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Abstract: Accurately predicting the trajectory of carbon emissions is vital for achieving a sustainable
shift toward a green and low-carbon future. Hence, this paper created a novel model to examine
the driver analysis and integrated prediction for Chinese carbon emission, a large carbon-emitting
country. The logarithmic mean divisia index (LMDI) approach initially served to decompose the
drivers of carbon emissions, analyzing the annual and staged contributions of these factors. Given
the non-stationarity and non-linear characteristics in the data sequence of carbon emissions, a
decomposition–integration prediction model was proposed. The model employed the empirical
mode decomposition (EMD) model to decompose each set of data into a series of components. The
various carbon emission components were anticipated using the long short-term memory (LSTM)
model based on the deconstructed impacting factors. The aggregate of these predicted components
constituted the overall forecast for carbon emissions. The result indicates that the EMD-LSTM model
greatly decreased prediction errors over the other comparable models. This paper makes up for the
gap in existing research by providing further analysis based on the LMDI method. Additionally,
it innovatively incorporates the EMD method into the carbon emission study, and the proposed
EMD-LSTM prediction model effectively addresses the volatility characteristics of carbon emissions
and demonstrates excellent predictive performance in carbon emission prediction.

Keywords: carbon emission predictions; factor decomposition; LMDI method; EMD-LSTM integrated
model

MSC: 91B76

1. Introduction

Climate change, with global warming as a prominent feature, has profound impacts
on human survival and development. It is regarded as one of the gravest global crises
and challenges faced by contemporary human society [1,2]. And, greenhouse gases (GHG)
emitted from human activities are the primary drivers of global warming [3]. Owing to
the tremendous socio-economic advancement in recent years, there has been an enormous
rise in human utilization of fossil fuels, resulting in the quick accumulation of carbon
emissions and exacerbating global warming [4]. Currently, the world is initiating the path
of carbon neutrality, with widespread international consensus on green and low-carbon
growth [5,6]. By concluding the Paris Agreement, a new paradigm has been initiated for
global climate governance, where all parties commit to participation and undertake actions
collectively [7].

As the primary energy consumer and GHG emitter globally, China holds major lever-
age to guide the path of reducing carbon emissions worldwide [8,9]. The resource en-
dowment of “rich in coal but poor in oil and gas” has prolonged the Chinese energy
consumption structure to be dominated by coal. And, the excessive consumption of fossil
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fuels is a vital factor in increasing carbon emissions (see Figure 1). China is also the largest
developing nation; therefore, it is keen to fulfill its GHG reduction obligations, and it is
committed to hitting peak emissions before 2030 and for carbon neutrality by 2060 [10,11].
With the overarching goal of “dual carbon”, the Chinese government has initiated a range
of specific carbon reduction targets [12,13]. For instance, “the CO2 emissions are slated to
decrease by 18% for 2021–2025. . . achieving a reduction of over 65% in CO2 emissions per
unit of GDP by 2030 compared to the levels in 2005”. All policy objectives clearly outline the
carbon reduction postures for China at various future phases, and there is no doubt that the
carbon emissions will certainly be controlled and mitigated. However, due to the urgency
of the timeline and the complexity of the environment, it remains uncertain whether China
can achieve its planned targets as scheduled [14]. Therefore, accurately predicting carbon
emissions may aid the Chinese government in implementing carbon policies that make
sense and attaining dual carbon targets methodically and scientifically [15].
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Exploring the factors impacting carbon emissions is essential for precisely estimat-
ing their changes. Numerous academics have examined the variables that affect carbon
emissions, and the majority of the techniques used are based on the STIRPAT model and
decomposition analysis [16]. The STIRPAT model is a scalable randomized environmental
effects evaluation model developed by Dietz et al. [17]. With the use of the STIRPAT model,
Chai et al. [18] investigated the variables affecting carbon emissions in Xinjiang Province.
Zhang et al. [19] confirmed that economic growth is the primary factor impacting carbon
emissions in China. Guo et al. [20] examined the factors influencing carbon emissions in the
Yangtze River Delta region by using the improved STIRPAT model and discovered that the
main contributors to carbon emissions varied significantly among provinces. Li et al. [21]
identified GDP per capita, urbanization rate, and resident population as the main drivers
of carbon emissions from residential buildings through this model. Decomposition analysis
methods primarily consist of two types: structural decomposition analysis (SDA) and
index decomposition analysis (IDA) [22]. The former mainly relies on input–output tables,
while the latter is simpler to operate and only requires the use of sectoral aggregated data
for calculation, so it is more widely used. In particular, the LMDI method in IDA makes
extensive use in the analysis of energy consumption and carbon emission drivers [23,24].
By employing an extended Kaya and LMDI, Hao et al. [25] examined the factors influencing
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China’s carbon emissions for 1980–2020. Their results show that prices and energy intensity
act as inhibitors to the country’s growth in carbon emissions, revealing that prices and
energy intensity act as inhibitors on the Chinese growth in carbon emissions, while energy
intensity and prices act as inhibiting factors. Zhang and Li [26] investigated the variables
affecting carbon emissions in the construction sector, with results indicating the main
contributors to carbon emissions. Peng and Liu [27] derived from the Kaya-LMDI model
that the economic output and the energy intensity effect are the two key factors influencing
carbon emissions from coal consumption in China.

Regarding carbon emissions prediction, there exist various methods in academia.
Wang and Ye [28] developed a nonlinear grey variate algorithm for forecasting carbon
emissions from the use of fossil fuels in China for 2014–2020. The MNGM-ARIMA and
MNGM-BPNN models were developed by Wang et al. [29] to project carbon emissions
in China, the U.S., and India. Ma et al. [30] applied scenario analysis and Monte Carlo
simulation to anticipate the peak carbon emissions of China’s tourism industry. Ye et al. [31]
created an improved dynamic time-lagged finite grey model to address the dynamic lag
relationship in carbon emissions prediction. Luo et al. [32] developed a system dynamics
approach to forecasting the futuristic carbon dioxide emission trends for the Greater Bay
Area and surrounding cities. Rao et al. [33] modeled a ridge regression-based STIRPAT
extended model to measure the carbon emissions in Hubei Province.

While the above model requires relatively few parameters and can be easily trained,
the fitting effect is ineffective in dealing with nonlinear problems, prompting many re-
searchers to employ machine learning methods for prediction. Fang et al. [34] introduced
an improved PSO algorithm for optimizing Gaussian process regression in carbon emission
prediction, which is superior to traditional forecasting ways. Zhu et al. [35] introduced an
integrated LSSVM model with a hybrid kernel function to reach the carbon intensity target
of China. Niu et al. [36] constructed a generalized regression neural network prediction
model optimized by an improved fireworks algorithm to verify if China can meet its carbon
emissions commitments by 2030. Although the machine learning models can effectively
solve the nonlinear fitting problem, they are prone to local optimization and overfitting
problems. LSTM, with its ability to maintain long-term dependencies and handle gradient
issues, is a powerful tool for time series prediction tasks, including the prediction of energy
fields like solar energy consumption in the US. [37], natural gas consumption [38], and
carbon emissions in China [39,40].

The existing study has explored various aspects of carbon emission forecasting, but
partial insufficiencies remain. Firstly, the LMDI method holds wide application in the
energy and environment field due to its residue-free decomposition results and ease of
operation. However, there is an extremely limited number of studies that make further in-
depth predictions on the LMDI decomposition findings, so this paper attempts to increase
the range of viewpoints on the study of carbon emissions. Secondly, carbon emission
forecasting research has mostly focused on methodological innovations, with few models
having pre-processing operations performed on them. Whether using time series models
or machine learning models for carbon emission forecasting, avoiding the influence of
nonlinearity and volatility is challenging. It may make it difficult to completely solve
the issue by simply relying on improving forecasting methods. Therefore, this paper
utilizes the EMD approach to predict carbon emissions, decomposes carbon emissions
and the influencing factors into multiple components, and constructs a carbon emission
prediction model based on the various types of components obtained by EMD. Thirdly, as
a recurrent neural network architecture, LSTM can capture and memorize long, sequence-
dependent features, which is particularly suitable for dealing with nonlinear problems in
time series data. By incorporating the LSTM model into carbon emission prediction, it
can compensate for the limitations of traditional physical models in accurately describing
complex spatial–temporal variations.
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The innovations and contributions of this paper are as follows.

(1) A hybrid LMDI-EMD-LSTM prediction model is innovatively proposed. Factor de-
composition is carried out using the LMDI method, and based on the decomposed find-
ings, the EMD-LSTM integrated model is constructed to anticipate carbon emissions.

(2) The decomposition results of the LMDI method have no residuals and can success-
fully prevent the occurrence of the pseudo-regression problem. Therefore, this paper
applies the LMDI method to examine the elements that influenced China’s carbon
emissions from 1980 to 2022, and it analyses in detail the contribution of each decom-
position effect to carbon emissions by year and stage.

(3) The accuracy of carbon emission forecasts is affected by the fact that carbon emissions
and their factor series are usually nonlinear and volatile. Hence, this paper adopts
the EMD model to preprocess the carbon emission series and decompose each non-
stationary series into multiple components separately to alleviate the volatility of
the series.

(4) Based on each carbon emission influencing factor component after EMD decomposi-
tion, the LSTM prediction model for carbon emissions is constructed. The EMD-LSTM
model outperforms the benchmark model in terms of prediction accuracy, with signif-
icantly lower error indications across all metrics.

2. Methods and Data
2.1. Methodology
2.1.1. Logarithmic Mean Divisia Index

The LMDI is a technique used for factor decomposition analysis that is derived from
an extended version of the Kaya identity [41]. Due to its benefits like the convenient
decomposition process and residual-free results, it is currently widely applied to factor
studies in various fields. Hence, this research employs the LMDI approach to examine the
factors that influence carbon emissions. The decomposition formula is as follows:
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i
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i
·

Et
i

Et ·
Et
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Pt · Pt (1)
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(6)

To further assess the impact of each influencing factor on carbon emissions, and
referring to Hao et al. [25], this paper proceeds to calculate the relative contribution rates of
each influencing factor:

ρ(∆Ci) =
∆Ci

∑
i

∆Ci
× 100% (7)

where ∆Ci indicates the relative contribution of the ith impact effect.

2.1.2. Empirical Mode Decomposition

The EMD is a novel time–frequency analysis method that can effectively handle non-
linear or non-stationary signals [43]. Through the hierarchical decomposition of EMD, a
series of intrinsic modal functions (IMFs) and a trend component are eventually obtained.
The specific decomposition steps of EMD are as follows:

(1) For an original data sequence x(t), by performing cubic spline interpolation, all its
local maxima are determined as the upper envelope, and all local minima are determined
as the lower envelope. Using it to represent the mean of the upper and lower envelopes,
the component h(t) is obtained as follows:

h(t) = x(t)− m(t) (8)

(2) Determine whether h(t) satisfies the conditions for an IMF, which involves the fol-
lowing two main aspects: (1) number of extrema: the number of extrema (local maxima and
local minima) of the IMF should be equal to or differ by at most one; (2) zero crossing mean:
across the entire data sequence, the mean of the upper and lower envelopes must cross
zero one time. If it does not satisfy these conditions, then consider it as the new x(t) and
repeat the above process.

hk(t) = hk−1(t)− mk−1(t) (9)

The process is repeated until hk(t) satisfies the IMF condition, which results in the first
IMF c1(t) and the residual component of the signal r1(t).

r1(t) = x(t)− c1(t) (10)

(3) Continue the decomposition by following step (2) until the obtained residual
component satisfies the given termination conditions. The decomposition process ends
with several IMFs and residual components.

rn(t) = rn−1(t)− cn(t) (11)

The original sequence can be expressed as the sum of IMFs and residual components:

x(t) =
n

∑
i=1

ci(t) + rn(t) (12)

2.1.3. Long Short-Term Memory Networks

LSTM is an extension of the recurrent neural network (RNN). It has a good memory
function and can effectively solve the gradient explosion issue. It is mainly composed of
the basic structure of the forget gate, the input gate, and the output gate, where the gate
realizes the function of forgetting or remembering. The basic structure of the LSTM model
is shown in Figure 2.
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In the forget gate, the input from the current moment xt and the output from the
previous moment ht−1 are used as inputs to a sigmoid function, designed to control the
extent to which the state of the previous cell has been forgotten. The input gate is combined
with the tanh function to control the amount of new input information. The output layer
determines the output information, which mainly utilizes the tanh function to process the
current cell state, followed by combining the weights obtained from the sigmoid function to
filter some cell information and obtain the output for the next moment. The calculation
formulas involved are as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(13)

it = σ(Wi · [ht−1, xt] + bi) (14)

c̃t = tan h(Wc · [ht−1, xt] + bc) (15)

ct = ft × ct−1 + it × c̃t (16)

ot = σ(Wo · [ht−1, xt] + bo) (17)

ht = ot × tan h(ct) (18)

where ft, it, ot are defined as the forget gate, input gate, and output gate. c̃t and ct represent
the current input memory and cell state. xt and ht indicate the input and output at time
t, W and b denote the corresponding weight coefficients and bias terms, σ is the sigmoid
function, and tanh is the hyperbolic tangent function.

2.1.4. Carbon Emissions Forecasting Based on the LMDI-EMD-LSTM Model

The carbon emission prediction process using the LMDI-EMD-LSTM model is illus-
trated in Figure 3, which mainly involves three major steps. Firstly, to effectively identify
the impact of various factors on carbon emissions in China, this paper employs the LMDI
method for factor analysis and specifically measures the degree of influence of each fac-
tor. Secondly, the EMD method is introduced to alleviate the nonlinearity and volatility
of carbon emissions and their influencing factors, and the IMFs and residual values of
each subsequence can be obtained. Finally, the components of the carbon emission influ-
encing factors derived from the EMD processing served as the input variables, and the
LSTM model is employed to predict each component of the carbon emissions. The fitted
value of the carbon emissions is the sum of the IMFs and the trend component of the
predicted decomposition.
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2.2. Data Sources

Taking China’s carbon emissions as the research object, this study selected relevant
data for 1980–2022 to forecast. When the factorization of China’s carbon emissions using the
LMDI leads to five effects, the specific variable values involved are carbon emissions, each
type of sub-energy consumption, GDP, and population size. The data on energy consump-
tion and population size are directly sourced from the China Energy Statistics Yearbook
and the China Statistics Yearbook. Meanwhile, to effectively eliminate the influence of price
changes, the GDP from 1980 serves as the basis for constant price processing, where the
GDP and its index values were obtained from the National Bureau of Statistics of China.
As direct data on carbon emissions are unavailable, this study employs the emission factor
method to estimate China’s carbon emissions. And, considering that fossil energy consump-
tion is the main source of carbon emissions [44], this study adopts energy consumption
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as the research perspective for analyzing China’s carbon emissions. Since electricity does
not directly generate CO2, and to prevent redundancies in calculations, carbon emissions
resulting from electricity consumption are excluded from consideration [45]. Ultimately,
the analysis encompasses carbon emissions from eight fossil fuels: raw coal, coke, crude oil,
fuel oil, gasoline, kerosene, diesel fuel, and natural gas. The carbon emission factors for
various energy sources are shown in Table 1. And, the specific measurement formula for
carbon emissions is as follows:

C = ∑
i

ADi × EFi (19)

EFi =
44
12

× NCVi × CCi × Oi (20)

Table 1. Carbon emission factors for various energy sources.

Energy Type Average Low Calorific
Value (kJ/kg, m3)

Carbon Content per Unit
Calorific Value (t C/TJ)

Carbon Oxidation
Rate (%)

Carbon Emission Coefficient
(kg CO2/kg, m3)

Raw coal 20,908 26.37 0.94 1.9003
Coke 28,435 29.50 0.93 2.8604

Crude oil 41,816 20.10 0.98 3.0202
Fuel oil 41,816 21.10 0.98 3.1705

Gasoline 43,070 18.90 0.98 2.9251
Kerosene 43,070 19.60 0.98 3.0179

Diesel fuel 42,652 20.20 0.98 3.0959
Natural gas 38,931 15.32 0.99 2.1650

C represents the total carbon emissions. ADi and EFi denote the consumption and
carbon emission factor of the ith type of energy source, while NCVi, CCi, and Oi are the
average low calorific value, carbon content per unit calorific value, and oxidation efficiency
of the i-th type of energy source, respectively. The factor 44/12 accounts for the molecular
weight ratio of CO2 to C.

3. Results and Discussion
3.1. Factor Decomposing with the LMDI Model

By applying the LMDI method, the annual contribution value of each effect to carbon
emissions from 1980 to 2022 can be derived, and the results of the specific contribution
value of each influencing effect are shown in Table 2. Additionally, Figure 4 illustrates the
patterns of each effect.
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Table 2. Factor decomposition of carbon emissions in China from 1980 to 2022 (unit: million tons).

Year
∆C Et

i
Et

∆C Et
Gt

∆C Gt
Pt ∆CPt ∆Ctot Year

∆C Et
i

Et
∆C Et

Gt
∆C Gt

Pt
∆CPt ∆Ctot

1980–1981 −6.86 −123.12 62.49 23.80 −43.68 2002–2003 −22.47 349.35 435.62 29.19 791.69
1981–1982 −7.94 −75.98 123.07 27.32 66.47 2003–2004 −2.51 262.98 512.04 33.23 805.74
1982–1983 −3.95 −72.73 162.99 24.22 110.52 2004–2005 −21.80 161.17 660.94 38.16 838.47
1983–1984 −8.83 −129.07 250.96 25.43 138.49 2005–2006 −22.98 −126.75 831.56 38.35 720.17
1984–1985 −6.73 −105.07 234.78 29.85 152.83 2006–2007 −18.42 −492.37 1009.96 40.81 539.98
1985–1986 4.65 −61.87 157.53 34.84 135.14 2007–2008 −10.81 −464.02 723.78 42.24 291.19
1986–1987 −2.51 −91.75 224.60 39.64 169.98 2008–2009 −12.93 −118.06 746.49 42.77 658.26
1987–1988 −2.34 −105.43 232.54 40.17 164.95 2009–2010 12.39 −204.23 914.55 45.52 768.22
1988–1989 0.78 −0.47 70.82 40.54 111.68 2010–2011 −71.71 67.73 880.68 63.49 940.18
1989–1990 0.35 −48.80 67.21 40.01 58.77 2011–2012 −3.20 −182.10 761.54 82.87 659.11
1990–1991 2.93 −118.19 218.40 37.39 140.52 2012–2013 −11.08 −471.60 804.83 68.90 391.04
1991–1992 11.13 −277.86 367.36 35.01 135.65 2013–2014 45.08 −946.68 769.44 79.48 −52.68
1992–1993 9.07 −207.77 379.63 36.57 217.49 2014–2015 50.94 −1022.71 740.81 57.84 −173.12
1993–1994 −18.51 −253.23 376.62 37.83 142.70 2015–2016 38.33 −895.98 693.16 75.78 −88.70
1994–1995 8.11 −107.42 335.21 37.86 273.76 2016–2017 −29.54 −641.47 715.52 64.82 109.34
1995–1996 17.47 −246.05 319.29 39.50 130.19 2017–2018 −36.20 −496.57 725.63 44.55 237.41
1996–1997 16.82 −362.23 301.81 38.77 −4.84 2018–2019 11.32 −427.07 656.52 39.97 280.75
1997–1998 12.24 −330.01 254.91 35.09 −27.78 2019–2020 −20.56 −122.84 266.79 17.73 141.11
1998–1999 8.35 −146.99 255.94 31.90 149.20 2020–2021 −71.55 −316.45 980.47 4.29 596.76
1999–2000 31.59 −333.60 294.54 30.20 22.73 2021–2022 −72.16 −88.89 393.25 −7.85 224.35
2000–2001 −10.21 −126.61 299.18 28.44 190.80 1980–2022 −220.13 −9586.88 19,563.93 1644.44 11,401.35
2001–2002 −5.89 −86.05 350.51 27.93 286.49 - - - - - -

The LMDI decomposition analysis clearly indicates that China’s total carbon emissions
have been consistently rising. Over the period from 1980 to 2022, the total carbon emissions
increased by 11,401.35 million tons. Notably, the energy structure effect and energy intensity
effect present a negative inhibitory impact on the growth of carbon emissions, with specific
contribution rates of −1.93% and −84.09%. Conversely, the economic development effect
and population size effect exert a positive stimulating influence, with specific contribution
rates of 171.59% and 14.42%. Furthermore, this suggests that both the energy intensity and
economic development effect are the primary influencing factors affecting carbon emissions.
However, the absolute contribution value of the economic development effect typically
surpasses that of the energy intensity structure effect. As a result, the carbon emissions
in China overall maintain a continuous upward trend, which is in accordance with the
conclusions reached by Ji et al. [46].

To further conduct a more in-depth examination of the influence of different factors
on carbon emissions, this paper categorizes the time from 1980 to 2020 into five-year
intervals, which follows the planning horizon of Chinese policies. The specific contribution
value variations in each effect during these stages are depicted in Figure 5. Both the
energy intensity effect and economic development effect are undoubtedly the crucial
influencing factors in the growth of carbon emissions across all stages. Specifically, the
energy intensity effect exhibits a substantial negative contribution of −2583.94 million tons
during 2015–2020, whereas the economic development effect demonstrates a significant
positive contribution of 4226.33 million tons during the period of 2005–2010. The population
size effect consistently maintained a stable positive contribution throughout all stages.
Although the energy structure effect showed positive contributions during the periods
of 1985–2000 and 2011–2015, its overall contribution for the entire period of 1980–2022
remained negative.

There is an inconsistency in the contribution of the energy structure effects to carbon
emissions, manifesting as positive driving forces in certain years and negative inhibitory
effects in others. It is primarily attributed to variations in the carbon emission coefficients
of different energy sources. Therefore, it is imperative to decrease the percentage of
energy consumption that has high carbon emission coefficients to achieve carbon reduction.
At the same time, the energy structure effect generally has a specific adverse inhibitory
impact on the rise of carbon emissions. China is progressively improving its energy
consumption structure, which plays an obvious role in reducing total carbon emissions.
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The energy intensity measures the amount of energy consumed per unit of output, and a
faster decline indicates a more rapid improvement in energy utilization efficiency. Except for
the periods of 2002–2005 and 2010–2011, the energy intensity effect consistently contributed
negatively, which also implies that the improvement in energy efficiency effectively limited
the increase in carbon emissions. Over time, the enhancement in energy efficiency is
expected to contribute to slowing down China’s carbon emissions. However, the impact
of economic development continues to be a significant element in driving the increase in
carbon emissions. From 1980 to 2022, its contribution was as high as 19,563.93 million
tons. Consequently, China will unavoidably alter its economic development model under
low-carbon development objectives. Therefore, it is anticipated that the impact of economic
development on carbon emissions resulting from energy consumption will be progressively
diminished. The lower contribution of the population size effect to carbon emissions is
primarily attributed to the stability of the fertility policy. Despite the recent introduction of
the two-child policy by the Chinese government, large-scale adjustments to the population
size are not feasible in the short or long term.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 16 
 

 

Although the energy structure effect showed positive contributions during the periods of 
1985–2000 and 2011–2015, its overall contribution for the entire period of 1980–2022 re-
mained negative. 

There is an inconsistency in the contribution of the energy structure effects to carbon 
emissions, manifesting as positive driving forces in certain years and negative inhibitory 
effects in others. It is primarily attributed to variations in the carbon emission coefficients 
of different energy sources. Therefore, it is imperative to decrease the percentage of energy 
consumption that has high carbon emission coefficients to achieve carbon reduction. At 
the same time, the energy structure effect generally has a specific adverse inhibitory im-
pact on the rise of carbon emissions. China is progressively improving its energy con-
sumption structure, which plays an obvious role in reducing total carbon emissions. The 
energy intensity measures the amount of energy consumed per unit of output, and a faster 
decline indicates a more rapid improvement in energy utilization efficiency. Except for 
the periods of 2002–2005 and 2010–2011, the energy intensity effect consistently contrib-
uted negatively, which also implies that the improvement in energy efficiency effectively 
limited the increase in carbon emissions. Over time, the enhancement in energy efficiency 
is expected to contribute to slowing down China’s carbon emissions. However, the impact 
of economic development continues to be a significant element in driving the increase in 
carbon emissions. From 1980 to 2022, its contribution was as high as 19,563.93 million tons. 
Consequently, China will unavoidably alter its economic development model under low-
carbon development objectives. Therefore, it is anticipated that the impact of economic 
development on carbon emissions resulting from energy consumption will be progres-
sively diminished. The lower contribution of the population size effect to carbon emissions 
is primarily attributed to the stability of the fertility policy. Despite the recent introduction 
of the two-child policy by the Chinese government, large-scale adjustments to the popu-
lation size are not feasible in the short or long term. 

 
Figure 5. Factor decomposition of carbon emissions in phases. 

3.2. Integrated Prediction Using the EMD-LSTM Model 
The LMDI method is adopted to partition the carbon emission variables into the ef-

fects of energy structure, energy intensity, economic development, and population size, 
which effectively recognize the elements that influence Chinese carbon emissions. To fur-
ther broaden the perspective of existing carbon emission research, this paper constructs 
an EMD model for carbon emission forecasting with LMDI decomposition, which is also 
an initial introduction of the EMD method into carbon emission prediction that is de-
signed to eliminate the non-stationary characteristics of carbon emissions. 

Figure 5. Factor decomposition of carbon emissions in phases.

3.2. Integrated Prediction Using the EMD-LSTM Model

The LMDI method is adopted to partition the carbon emission variables into the effects
of energy structure, energy intensity, economic development, and population size, which
effectively recognize the elements that influence Chinese carbon emissions. To further
broaden the perspective of existing carbon emission research, this paper constructs an
EMD model for carbon emission forecasting with LMDI decomposition, which is also an
initial introduction of the EMD method into carbon emission prediction that is designed to
eliminate the non-stationary characteristics of carbon emissions.

3.2.1. The Empirical Mode Decomposition

Based on the various influencing effects, this paper conducts predictive research on
the changes in carbon emissions in China. The correlation between the specific quantitative
indicators of each effect and carbon emissions is shown in Table 3. At the same time, to
mitigate the impact of non-linearity and volatility in the data series of carbon emissions
and its influencing factors on predictive accuracy, this paper employs the EMD method to
preprocess the relevant data before forecasting. The specific decomposition results of the
EMD are shown in Figure 6.
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Table 3. Specific quantitative indicators and relevance of each effect.

Effect Category Energy Structure Effect Energy Intensity Effect Economic
Development Effect Population Size Effect

Quantitative index Proportion of coal
consumption

Energy
consumption/GDP Per capita GDP Population

Correlation −0.838 *** −0.831 *** 0.9720 *** 0.906 ***

Note: *** represents a 1% significance level.
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It is obvious that, except for the economic development effect, which shows a clear
trend by itself and does not decompose the IMFs, there is non-stationarity in the carbon
emissions, energy structure effect, energy intensity effect, and population size effect. Mean-
while, carbon emissions are decomposed by EMD to yield two component terms (IMF1
and IMF2) and a residual. While IMF1 displays higher-frequency fluctuations compared to
IMF2, the residual indicates a continuous upward trend in carbon emissions from 1980 to
2022. The energy structure effect and energy intensity effect, on the other hand, have strong
volatilities, and after EMD, the residual for both effects suggest an overall downward
trend from 1980 to 2022. Regarding the intrinsic mode functions, three and four IMFs
were decomposed for the energy structure effect and energy intensity effect, respectively.
In both cases, IMF1 represents the highest frequency and strongest volatility. There is a
weak non-stationarity in the population size effect, which is decomposed into IMF1 and
a residual.

With increasing decomposition order, the frequency of components decreases, gradu-
ally approaching stability. The decomposition of EMD, carbon emissions, and influencing
factors yield several intrinsic mode functions and residuals representing the respective
change trends, which greatly reduces the non-stationarity of each indicator and can effec-
tively mitigate the prediction errors associated with the volatility of the influencing factors.
Indeed, the IMFs belong to high-frequency components that capture frequent oscillations,
while the residual reflects the overall trend of the variable. Therefore, this paper intends to
conduct separate predictions for the IMFs and residuals of carbon emissions based on the
IMFs and residuals of each influencing effect.

3.2.2. The Prediction of Carbon Emissions

To effectively enhance the accuracy of carbon emission predictions, the IMFs and
residuals of each effect after EMD are taken as input parameters for the LSTM models,
and the prediction model is constructed separately for each IMF and residual of carbon
emission after EMD. Furthermore, following an 8:2 division principle for the training and
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testing sets, the carbon emission data for China from 1980 to 2013 are selected as training
samples, and related data from 2014 to 2022 are chosen as testing samples. To mitigate the
impact of dimensionality among the indicators, normalization is initially applied to all the
sets of time series data. The specific normalization formula is as follows:

Z = {zi} =
xi − min(xi)

max(xi)− min(xi)
(21)

EMD of the carbon emissions results in two IMFs and one residual. This requires the
establishment of three separate LSTM models, and the final sum of the prediction results
will be the actual predicted value of carbon emissions. Regarding the LSTM models for
predicting IMF1 and IMF2, the parameters are set as follows: the input layer dimensions
are 8; the number of hidden layers is 1; the number of nodes in each hidden layer takes
8 and 7, respectively; and the dimensions of the variables in the output layer take 1. The
training batch is 5, and the maximum number of iterations is 600. Moreover, to avoid
overfitting the network, the dropout technique proposed by Hinton et al. [47] is introduced.
The dropout rate was set to 0.2, which means that 20% of the connections between the
neurons are randomly cut off. For the LSTM model predicting the residual, the parameters
differ as follows: the dimension of the input layer is 4, the number of hidden layers is 1,
the number of nodes in the hidden layer is 7, and the dropout rate is set to 0.2. After the
EMD-LSTM model training, the predicted results for each IMF and residual from 2014 to
2022 are illustrated in Figure 7.
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By comparing the predicted curves of each component, it is observed that the fitting
degree of the predicted curve for IMF1 is relatively low, indicating the poorest predictive
performance. The primary reason lies in the fact that IMF1, as a high-frequency component,
exhibits strong non-stationarity, making it challenging for the LSTM model to obtain
precise predictions. In contrast, the volatility of IMF2 and the residual is significantly
reduced, leading to better predictions for the final carbon emission values. This further
underscores the effectiveness of using EMD to decompose highly volatile carbon emission
data into more stable component data, substantially improving the predictive accuracy of
the LSTM model.

As for the evaluation of the predictive performance of the models, this paper employs
three error metrics: mean absolute error (MAE), root mean squared error (RMSE), and
mean absolute percentage error (MAPE). The absolute values of MAE and RMSE may be
influenced by the order of magnitude of the study objects, whereas MAPE as a percentage
error circumvents this difference. The formulas for calculating each error metric are
as follows:

MAE =
1
n
|x̂i − xi| (22)
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RMSE =

√
1
n

n

∑
i=1

(x̂i − xi)
2 (23)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣ (24)

Meanwhile, to validate the superiority of the EMD-LSTM model in carbon emission
prediction and the effectiveness of EMD, this paper compares it with a single model LSTM,
a back propagation neural network (BPNN), and support vector regression (SVR) without
EMD. The prediction results for each model are presented in Figure 8, and Table 4 illustrates
the evaluation metrics for each model.
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Table 4. Results of error accuracy for each model.

EMD-LSTM LSTM BP SVR

MAE 233.50 305.75 341.61 337.72
RMSE 321.06 402.52 408.40 374.60

MAPE (%) 1.97 2.51 2.79 2.83

Figure 8 and Table 4 demonstrate that the EMD-LSTM model has the best predictive
performance. Its MAE, RMSE, and MAPE values are 233.50, 321.06, and 1.97%, respectively,
which are significantly lower than other single models without EMD. This superiority
arises from the strong volatility and nonlinearity present in the carbon emissions and the
influencing factors, and decomposing them results in stable components, thereby enhancing
the predictive capability of the LSTM model. Among the single models, the LSTM model
has the smallest prediction error MAPE value compared to the BPNN and SVR models.
However, when compared to the BP model, the EMD-LSTM model shows reductions in
each error metric of 72.25, 81.46, and 0.54%.

The above results indicate that the EMD-LSTM model, by decomposing the non-
stationary original sequences of carbon emissions and influencing factors into a finite
number of more stable fluctuation sequences, predicts each component individually, which
can effectively reduce the nonlinear and non-stationary characteristics and improve the
predictive accuracy of the LSTM model.

4. Conclusions

A comprehensive model for factor decomposition and integrated prediction based on
LMDI-EMD-LSTM is constructed in this paper. To effectively recognize the factors affecting
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carbon emissions in China, this paper adopts the LMDI method to decompose the carbon
emission factors into five effects, analyzing the contribution of each influencing effect to
China’s carbon emissions from 1980 to 2022. Meanwhile, to address the problem that the
nonlinear and non-stationary characteristics of each sequence lead to great error in carbon
emission predictions, this paper constructs an EMD-LSTM integrated model in which
the EMD is first introduced into carbon emissions forecasting, decomposing the carbon
emissions and their influencing factors series into fluctuation sequences with different
characteristics. Finally, some benchmark models were selected for an accuracy evaluation
using the established EMD-LSTM model.

The following conclusions can be drawn: (1) Economic development and population
growth both contributed to increased carbon emissions, while the energy structure and
intensity impacts had a negative inhibitory effect. It is unavoidable to conclude that the
economic development effect and the energy intensity effect are the primary driving forces
influencing China’s carbon emissions. (2) To address the non-linear and non-stationary
characteristics of carbon emissions and the factors that influence them, this paper first
introduces EMD into carbon emissions forecasting, which can decompose each series into
fluctuation sequences with different characteristics so that the fluctuation or trend terms
of different scales existing in the original series can be decomposed out. Specifically, the
carbon emission data are decomposed into two IMF components and one residual, while
the influencing factors are decomposed into eight IMF components and four residuals.
(3) Following the decomposition using EMD, the LSTM model is constructed for carbon
emission predictions. Meanwhile, the EMD-LSTM model demonstrated exceptional accu-
racy in predicting carbon emissions, achieving the lowest prediction error: The MAE was
233.50, the RMSE was 321.06, and the MAPE was 1.97%, which implies that using EMD to
break down the non-stationary carbon emission series into more stable components can
effectively enhance the accuracy of carbon emission predictions.

This paper provides a further prediction study of carbon emissions, effectively broad-
ening the research concept of carbon emissions. Nevertheless, due to the diverse and
intricate nature of the factors influencing carbon emissions, it is imperative for us to com-
bine more methods such as random forests for factor identification. At the same time, to
further strengthen the practicality of this study, we also intend to adopt other deep learning
algorithms for in-depth scenario analyses based on the decomposed carbon emissions data
from the EMD method.
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