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Abstract: In problems involving binary classification, researchers often encounter data suitable for
modeling dichotomous responses. These scenarios include medical diagnostics, where outcomes
are classified as “disease” or “no disease”, and credit scoring in finance, determining whether a loan
applicant is “high risk” or “low risk”. Dichotomous response models are also useful in many other
areas for estimating binary responses. The logistic regression model is one option for modeling
dichotomous responses; however, other statistical models may be required to improve the quality
of fits. In this paper, a new regression model is proposed for cases where the response variable is
dichotomous. This novel, non-linear model is derived from the cumulative distribution function
of the proportional hazard distribution, and is suitable for modeling binary responses. Statistical
inference is performed using a classical approach with the maximum likelihood method for the
proposed model. Additionally, it is demonstrated that the introduced model has a non-singular
information matrix. The results of a simulation study, along with an application to student dropout
data, show the great potential of the proposed model in practical and everyday situations.

Keywords: dichotomous response; logistic regression; maximum likelihood estimation; proportional
hazard distribution

MSC: 62J12

1. Introduction

In recent statistical literature, new probability distributions have been introduced as
extensions of other known distributions. This methodology serves as a foundation for
generating new families of distributions applicable across various fields. Among other
authors, this approach was utilized by Eugene et al. [1] to propose the Beta-G class of distri-
butions. Subsequently, Silva et al. [2] introduced the modified Weibull beta distribution
families and the Weibull beta geometry, as noted by Cordeiro et al. [3]. Moreover, building
upon this methodology, Cordeiro and de Castro [4] defined the Kumaraswamy-G class
of distributions, followed by the suggestion of the Kumaraswamy modified Weibull by
Cordeiro et al. [5]. Similarly, Zografos and Balakrishnan [6] and Ristić and Balakrishnan [7]
presented a new family of distributions generated by gamma random variables, leading to
the development of the Gamma-Generated-Logistic distributions by Castellares et al. [8]
and the Gamma-Birnbaum–Saunders distributions by Cordeiro et al. [9].

On the other hand, Martínez-Flórez et al. [10] examined the exponentiated-skew-
normal distribution. Similarly, Martínez-Flórez et al. [11] proposed the family of propor-
tional hazard distributions based on the distribution of the minimum in the sample. All of
these new families of distributions have proven useful in analyzing responses of interest by
adjusting both linear and nonlinear regression models. For instance, the regression model
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with skew-normal distributed errors Azzalini [12] has been widely utilized. Furthermore,
extensions of regression models have been recommended, assuming errors follow the
exposed skew-normal distributions (Martínez-Flórez et al. [10]; Martínez-Flórez et al. [13]).
Moreover, these distribution families have been extended to encompass the case of the Birn-
baum distribution [14] and the Birnbaum–Saunders log-linear regression model proposed
by Rieck and Nedelman [15], showcasing the extensive range of symmetric and asymmetric
families available in the literature.

All the works previously presented, and many others that have not been mentioned
here, are appropriate in cases where the response variable has its support in the set of
real numbers or has positive support, while very few works focus on the problem of
dealing with dichotomous data. In this particular case, the issue is addressed based
on non-linear functions or link functions such as the logistic regression model, known
in the statistical literature as the logit model, or the non-linear alternative based on the
cumulative distribution function (CDF) of the normal density, called the probit model.
Thus, the limited existence of proposals in the statistical literature for the analysis of
dichotomous or polytomous responses through link functions used in other types of
models becomes evident.

In practice, the regression model with a dichotomous response (logistic model) has
been widely used in several areas of knowledge. In the educational area, for example, it
can be used to predict the probability of a student dropping out based on their academic
performance, age of entry, the educational level of their parents, number of siblings, etc. In
the health sector, certain patient characteristics and the application of specific treatments
can be analyzed using the model to understand the connection between the patient and the
implemented treatment, including the probability or odds of survival. Similarly, in finance,
based on characteristics such as sex, age, race, income, and educational level, the behavior
of investors can be predicted. These models are also utilized for classifying individuals into
certain groups according to the predicted probability of a specific event occurring.

In this article, a new regression model is proposed to address research with dichoto-
mous response variables. This novel model can be applied to various fields, including
medicine, finance, education, and the social sciences. Our proposal is grounded in the
family of proportional hazard distributions, specifically utilizing an extension of the logistic
distribution within this family.

The remainder of this work is organized as follows: Section 2 provides a brief descrip-
tion of the logistic distribution and its associated regression model. Section 3 describes the
proportional hazard and proportional hazard logistic distributions, along with some of their
most important properties. In Section 4, the proportional hazard logistic regression model
is introduced. Additionally, the statistical inference process is performed using a classical
approach, presenting the score function and the elements of the observed information
matrix. Section 5 presents an application of the introduced model to student dropout data.
Finally, the conclusions of the paper are presented in Section 6.

2. Logistic Distribution

A continuous random variable with a logistic distribution has a probability density
function (PDF) given by

fL(z) =
exp(−z)

(1 + exp(−z))2 =
1
4

sech2
( z

2

)
, z ∈ R. (1)

where sech denotes the hyperbolic secant function. The shape of the logistic distribution is
similar to the shape of the normal density, with heavier tails and greater kurtosis than the
normal distribution.
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The cumulative distribution function (CDF) of a random variable with a logistic
distribution is given by

FL(z) =
exp(z)

1 + exp(z)
=

1
2
+

1
2

tanh
( z

2

)
,

while its survival and hazard functions can be written as

SL(z) =
1

1 + exp(z)
=

1
2
− 1

2
tanh

( z
2

)
and

hL(z) =
exp(z)

1 + exp(z)
,

where tanh denotes the hyperbolic tangent function.
The extension of the logistic distribution to the location-scale case is achieved by using

the transformation Y = µ + σZ with µ ∈ R and σ > 0. This is denoted by Y ∼ L(µ, σ),
where µ represents the location parameter and σ the scale. Since this distribution is
symmetric, then E(Y) = µ, Var(Y) = π2

3 σ2, the asymmetry coefficient is zero, and its
excess kurtosis is equal to 6

5 . Finally, the p-th percentile, for 0 < p < 1, of this distribution
is given by yp = µ + σ log(p/(1 − p)).

Associated with the logistic distribution is the logistic regression model, which is used
to explain the probability of success of a random variable with a binomial distribution
when there is a set of covariates that explain this probability (see Agresti [16]). In essence,
the logistic regression model is given by

pi = Pr(Yi = 1 | x1, x2, . . . , xp) =
exp

(
x⊤i β

)
1 + exp

(
x⊤i β

)
where x = (1, x1, . . . , xp)⊤ represents a vector of covariates, β = (β0, β1, . . . , βp)⊤ is the
vector of model coefficients (unknown values that must be estimated), and Yi is a Bernoulli
random variable with parameter pi.

3. Hazard Proportional Distribution

In recent decades, families of asymmetric distributions have been introduced for fitting
data with tails heavier or lighter than the normal distribution. As is well known, in the
presence of high degrees of skewness and/or kurtosis, inferential processes based on the
assumption of normality are inadequate. Similarly, while the elliptical family may provide
a solution for distributions with heavy tails, it fails to address the issue of asymmetry in
the data under study.

The skew-normal (SN) distribution, introduced by Azzalini [12], is defined by the PDF
given as

φ(z; λ) = 2ϕ(z)Φ(λz), z ∈ R, (2)

where ϕ and Φ represent the PDF and CDF of the standard normal distribution, respectively,
and λ is a skewness parameter. The distribution is denoted by Z ∼ SN(λ). In addition to
the work of Azzalini [12], the SN distribution described in (2) has been extensively studied
by Henze [17], Pewsey [18], Chiogna [19], and Gómez et al. [20], among others.

Building on the work of Lehmann [21], Martínez-Flórez et al. [11] investigated another
family of asymmetric univariate distributions called the proportional hazard. The PDF of
this distribution is given by

φF(z; α) = α f (z){1 − F(z)}α−1, z ∈ R, (3)
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where α is a positive real number, and F is a continuous CDF with continuous PDF f . This
distribution is denoted by PHF(α). The hazard function associated with the density φF is

hφF (X, α) = αh f (x),

where h f = f /(1 − F) represents the hazard function related to the density f . When
F = Φ(·) and f = ϕ(·), the distribution is called proportional hazard normal, denoted by
PHN(α). The PDF is given by

φΦ(z; α) = αϕ(z){S(z)}α−1, z ∈ R, (4)

where S(z) is the survival function associated with the PDF ϕ(·). This model serves as an
alternative to accommodate data with asymmetry and kurtosis that fall outside the ranges
allowed by the normal distribution.

The CDF of the PHN(α) distribution is given by:

FΦ(z; α) = 1 − {S(z)}α, z ∈ R. (5)

By varying the α parameter, Martínez-Flórez et al. [11] found that the range of asym-
metry and kurtosis coefficients,

√
β1 and β2, respectively, of the variable Z∼PHN(α) falls

within the intervals (−1.1578, 0.9918) and (1.1513, 4.3023). These ranges exhibit better
skewness and kurtosis properties than those of the SN distribution. Additionally, Martínez-
Flórez et al. [11] demonstrated that the information matrix of the PHN distribution in
the location-scale case, denoted as PHN(µ, σ, α), is nonsingular. A particular case of the
proportional hazard family is discussed below.

Proportional Hazard Logistic Distribution

The proportional hazard logistic (PHL) distribution, denoted by PHL(α), is defined
by the PDF given as

φHL(x; α) = α
exp(x)

(1 + exp(x))α+1

=
α

4
sech2

( x
2

)[1
2
− 1

2
tanh

( x
2

)]α−1
(6)

Its respective CDF is given by

FHL(x; α) = 1 − 1
(1 + exp(x))α

= 1 −
[

1
2
− 1

2
tanh

( x
2

)]α

(7)

while the survival and hazard functions can be expressed as

SHL(x; α) =
1

(1 + exp(x))α =

[
1
2
− 1

2
tanh

( x
2

)]α

(8)

and

hHL(x; α) = α
exp(x)

1 + exp(x)

=
α

4
sech2( x

2
)

1
2 − 1

2 tanh
( x

2
) = αhL(x). (9)

respectively, where hL(x) is the hazard function of the logistic distribution.
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Figure 1 illustrates the behavior of the CDF and the survival function for different
values of the parameter α. It is noteworthy that, for α = 1, the CDF corresponds to that
of the logistic distribution. Moreover, the hazard function of the PHL is a multiple of the
hazard function of the logistic distribution. Additionally, the adjustment of the CDF of
the PHL distribution is more flexible than that of the logistic distribution. Similarly, it
is observed that for α = 0.75, the survival function converges more slowly (indicating
a higher probability of survival) towards zero compared to the survival function of the
logistic distribution, whereas for values greater than zero, the convergence to zero is faster
(indicating a lower probability of survival).

−
4

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

z

cdf

(a)

−
4

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0
z

survival

(b)

Figure 1. (a) CDF for α = 0.75 (solid line), 1 (dotted line), 2 (dashed line), and 3 (dotted-dashed line).
(b) Survival function for α = 0.75 (solid line), 1 (dotted line), 2 (dashed line), and 3 (dotted-dashed line).

The r-th moment of the random variable Y ∼ PHL(α) is given by:

E(Yr) =
∫ ∞

1

logr(u − 1)
(u − 1)2 (1 − u−1)α+1 du. (10)

From Expression (10), the moments of orders 1, 2, 3, and 4 of the PHL distribution
can be derived, facilitating the numerical calculation of its mean, variance, skewness, and
kurtosis coefficients.

4. Proportional Hazard Logistic Regression Model

Assuming the regression model:

Yi = X⊤
i β + εi = µi + εi, i = 1, 2, . . . , n (11)

where X = (1, x1, . . . , xp)⊤ represents a set of covariates, β = (β0, β1, . . . , βp)⊤ denotes
a set of unknown coefficients, and εi∼PHL(0, σ, α). It then follows that Yi∼PHL(µi, σ, α),
for i = 1, 2, . . . , n.

However, when Y is a dichotomous random variable with values zero and one, the
model errors are not independent and do not satisfy the assumption of homoscedasticity.
Additionally, it cannot be ensured that

E(Yi | x1, . . . , xp) = Pr(Yi = 1 | x1, . . . , xp)

is bounded by 0 and 1.
For this reason, it is necessary to determine a distribution function G(·) such that

Pr(Yi = 1 | x1, . . . , xp) = pi = G(Yi = 1 | x1, . . . , xp).
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The function G(· | x1, . . . , xp) is known as a link function, and since it must ensure
that the prediction lies between 0 and 1, it is commonly chosen as the distribution function
of certain random variables studied in classical probability theory literature.

The link functions G(· | x1, . . . , xp) typically utilized in practice are the CDF of the
logistic distribution, resulting in the logit model, and the CDF of the normal distribution,
resulting in the probit model. Due to their mathematical and computational complexity,
the logit model is generally preferred over the probit model in practical applications.
A notable commonality between these two models is their symmetric CDF, which can be
a limitation in scenarios where the probability of success for response variable Y exhibits
asymmetric behavior. Moreover, both distributions have limitations in accurately modeling
certain probabilities in their tails. As illustrated in Figure 1, the CDF of the proportional
hazard logistic distribution displays asymmetric behavior. Additionally, the inclusion of
the parameter α allows for modeling the probabilities in its tails. This parameter enhances
the flexibility of the probability of success compared to the logit and probit functions,
suggesting the potential for more precise adjustment of the probability of success for the
variables under study.

Referring to G(· | x1, . . . , xp) as the CDF of the PHL, it follows that

Pr(Yi = 1 | x1, . . . , xp) = pi = G(Yi = 1 | x1, . . . , xp)

= 1 − 1(
1 + exp(x⊤i β)

)α

= 1 −
[

1
2
− 1

2
tanh

(
x⊤i β

2

)]α

.

From this, it is obtained that

Pr(Yi = 0 | x1, . . . , xp) = 1 − Pr(Yi = 1 | x1, . . . , xp)

=
1(

1 + exp(x⊤i β)
)α

=

[
1
2
− 1

2
tanh

(
x⊤i β

2

)]α

.

For pi = Pr(Yi = 1 | x1, . . . , xp), it follows that

log

(
1 − (1 − pi)

1/α

(1 − pi)1/α

)
= x⊤i β, i = 1, 2, . . . , n, (12)

which will be referred to as the logit complement α−root transformation.

4.1. Properties of the PHL Regression Model

Given the structure of the probability function included in this new model, some
statistics of interest are calculated for the interpretation of the parameters. Then, the odds
odds(x1, x2, x3, . . . , xp) = odds(x) are given by

odds(xi) =
Pr(Yi = 1 | x1, x2, . . . , xp)

1 − Pr(Yi = 1 | x1, x2, . . . , xp)

=
(

1 + exp(x⊤i β)
)α

− 1.

Thus, the relative risk (RR) or odds ratio, to compare the profile of individuals i and k,
is given by

RR(i, k) =
odds(xi)

odds(xk)
=

(
1 + exp(x⊤i β)

)α − 1(
1 + exp(x⊤k β)

)α − 1
.
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This expression is used when there are profiles of different individuals, or when the
profiles only differ in the jth variable. Thus, to estimate the relative risk in the ith individual
when the jth variable is increased by one unit, denoted as xj + 1, while keeping the value
of the rest of the variables constant, we have the expression

odds(x1, . . . , xj−1, xj + 1, xj+1, . . . , xp)

odds(x1, . . . , xj−1, xj, xj+1, . . . , xp)
=

(
1 + exp(β j) exp(x⊤i β)

)α − 1(
1 + exp(x⊤i β)

)α − 1

This represents the odds or the number of times the risk of the event occurring
increases (or decreases) when the variable xj increases by one unit.

4.2. Maximum Likelihood Estimation

Given a random sample y1, y2, . . . , yn of a random variable Y with distribution
Yi∼Bin(n, pi), and considering a set of covariates x1, x2, . . . , xp, the likelihood function is
expressed as

LPHL(β, α | X, Y) =
n

∏
i=1

pyi
i (1 − pi)

1−yi .

Then, the log-likelihood function is given by

ℓPHL(β, α|X, Y) =
n

∑
i=1

yi log(pi) + (1 − yi) log(1 − pi)

=
n

∑
i=1

yi log
((

1 + exp(x⊤i β)
)α

− 1
)

−α
n

∑
i=1

log
(

1 + exp(x⊤i β)
)

(13)

The score function, U(β, α) = (U(β), U(α)) with U(β) = (U(β0), U(β1), U(β2), . . . ,
U(βp)), which is calculated as the first derivative of the log-likelihood function concerning
the parameters, is given by

U(β j) = α
n

∑
i=1

xijyi exp(x⊤i β)

(
1 + exp(x⊤i β)

)α−1(
1 + exp(x⊤i β)

)α − 1

+ α
n

∑
i=1

xij
exp(x⊤i β)

1 + exp(x⊤i β)
(14)

for j = 0, 1, 2, . . . , p, and

U(α) =
n

∑
i=1

yi

(
1 + exp(x⊤i β)

)α
log
(
1 + exp(x⊤i β)

)(
1 + exp(x⊤i β)

)α − 1

−
n

∑
i=1

log
(

1 + exp(x⊤i β)
)

(15)
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The elements of the observed information matrix, κ(θ), defined as minus the Hessian
matrix (matrix of second derivatives concerning the parameters), are given by:

κβ j βk = α
n

∑
i=1

xijxik
exp(x⊤i β)(

1 + exp(x⊤i β)
)2

[
1 +

yi

p2
i(

−pi

(
1 + exp(x⊤i β)

)
+ exp(x⊤i β)(pi + α(1 − pi))

)]
κβ jα =

n

∑
i=1

xij
exp(x⊤i β)

1 + exp(x⊤i β)

[
1 − yi

p2
i

(
pi

1 + exp(x⊤i β)
−

α log(1 + exp(x⊤i β))(1 − pi)
)]

καα =
n

∑
i=1

1 − pi

p2
i

log2
(

1 + exp(x⊤i β)
)

.

The elements of the information matrix, which are obtained from the expected value
of the elements of the observed information matrix, I(θ) = E(κ(θ)), are given by

iβ j βk = α
n

∑
i=1

xijxik
1 − pi

pi

(
exp(x⊤i β)

1 + exp(x⊤i β)

)2

,

iβ jα =
n

∑
i=1

xij

(
exp(x⊤i β)

1 + exp(x⊤i β)

)2

−

α
n

∑
i=1

xij
1 − pi

pi

exp(x⊤i β)

1 + exp(x⊤i β)

log
(

1 + exp(x⊤i β)
)

iαα =
n

∑
i=1

1 − pi

p2
i

log2
(

1 + exp(x⊤i β)
)

.

When α = 1, we obtain pi =
exp(x⊤i β)

1+exp(x⊤i β)
, and the information matrix can be written as

IF(θ) =

(
X⊤WX X⊤W
M⊤X 1−pi

p2
i

log2(1 + exp(x⊤i β))

)
, (16)

where W is the diagonal matrix W = diag(pi(1 − pi)), i = 1, 2, . . . , n, and M is a vector
with elements mi = pi

(
pi −

1−pi
pi

log(1 + exp(x⊤i β))
)

.

Letting d = 1−pi
p2

i
log2(1 + exp(x⊤i β)), we obtain that the determinant of the informa-

tion matrix is given by:

|I(θ)| = d−p
∣∣∣X⊤

(
W − k−1MM⊤

)
X
∣∣∣ ̸= 0.

Thus, the information matrix is non-singular, which guarantees the existence of the
variance–covariance matrix of the vector of maximum likelihood estimators (MLE) θ̂. It
can also be concluded that the variance–covariance matrix of the MLE can be written as:

Σ = I−1(θ̂).
Therefore, for large sample sizes, we have

θ̂
d→ Np+2(θ, Σ),
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meaning that the distribution of the vector of estimators is consistent and asymptotically
normal, with a covariance matrix equal to the inverse of the Fisher information matrix.

Confidence intervals for coefficients θr of level 100(1 − ψ)% can be obtained from

the expression θ̂r ∓ z1−ψ/2

√
σ̂(θ̂r). Additionally, the adequacy of the proportional hazard

logistic regression (PHLR) model can be evaluated through hypothesis testing:

H0 : β1 = β2 = . . . = βp = 0 vs H1 : β j ̸= 0,

for at least one j = 1, . . . , p.
We can use the deviance function given by

Gp = −2(ℓ(β0, α)− ℓ(β̂, α)),

with distribution Gp ∼ χ2
p. Similarly, two models can be compared: one complete with r

variables (βr), and another with q (q < r) variables (βq) through the test statistic

Gr−q = −2(ℓ(β̂q, α)− ℓ(β̂r, α)),

for which we have Gr−q ∼ χ2
r−q. This same statistic is useful to test the significance of the

remaining r − q variables that were not included in the model with q variables.
One of the strategies to validate the good fit of the logistic regression model is to

analyze the proportion of correct classification that the fitted model achieves. Letting G1 be
the group of observations with Yi = 1, and G2 be the group of observations with Yi = 0
then, using Bayes’ Theorem, the probability of classifying an individual into group G1
given the information of the explanatory variables x1, x2, . . . , xp is given by

Pr(G1 | x) =
p1 × Pr(x | G1)

p1 × Pr(x | G1) + p2 × Pr(x | G2)
.

Thus, when performing the calculations for our model, we have

Pr(G1 | x) = 1 − p2

(p2 − p1) + p1(1 + exp(x⊤i β))α
.

Similarly, Pr(G2 | x) is defined. In this case, the decision will be to classify the ith
individual into G1 if Pr(G1 | x) > Pr(G2 | x); that is, if Pr(G1 | x) > 0.5.

To evaluate the predictive capacity of the proportional hazard logistic regression model,
the overall accuracy of the model can be calculated, which is defined as the proportion of
individuals that are correctly classified, as well as the sensitivity or true positive rate of
the model (TPR), defined as the number of correctly classified individuals from group G1
divided by the total number of correctly classified ones (from G1 and G2). Similarly, the
false negative rate (FNR) of the model is defined as (1 − TPR), among others.

5. Case Study: Students’ Dropout Data

The data for this application consist of a sample of 413 students from the Department
of Mathematics and Statistics of the University of Córdoba, which were obtained from
the SPADIES System of the Ministry of National Education of Colombia (MNE). The
response variable in this application takes the values Y = 1 (if program dropout) or Y = 0
(if non-dropout). The explanatory variables considered are x1 = (cumulative general
average, CGA), x2 = character of the school (CS) of the student where they studied, taking
values = 1 (if the student comes from an official school), and = 0 (if not), and x3 = the
number of periods enrolled (NPE). The logistic regression (LR) and proportional hazard
logistic regression (PHLR) models were fitted. The results of the fitted models, obtained
using the R Development Core Team [22] package, are given in Table 1.
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Table 1. Parameter estimation of LR and PHLR models (standard errors of the estimates are given
in parentheses).

Model β̂0 β̂1 β̂2 β̂3 α̂ AIC CAIC BIC

LR 7.290 −1.576 0.442 −0.270 310.4 330.5 326.5
se (1.220) (0.384) (0.423) (0.035)

PHLR 1.374 −0.860 0.355 −0.201 11.93 295.9 325.0 316.0
se (1.206) (0.340) (0.293) (0.025) (5.301)

The results of the model fit indicate that the variables CGA and NPE are signifi-
cant, whereas the variable CS does not significantly explain the probability of university
student dropout.

To compare the fitted models, we employ the Akaike Information Criterion (AIC)
Akaike [23], corrected AIC (CAIC), and the Bayesian Information Criterion (BIC) by Hastie
and Tibshirani [24], given by

AIC = −2 × ℓ̂(·) + 2p,

CAIC = −2 × ℓ̂(·) + 2p
(

1 +
n + 2

n − p − 2

)
and

BIC = −2 × ℓ̂(·) + p log(n)

where p is the number of parameters in the model and n is the sample size. The results
favor the PHLR model based on AIC, CAIC, and BIC values.

To compare the proportional hazard logistic regression (PHLR) model with the logistic
regression model, we conduct the hypothesis test

H0 : α = 1 vs H1 : α ̸= 1,

using the likelihood ratio statistic

Λ1 =
LL(θ)

LPHL(θ∗)
,

where LL(·) and LPHL(·) represent the likelihood functions of the logistic and PHL models,
respectively. Upon numerical evaluation, we obtain

−2 log(Λ) = −2(−151.2 + 142.955) = 16.49,

which exceeds the value of χ2
1,95% = 3.84. The PHL model exhibits the best fit compared to

the logistic model.
Carrying out the hypothesis test of the significance of the explanatory variables

H0 : β1 = β2 = β3 = 0 vs H1 : β j ̸= 0,

for at least one j = 1, 2, 3, we have

G2
3 = −2(−262.4158 + 142.9585)

= 238.9147 > χ2
0.05,3 = 7.8147,

therefore, the null hypothesis is rejected. Similarly, for the hypothesis test

H0 : β2 = 0 vs H1 : β2 ̸= 0,
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it follows that

G2
3 = −2(ℓ(β0, β1, β3, α)− ℓ(β0, β1, β2, β3, α))

= −2(−143.96 + 142.9585) = 2.003 < χ2
0.05,1 = 3.84,

Therefore, the null hypothesis is not rejected, meaning the variable character of the
school is not significant in the model. However, academic differences are observed in the
classroom between students who come from official schools and those from private schools,
with the latter demonstrating better preparation.

Note that in the proportional hazard logistic regression model, the case α = 1 corre-
sponds to the logistic distribution. However, the hypothesis test H0 : α = 1 vs. H1 : α ̸= 1,
which is performed using the likelihood ratio statistic, is rejected. This means that the
parameter α is significantly different from one, and must be considered to explain the
behavior of the data. Moreover, the AIC, CAIC, and BIC criteria are favorable to the logistic
proportional hazard model when compared with the usual logistic regression model. All
of the above allows us to conclude that the proportional hazard logistic regression model
fits better.

So, the fitted model is given as follows:

P(Y = 1 | x1, x2, x3) =
(1 + e1.374−0.860x1+0.355x2−0.201x3)11.93 − 1
(1 + e1.374−0.860x1+0.355x2−0.201x3)11.93

Now, the sample is divided into two subsamples. The first one, called the training
sample, corresponds to 70% of the total sample, and the second one is the prediction sample
(30% of the sample). From this partition, the following results for the fitted PHLR model
are obtained.

According to the results in Table 2, the accuracy is 77.23%, the sensitivity rate is 67.05%,
and the specificity rate is 100%.

Table 2. Model predictive capacity.

Actual/Forecast ŷ = 1 ŷ = 0 Total

y = 1 57 28 85
y = 0 0 38 38

Total 57 66 123

On the other hand, Table 3 shows the performance of the PHLR model for different
values of the α parameter.

Table 3. Skewness and kurtosis of the PHLR model for different α values.

α 0.050 0.125 0.250 0.500 0.750 1.000 1.500

Skewness 0.355 0.032 0.160 0.135 0.058 0.000 −0.081
Kurtosis 1.673 2.159 2.716 2.974 2.988 3.000 3.031

α 2.500 5.000 10.000 20.000 30.000 50.000 100.000

Skewness −0.179 −0.303 −0.410 −0.501 −0.546 −0.597 −0.655
Kurtosis 3.090 3.201 3.331 3.469 3.548 3.644 3.765

Table 3 shows the skewness and kurtosis coefficients of the proportional hazard logistic
model for different α values. The results indicate that the model can fit data with both
negative and positive skewness, which is an advantage over traditional logistic models.
Additionally, the PHLR model can fit data with varying degrees of kurtosis, both high
and low.
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Diagnostic analysis is a technique to detect possible influential observations and
aberrant or extraneous data. In the case of the logistic model, this technique has certain
similarities with the general diagnostic analysis of regression models. However, given that
the response variable only takes the values 0 and 1, a somewhat unusual situation arises.
Certain difficulties may arise if there is a large number of zeros (or ones) when one expects
to find few zeros or ones, which can be a sign of a lack of fit in the model. In the case of the
PHLR model, the diagnostic analysis could be carried out using the Pearson residuals,

r̃ =
yi − p̂i√
p̂i(1 − p̂i)

the square of which is the ith component of the Pearson chi-square statistic, the
residual deviance

tDi = sign(r̃)

√
−2
[

yi log
(

yi
p̂i

)
+ (1 − yi) log

(
1 − yi
1 − p̂i

)]
,

which is an adapted version of Cook’s distance for the case of the logistic regression
model (see Christensen [25]). When yi = 0, tDi = sign(r̃)

√
−2 log(1 − p̂i), while if yi = 1,

tDi = sign(r̃)
√
−2 log( p̂i).

For the student dropout data, the residual deviance graph for the PHLR model is
presented in Figure 2. Note that in this graph, there are no observations with high values
of the residuals, which indicates that the model has a good fit. Likewise, the graph of the
PHL distribution for the fitted probabilities is shown. Note that there are five values falling
within the +2.5/−2.5 range in Figure 2b, and six values in Figure 2c, indicating that these
observations are not extremely influential. Additionally, there are no observations outside
the confidence bands in the envelope graphs (Figure 3b), suggesting that the PHLR model
effectively handles observations that deviate slightly from the +2/−2 range.
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Figure 2. (a) Fitted PHLR model. (b) Residual deviance for the fitted PHLR. (c) Residual deviance for
the LR model.

The rMTi envelope graphs generated for the logistic and proportional hazard logistic
models are presented in Figures 3a and 3b, respectively. It is observed that the proportional
hazard logistic regression model presents a better fit than the logistic regression model.



Mathematics 2024, 12, 2170 13 of 14

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Standard normal quantile

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

(a)

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

Standard normal quantile

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

(b)

Figure 3. Envelope plots for rMTi: (a) LR model and (b) PHLR model.

6. Conclusions

In this work, we have proposed the PHLR, a nonlinear regression model that cap-
tures complex relationships between independent variables and the response variable,
particularly in the case of dichotomous data where the relationships cannot be adequately
represented by a straight line. The flexibility of the PHLR model allows for a better fit to
the data compared to linear models or even the logistic model.

The information matrix of the PHLR model is non-singular, ensuring that the parame-
ters are uniquely estimable, avoiding linear dependency among them, and allowing for
the proper calculation of the variance–covariance of the estimators. This guarantees the
convergence of optimization and estimation algorithms, and ensures that the maximum
likelihood estimators have desirable asymptotic properties, such as asymptotic normality.

In terms of information criteria such as AIC, CAIC, and BIC, the PHLR model shows
a better fit than the logistic model for the analyzed student dropout data. The logistic
model is revealed as a special case of the PHLR model. Additionally, the PHLR model
demonstrates a good rate of correct classifications in the studied data. An alternative for
the diagnostic analysis of model errors has also been proposed, offering useful tools for its
implementation in educational problems or other contexts with dichotomous responses.
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