃t+ε = D−1(g̃t+ε) (33)

X̃t+ε = H‡
K(γ̃t+ε) (34)

where D−1(·) is the inverse of the generalized function, and H‡
K(·) denotes Hankel matrix

restoration operations.
As such, the data complete the end-to-end prediction process from Hilbert space to

phase space to observer observation space, and then from observation space back to phase
space and finally back to Hilbert space.

4. Experimental Studies
4.1. Preparation

For the datasets, we utilized two typical nonlinear physical systems, namely Lorenz
and Rossler, along with seven real-world benchmark datasets: ETT [52], Exchange [53],
four datasets provided in [54] (Electricity, ILI (CDC), Traffic, Weather (https://drive.google.
com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy, accessed on 1 December
2023)), ECG (https://www.heywhale.com/mw/dataset/5d678efa8499bc002c08c8f4/file,
accessed on 1 December 2023), EEG (https://www.kaggle.com/datasets/samnikolas/eeg-
dataset, accessed on 1 December 2023), and the CAFUC dataset [13,55] generated from
our collection, as shown in Figure 4. The CAFUC dataset consists of data generated by
flight students during their flight learning and training. The data have 64 dimensions.
In this experiment, we used data generated by students during rectangular takeoff and
landing exercises using the same model of aircraft. Unlike common 4D data, we have more
dimensions, but in this experiment, we used the following dimensions: Latitude, Longitude,
AltMSL (altitude above mean sea level), Pitch, Roll, LatAc (lateral acceleration variation),
NormAc (normal acceleration variation), HDG (magnetic heading), TRK (track angle),
E1RPM (engine 1 revolutios per minute), E1CHT1 (engine 1 cylinder head temperature 1),
and E1EGT1 (engine 1 exhaust gas temperature 1). In the dataloader section, data extraction
was performed on the input data to obtain the training set and the test set, with the test set
being 20 percent of the entire dataset. This created a total of 11 datasets for comparison
experiments, with reference to [16,56].

For the baseline, we selected representatives from five classes of models: Koopman-
based KNF and Koopa, MLP-based Dlinear and LSTM, Fourier-based FiLM, TCN-based
TimesNet, and Transformer-based Autoformer, totaling seven models for comparison in
our prediction experiment. All experiments were conducted using the publicly available
source code provided by the original authors. The models are introduced as follows:

(1) KNF (Koopman Neural Forecaster) [57] is a novel method rooted in Koopman the-
ory adept at accurately predicting time series even amidst distribution changes. It
harnesses the Koopman matrix to capture global behaviors that evolve over time,
adapting to local distribution shifts.

(2) Koopa [56] consists of modular Koopman Predictors (KPs) designed to hierarchically
describe and propel the dynamics of time series. It employs Fourier analysis for

https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://www.heywhale.com/mw/dataset/5d678efa8499bc002c08c8f4/file
https://www.kaggle.com/datasets/samnikolas/eeg-dataset
https://www.kaggle.com/datasets/samnikolas/eeg-dataset
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disentangling dynamics. For time-invariant behaviors, the model learns Koopman
embedding and linear operators to uncover implicit transitions underpinning long-
term series.

(3) The FiLM (Frequency Improved Legendre Memory) [58] architecture integrates a
mixture of experts, tailored for robust multiscale feature extraction from time series.
It reconfigures the Legendre Projection Unit (LPU), making it a versatile tool for data
representation. This adaptation allows any time series forecasting model to utilize the
LPU effectively while preserving historical information.

(4) Timesblock, part of timesnet [59], adaptively transforms 1D time series into a set of
2D tensors based on learned periods. It further captures intra-period and inter-period
variations in the 2D space using a parameter-efficient inception block.

(5) Autoformer [54] preserves the residual and encoder–decoder structure of Transform-
ers but innovates with a decomposition forecasting architecture. It embeds proposed
decomposition blocks as inner operators to progressively isolate long-term trend
information from predicted hidden variables. Through replacing self-attention with
an auto-correlation mechanism, Autoformer identifies sub-series similarities based on
periodicity and aggregates similar sub-series from previous periods.

The experimental equipment included an RTX-A4000 graphics card. Furthermore,
two of the most commonly used normalization functions in the literature were selected
to preprocess the data: the min-max scaler and mean normalization, also known as the
z-score. The complete grid of training parameters included a batch size of 64, two epochs,
and the optimizers SSR and Adam, with a learning rate of 0.001.

Figure 4. The CAFUC dataset is visualized with 3D trajectory views from different viewpoints, the
blue line is the original part and the yellow line is the predicted part. (top) and 2D views showing the
time series of the main parameters (bottom).
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4.2. Process

In taking the CAFUC dataset as an example, the dataset is cleaned and normalized.
Time-delayed embedding is performed, and the generalization function, variables, and their
coefficients are obtained through dynamical system identification. The sliding window is
then fed into the iterative training process to obtain the observation function and neural
operator alternately, which is restored back to the original space after the inverse operation.
In comparing this process to the classical physical Lorenz system, of which its main
experimental process is visualized in Figure 5, it can be seen that both the real data and the
physical system can be better predicted.

In terms of the detailed process, let us take the experiment process (a) for the CAFUC
dataset as an example. (a.1) represents the attractor trajectory, (a.2) is the parameter time
series, and (a.3) shows the violin plot for each parameter, illustrating the overall distribution
of the multimodal data. (a.4) displays the violin plot for each parameter after the dictionary
augmentation. (a.5) represents the prediction for a time window, (a.6) visualizes the
Koopman operator approximation matrix K, (a.7) shows the predicted violin plots of each
parameter, (a.8) displays the violin plots of each parameter after dictionary augmentation
reduction, (a.9) compares the reduced predicted parameter tensors with the true values,
and (a.10) illustrates the restored predicted attractor trajectories versus the true values.
(b.1)–(b.10) is the same as (a.1)–(a.10).

Figure 5. Cont.
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Figure 5. Experiment process: (a) CAFUC, (b) Lorenz.

Furthermore, we examined the correlation between the increase in data length and
the corresponding change in model performance. The experimental results are depicted in
Figure 6. According to the findings, the model’s training time increases linearly with the
dataset’s length, suggesting that the model exhibits good stability.

To conduct a more comprehensive comparison between the proposed model and the
benchmark model, we used a five-fold cross-validation repeated 10 times to obtain the MSEs
of the models on the CAFUC dataset for a paired t-test to determine if there is a significant
difference in their performances. We set the p-value to 0.05. The experimental results show
that there is a significant difference between our model and the benchmark model.

Figure 6. Model stability test results: left, efficiency on CAFUC dataset; right, efficiency on Traf-
fic dataset.

4.3. Results

We conducted comparative experiments on our DE-KNO model with seven models
known for their performance on temporal nonlinear datasets. Our evaluations included CA-
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FUC’s flight trajectory dataset, along with two classic nonlinear physical systems (Lorenz
and Rossler) and six commonly used time series datasets such as brain wave EEG and heart
rate ECG. These datasets were also utilized for training and testing with the benchmark
models. Table 1 presents the experimental results, highlighting the best-performing models
with bold formatting. Each model was evaluated on the same datasets to ensure a fair
comparison. Detailed results for the primary datasets are shown in Table 2. In terms
of efficiency on the CAFUC dataset, DE-KNO does not excel in training time but stands
out with the second lowest MSE and the lowest MAE. While the MSE is not optimal, our
model requires minimal memory resources for computation, and there is still room for
improvement. DE-KNO also demonstrates excellent MSE and MAE performances on
other datasets.

Table 1. The multivariate prediction results.

Model Koopa KNF Dlinear LSTM FiLM TimesNet Autoformer DE-KNO

DataSets MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

CAFUC 0.098 0.194 0.589 0.874 0.736 0.680 0.350 0.403 0.851 0.640 0.197 0.284 0.592 0.597 0.117 0.174
Lorenz 0.187 0.270 0.935 0.917 0.873 0.749 0.126 0.223 1.152 0.846 0.491 0.681 1.006 0.789 0.008 0.059
Rossler 0.353 0.173 1.480 1.322 1.801 0.636 0.007 0.039 2.303 0.784 0.017 0.129 1.916 0.747 0.003 0.003

ETT 0.156 0.254 0.533 0.061 0.396 0.430 0.155 0.256 0.398 0.489 0.366 0.479 0.525 0.479 0.148 0.246
Electricity 0.191 0.246 0.936 1.227 0.224 0.316 0.879 0.649 0.253 0.272 1.755 1.363 0.263 0.314 0.287 0.366
Exchange 0.196 0.317 0.689 0.599 0.182 0.315 0.109 0.235 0.278 0.397 0.382 0.478 0.669 0.612 0.010 0.046

ILI 1.797 0.887 2.969 1.339 2.563 1.197 1.060 0.0.875 4.089 1.451 2.167 1.047 2.462 1.082 0.369 0.481
Traffic 0.464 0.296 0.687 0.437 0.459 0.371 0.439 0.390 0.467 0.291 0.647 0.392 0.710 0.397 0.168 0.259

Weather 0.198 0.269 0.483 0.479 0.240 0.279 0.049 0.148 0.233 0.274 0.291 0.297 0.336 0.383 0.006 0.032
ECG 0.750 0.510 3.156 2.397 0.950 0.550 0.871 0.499 0.854 0.560 1.914 1.148 0.807 0.533 0.717 0.497
EGG 0.507 0.519 2.234 2.505 0.528 0.520 0.925 0.621 0.591 0.561 2.033 1.676 0.663 0.602 0.327 0.444

The model’s efficiency is primarily analyzed and compared in terms of training time
and memory usage, including graphic memory usage. The comparison results are presented
in Figure 7. It can be observed from the comparison in Figure 7 that our DE-KNO model
exhibits the smallest error and a very low memory footprint, indicating a strong performance.

From Table 2, it can be observed that the K approximation matrices are completely
different across different datasets. This indicates that the model has a certain degree of
physical interpretability.

Figure 7. Model efficiency comparison: left, efficiency on CAFUC dataset; right, efficiency on Traffic
dataset. The left graph records the training time, MSE, and memory usage of each model on the
CAFUC dataset. The right graph records the training time, MSE, and memory usage of each model
on the Traffic dataset.
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Table 2. Some visualization results. The first column shows visualizations of various datasets,
with the first row depicting rectangular takeoff and landing trajectories from the CAFUC dataset.
The second column displays trajectories after the preprocessing of the raw data, while the third
column shows embedded trajectories. The fourth column visualizes the approximation matrix K of
the Koopman operator. The fifth and sixth rows depict reconstructed and predicted trajectories and
The blue line is the original part and the red line is the predicted part.

Dataset Time Series Embedded
Attractor Koopman K Reconstructed

Attractor
Prediction
Attractor

5. Conclusions

In this study, a data-driven modern Koopman operator theory and dynamical system
identification method were employed to address the nonlinear flight trajectory prediction
problem. The approach involves constructing a unified deep learning framework of Koop-
man neural operators with generalization ability, enabling end-to-end adaptive predictions
using an operator push. Additionally, a certain level of physical interpretability is achieved
through operator visualization and generative dictionary functions, which can be utilized
for downstream pattern recognition and anomaly detection tasks. Compared to today’s
state-of-the-art methods, the model demonstrates good performance on several publicly
available datasets, particularly on the flight trajectory dataset.

The datasets presented by the model were all derived from real training flight data.
However, due to normalization applied during the data preprocessing stage, there is a risk
of data distortion and pattern bias. This inadequacy in handling anomalies in actual data
variations hinders accurate trajectory predictions. From the experimental observations, it is
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evident that the normalization technique we employed has significant flaws, which will be
a focal point of our future research.

Our proposed model demonstrates promising theoretical prediction capabilities. How-
ever, the presence of pattern bias results in significant drawbacks during practical applica-
tions. We are committed to researching methods to eliminate pattern errors and enhance
the model’s accuracy in predicting data anomalies.

In the future, we will utilize Koopman neural operators for performing flight pattern
recognition tasks, implementing online enhanced anomaly detection through pre-training
for flight safety anomaly warning tasks and investigating the application of neural operators
in real-world scenarios. As for the application, our plan involves integrating the model
into PCB circuit boards and mounting them on training aircraft. This setup will enable
the real-time reception of data during flight operations, facilitating trajectory prediction
and the recognition of various training scenarios based on the acquired flight data. This
provides a new approach for flight trajectory prediction and FOQA.
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