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Abstract: In existing image retrieval algorithms, negative samples often appear at the forefront of
retrieval results. To this end, in this paper, we propose a feature fusion-based re-ranking method
for home textile image retrieval, which utilizes high-level semantic similarity and low-level texture
similarity information of an image and strengthens the feature expression via late fusion. Compared
with single-feature re-ranking, the proposed method combines the ranking diversity of multiple
features to improve the retrieval accuracy. In our re-ranking process, Markov random walk is used to
update the similarity metrics, and we propose local constraint diffusion based on contextual similarity.
Finally, the fusion–diffusion algorithm is used to optimize the sorted list via combining multiple
similarity metrics. We set up a large-scale home textile image dataset, which contains 89k home textile
product images from 12k categories, and evaluate the image retrieval performance of the proposed
model with the Recall@k and mAP@K metrics. The experimental results show that the proposed
re-ranking method can effectively improve the retrieval results and enhance the performance of home
textile image retrieval.

Keywords: home textile image retrieval; feature fusion; similarity diffusion; fusion diffusion; local
constraint diffusion

MSC: 68T07

1. Introduction

In existing image retrieval algorithms, the retrieval results often have the problem of
negative samples listing in the front, which is not expected in real applications. Negative
samples are generally images which are of different classes from the query image, while
presenting only minor differences. In home textile image, the fine-grained information such
as designs and patterns in key areas may be complex, and various classes of images can
only be distinguished by small differences. These differences are mainly manifested in the
texture and color information of the image, which can be extracted from the lower layers of
the network model. Existing methods are mainly based on convolutional neural networks
(CNN) to extract image features, which are usually obtained by using the output feature
maps of the last convolutional layer in the network structure for aggregation [1,2]. Different
levels of features in a convolutional neural network focus on different information of the
image, where the higher-level features carry more semantic information, and the lower-
level features are relatively concerned with detailed information such as edge texture [3].
Certainly, fusing high-level semantic information and low-level detail information can
enhance feature representation.

In general, there are two fusion mechanisms for multiple features, namely early
fusion and late fusion. Early fusion usually combines features at the feature level [4,5],
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and then uses the merged features as the output features of the model or feeds them into
the loss function for training. Late fusion refers to score or decision-level fusion at the
image retrieval stage. Early feature fusion can easily lead to excessively high dimensions
of feature vectors, reducing retrieval efficiency, and the extraction of traditional image
features or lower-level network features can easily affect the image features extracted by
neural networks, which may instead lead to a decrease in retrieval accuracy. With the late
fusion process, a good balance can be achieved between information content and fusion
difficulty [6].

The concept of re-ranking can be utilized to improve retrieval precision. Re-ranking
refers to using the nearest neighbor structure to update the similarity between samples
after obtaining the image features, thereby improving the ranking of correct matches
and reducing the ranking of incorrect matches. The advantage of re-ranking is that it
does not require retraining of the network and additional training samples, and it can be
directly applied to the initial sorting list. Therefore, after obtaining the initial retrieval
ranking list, adding a re-ranking step can effectively improve the accuracy of home textile
image retrieval.

Currently, the idea of re-ranking has been applied to fields such as instance retrieval [7],
person re-identification [8], and so on. With the ranking metric of Euclidean distance or
cosine similarity, the incorrect matches may rank high in the retrieval results, while those of
correct matches may be low. To solve this problem and improve the accuracy of home textile
image retrieval, we introduce the re-ranking method into the home textile field. Compared
with re-ranking algorithms that rely solely on a single feature, re-ranking algorithms based
on multiple features can combine similarity information of multiple features, obtaining
more accurate ranking lists and thus greatly improving retrieval performance. Different
from traditional multi-feature fusion re-ranking methods, we propose a home textile image
re-ranking method based on feature similarity fusion, which can simultaneously utilize the
semantic similarity at the high level and texture similarity at the shallow level, exploring
the ranking diversity of deep features at different levels. Our contributions are mainly
summarized as follows.

1. We propose the similarity diffusion process of a single-layer feature, including the
construction of a weighted graph, the definition of transition matrices and diffusion
methods, and obtain the converged solution after sufficient similarity diffusion.

2. We propose the concept of the k-context nearest neighbor set. In order to reduce
the impact of noise data on the diffusion process, we propose a locality-constrained
diffusion process based on context similarity.

3. We propose a fusion diffusion method for multi-layer feature similarity, utilizing the
semantic similarity at the higher level and texture similarity at the shallow level, more
effectively re-ranking the original home textile image retrieval list.

The remainder of this paper is organized as follows. In Section 2, relevant work in
recent years is briefly introduced. We present the details of our image re-ranking method
in Section 3. Section 4 shows the experimental results. Finally, we conclude the work in the
last section.

2. Related Work

To improve the accuracy of retrieval, image re-ranking methods have quickly devel-
oped in content-based image retrieval. The advantage of re-ranking is that it does not need
to retrain the network or use additional training samples. This process can be directly
applied to the initial ranking list without additional data or complex calculations. The core
idea of re-ranking is to use the neighbor structure to reevaluate the similarity between
samples and thus optimize the ranking results. With the rank of correct matches raising
and the rank of wrong matches lowering, re-ranking can significantly improve the accuracy
and efficiency of retrieval. The re-ranking algorithms can be divided into two types, namely
context re-ranking and manifold re-ranking. Context re-ranking explicitly replaces the
similarity of sample pairs with the similarity of the neighbor set of sample pairs [9–11],
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and manifold re-ranking implicitly updates the similarity of sample pairs through the
Markov chain [12,13].

In context re-ranking, some earlier works [14,15] utilized the similarity relationships
among images in the initial ranking list, employing methods such as k-nearest neighbors.
SCA [11] calculates the context similarity between two images by comparing k-nearest neigh-
bor sets, converts the nearest neighbor list into a vector, and introduces an inverted index,
which greatly speeds up the speed of re-ranking. However, the k-nearest neighbor set of the
query image is likely to contain wrong matches, and k-reciprocal nearest neighbor [16,17] is
an effective solution to this issue. Compared with k-nearest neighbor, k-reciprocal nearest
neighbor takes into account the local density of samples around sample xq, thus k-reciprocal
nearest neighbor is a stronger similarity measure than k-nearest neighbor. Lv et al. [9] pro-
posed an extended neighborhood distance (END) for re-ranking, the END distance is cal-
culated according to the top t images in the query ranking list and the top m images in the
ranking list of t, and the Jaccard distance and END distance are aggregated for re-ranking.
Jayavarthini et al. [10] proposed a context-based extended neighborhood distance re-ranking
model, combining Mahalanobis distance and END distance as the final distance for re-ranking.

Manifold re-ranking updates similarities through the diffusion process [13], which
can capture the intrinsic manifold geometric structure of the data more deeply, thus more
accurately reflecting the relationship between samples. Manifold re-ranking includes three
parts which are building a weighted graph, defining a transition matrix, and a diffusion
process. Zheng et al. [18] defined the transition matrix as a row stochastic matrix derived
from the weighted graph. The value of the transition probability is related to the weight of
the edges in the weighted graph and the degree of the vertices. Similarly, Iscen et al. [19]
adopted a symmetrical transition matrix, which is also derived from the degree of the
vertices and the pairwise similarity. However, this matrix is a symmetrical matrix, so that
the similarity information is symmetrically diffused. Chen et al. [20] explored the idea
of confining the diffusion of the weighted graph to the local neighborhood. By defining
locality through KNN, the random walk is restricted within the range of the k-nearest
neighbors of the data point and the proposed method can adapt to the local probability
density and the geometric structure of the underlying manifold.

Different from k-nearest neighbors and k-reciprocal nearest neighbors, in this paper,
we consider the list similarity between images and use contextual similarity to construct k-
nearest neighbors in manifold re-ranking. Generally speaking, the combination of multiple
measurement methods for re-ranking can inevitably result in inconsistent measurement
and discrepancies in measurement units. To avoid this issue, we focus on the model itself,
combining the extracted low-layer texture similarity and high-layer semantic similarity,
and generate a final similarity distance between images for re-ranking.

3. Materials and Methods

In image retrieval, convolutional neural networks are widely regarded as one of
the important tools for achieving efficient and accurate queries. However, training deep
convolutional neural networks requires a lot of computational resources, and the training
process may be very time-consuming. In addition, different levels of features focus on
different image information, and the information of all levels should be all taken into
account in image recognition. In order to fully extract information from the depth features
at various levels, as well as the sorting diversity of the depth features at different levels,
we propose an image re-ranking method based on feature fusion for home textile image
retrieval, as shown in Figure 1.
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Figure 1. The overall framework of feature fusion-based re-ranking method for home textile image
retrieval. First, get the high-level and low-level features corresponding to the query image and the
retrieval list, and establish different similarity measures. Next, establish Markov random walks
to update each similarity measure. Then, use the fusion diffusion algorithm to combine multiple
similarity measures, and finally return the final retrieval list based on the size of the distance.

For the query image, we first obtain the retrieval list, then extract the high-level and
low-level features of the query image and each image in the retrieval list, and establish
different similarity metrics by constructing a weighted graph. Then, a Markov random
walk is established to update each similarity measure, realizing local constraint diffusion
based on context similarity to capture the geometric structure of the data manifold. Next,
the fusion diffusion algorithm is used to combine multiple similarity measures to obtain
the final similarity measure. Finally, the re-ranked retrieval list is returned based on the
similarity distance between the query image and the searched image. The main flow of the
home textile image re-ranking algorithm based on feature fusion is shown in Figure 2.

Figure 2. The main flow of feature fusion-based re-ranking algorithm for home textile image retrieval.

In the following, we will introduce each part of the proposed re-ranking algorithm,
including the methods of constructing weighted graphs, calculating the initial similarity
information and single-layer diffusion similarity in Section 3.1, the method of calculating
the constraint-based transfer matrix of graphs in Section 3.2, and the method of fusion and
diffusion of multi-layer similarity information in Section 3.3.

3.1. Similarity Diffusion for Single-Layer Features

Given a query image x1, retrieval list Q = {xi|i = 2, 3, . . . , n + 1}, xi represents
the image that is the (i − 1)th most similar to the query image in the image set, and n
represents the number of images in the retrieval list that need to be re-ranked. Suppose
the list corresponding to all images is X = {x1, x2, . . . , xn+1}, and the image vector is
V = {v1, v2, . . . , vn+1}. In the diffusion process, a weighted graph G = {X, E} is first
built, X is the vertex set, each vertex corresponds to an image, E represents the edge set,
and the weight of the edges is proportional to the similarity Sc between the data points. It is
worth noting that the similarity between two images is represented by the cosine distance
between them, and each element in E is defined as:

E(i, j) = Sc(xi, xj) = cos(vi, vj), i, j = 1, . . . , n + 1, (1)
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where we have |E(i, j)| ≤ 1, and E(i, j) = 1 when i = j. This results in a symmetric
weighted graph G:

G =


E(1, 1) E(1, 2) · · · E(1, n + 1)
E(2, 1) E(2, 2) · · · E(2, n + 1)

...
...

. . .
...

E(n + 1, 1) E(n + 1, 2) · · · E(n, n + 1)

. (2)

To realize the diffusion of similarity information, as done in previous works [21,22],
we first obtain the row random matrix P from G:

pij =
E(i, j)

∑n+1
j=1 E(i, j)

, i, j = 1, 2, . . . , n + 1. (3)

P no longer satisfies the symmetry, while satisfying the property in (4):

∑n+1
j=1 pij = 1, i = 1, 2, . . . , n + 1. (4)

This operation defines a Markov random walk on the graph G. P is the transfer matrix
and pij represents the probability of transferring from vertex xi to xj. The diffusion process
diffuses the similarity information based on the weights of the edges, and this process can
be seen as a random walk on the graph.

From a data analysis point of view, the reason for studying the diffusion process is
that the transfer matrix P contains geometric information about the dataset [23], and the
transfer probability defined by the matrix P directly reflects the local geometry defined
by the nearest neighbors of each vertex in the graph. P(xi, xj) denotes the probability of
transferring from a vertex xi to xj in one time step, which is proportional to the weight of
the edges E(xi, xj). For t ≥ 0, the probability of transferring from xi to xj in t time steps
is P(t)(xi, xj). In the diffusion process, the similarity information is chained forward over
time, and all the localized geometries are gradually captured, and ideally the diffusion
process can reveal the underlying geometric structure of the data manifold.

The implementation of diffusion is not unique, and in this paper, we use a simple but
effective method [12]:

P(t) = (αP)1 + (αP)2 + · · ·+ (αP)t, (5)

where t is a positive integer and 0 < α < 1 is a decay coefficient that makes P(t) converge
as t → ∞. Intuitively, α controls the diffusivity of P(t) at fixed t: the larger the value of α,
the greater the influence of each vertex on the others. Typically, the literature [24] sets α
between 0.8 and 0.95.

Theorem 1. It follows from the literature [22] that P(t) converges to a fixed nontrivial solution
for arbitrary:

lim
t→∞

P(t) = (In+1 − αP)−1 − In+1, (6)

where In+1 is a unit matrix of size (n + 1)× (n + 1).

Proof. The proof procedure for the convergence of P(t) as t → ∞ is as follows:

1. For (5), we can write P(t) in the following format:

lim
t→∞

P(t) = (αP)0 + (αP)1 + (αP)2 + · · ·+ (αP)t − (αP)0 = ∑∞
t=0 (αP)t − 1, (7)

where ∑∞
t=0 (αP)t is the form of an infinite geometric progression with the general

form ∑∞
n=0 arn. If a = 1 and r is replaced by αP, the geometric progression ∑∞

t=0 (αP)t

in the text is obtained.
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2. For an infinite geometric series ∑∞
n=0 arn, the sum of its first n terms:

when r ̸= 1,

sn =
n

∑
k=0

ark = a + ar + ar2 + · · ·+ arn =
a(1 − rn)

1 − r
, (8)

when |r| < 1, lim
n→∞

rn = 0

lim
n→∞

sn =
a

1 − r
. (9)

3. For the infinite geometric series ∑∞
t=0 (αP)t in the text, since P is a row random matrix,

all its eigenvalues whose absolute values are less than or equal to 1, therefore |P| ≤ 1;
and 0 < α < 1, we can obtain |αP| < 1, which satisfies the condition in step 2.

4. For an infinite geometric series ∑∞
t=0 (αP)t in the text, find the sum of the first t terms:

when |αP ̸= 1|,

st =
t

∑
k=0

(αP)k = (αP)0 + (αP)1 + (αP)2 + · · ·+ (αP)t =
(1 − (αP)t)

1 − αP
. (10)

when |αP < 1|, lim
t→∞

αPt = 0

lim
t→∞

st =
1

1 − αP
. (11)

5. From steps 1 and 4 we can conclude:

lim
t→∞

P(t) = ∑∞
t=0 (αP)t − 1 =

1
1 − αP

− 1 = (In+1 − αP)−1 − In+1. (12)

The above Equation (6) is proved.

Ideally, the diffusion process can reveal the underlying geometric structure of the data
manifold. However, the diffusion process is sensitive to noise. If the actual topological
structure of the data manifold changes due to noise or outliers, the diffusion process may
not be able to capture the correct topological structure. As noise and outliers will affect the
distribution of data points, this will cause a certain error in the transition matrix during the
diffusion process. At that time, the introduction of local constraints can reduce the impact
of noisy data points on the diffusion process.

3.2. Local Constraint Diffusion Based on Contextual Similarity

Since the diffusion process is affected by noise and outliers, in order to minimize the
effect of these data points, we introduce a locally constrained diffusion process based on
contextual similarity.

In the classical diffusion process, all paths between vertices xi and xj are considered
when calculating the probability of walking from vertex xi to xj. If there are several noisy
points in the retrieval list, such as a negative sample image, then the paths through these
noisy points affect the calculation of the transfer probability.

In order to solve the above problem, we introduce a method [25] to limit the random
walking on the weighted graph to the k-contextual nearest neighbors of the current data
point, which can mitigate the effect of noise on the transfer probability calculation [23].
First, a k-contextual nearest neighbor graph GK is constructed from the original weighted
graph G. The vertices of GK are the same as those in G, while the weights of the edges are
different, and the edge weights in the k-contextual nearest neighbor graph GK are defined
as (13):

Ek(i, j) =
{

E(i, j), xj ∈ Qk(xi)
0, otherwise

, (13)
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where Qk(xj) denotes the set of k-contextual nearest neighbors of xi. When xj belongs to
the set of k-contextual nearest neighbors of xi, the weight is set to the original similarity
E(i, j), and the weight between non-contextual nearest neighbor points is set to 0. At this
point, the probability of the transfer from vertex xi walking to xj is:

p̂ij =
Ek(i, j)

∑n+1
j=1 Ek(i, j)

, i, j = 1, 2, . . . , n + 1. (14)

In this case, the convergent solution of (6) is still satisfied.
Replacing the original transfer probability matrix P with P̂ reduces the effect of noise.

The complete information about the similarity of each data point to all other data points
is maintained in the matrix P, whereas P̂ only retains information about the similarity of
each data point to its contextual nearest neighbors. Essentially, this assumption is that local
similarity (high values) is more reliable than distant similarity, and is an assumption widely
adopted by other flow learning algorithms [26,27].

For how to determine the set Qk(xj) and how to define the contextual proximity of two
points, contextual similarity is introduced here. Let Qn(xi) denote the list of retrieval results
for image xi and Qn(xj) denote the list of retrieval results for image xj, then the contextual
similarity between xi and xj can be measured by the Jaccard similarity coefficient [9,17]:

sJ(xi, xj) =

∣∣Qn(xi) ∩ Qn(xj)
∣∣∣∣Qn(xi) ∪ Qn(xj)
∣∣ , (15)

where |·| denotes the size of the bases in the set after intersection or union operations.
Therefore, given an image x, we first perform a secondary query for each image in its

retrieval list Qn(x), obtaining additional n retrieval lists. Then, we calculate the intersection
and union between the two retrieval lists, and calculate the context similarity between x
and each image in the corresponding retrieval list Qn(x) through (15). Finally, we select
the top k images ranked by context similarity, denoted as the k context neighbors of image
x, Qk. That is, the image x and the images in the set Qk are context neighbors. The specific
process of obtaining the context neighbors is shown in Figure 3.

Figure 3. The specific procedure to get the set of contextual nearest neighbors Qk of image x.
The yellow boxes represent images that are duplicated between retrieval lists, i.e., intersections in
Jaccard similarity, and the green boxes represent images that are in the top k in terms of contextual
similarity to image x.

Equation (15) uses additional contextual information but has some limitations. First,
computing the intersection and concatenation of two sets of nearest neighbors is very
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time-consuming, especially when the Jaccard distance needs to be computed for all image
pairs. Second, when computing the set of nearest neighbors, all the weights of the nearest
neighbors are the same, and each valid nearest neighbor point is noted as 1, while in reality,
the image closer to the query image x should be more similar to x.

For the first problem, the set of nearest neighbors can be encoded as simpler but
equivalent vectors in two quantities, which is more convenient to compute and can greatly
reduce the computational complexity. This is solved here by sparse context encoding [11],
which encodes the nearest neighbor sets into nearest neighbor vectors and thus converts the
computation of sets into the computation of vectors. Specifically, sparse context encoding
converts the set of nearest neighbors Qn(xi) into an Ng-dimensional nearest neighbor vector
Λi via an indicator function:

Λi =
[
υi,1, υi,2, · · · , υi,Ng

]
, (16)

where Ng is much larger than n, the total number of image libraries. The indicator function
υi,j in the formula is defined as follows:

υi,j =

{
1, xj ∈ Qn(xi)
0, otherwise

. (17)

In (17), each term in the binary vector Λi indicates whether its corresponding image
belongs to the n-nearest neighbor of xi, if it is one of the n-nearest neighbors of xi, then the
corresponding term is 1, otherwise it is 0.

For the second Problem, (15) assumes that each nearest neighbor is equal and each
element in the set of nearest neighbors has the same weight. To solve this problem, we
redistribute the weights based on the original distance between the query image and the
images in the retrieval list, and get the new indicator function as follows:

υi,j =

{
Sc(xi, xj), xj ∈ Qn(xi)
0, otherwise

, (18)

where Sc represents the cosine similarity, as in (1). In this case, the weight of near neighbors
is larger and the weight of distant neighbors is smaller.

Based on the definition of the indicator function, the computation of the intersection
and concatenation of Qn(xi) and Qn(xj) can be rewritten as a vectorial computation:

Qn(xi) ∩ Qn(xj) ⇔ MIN(Λi, Λj) (19a)

Qn(xi) ∪ Qn(xj) ⇔ MAX(Λi, Λj), (19b)

where a MIN operation is used to compute the minimum value of the corresponding
element in the two input vectors and a MAX operation is used to compute the maximum
value of the corresponding element in the two input vectors. Next, the base size of the
intersection and concatenation can be obtained by calculating the L1 paradigm:∣∣Qn(xi) ∩ Qn(xj)

∣∣ ⇔ ∥∥MIN(Λi, Λj)
∥∥

1 (20a)∣∣Qn(xi) ∪ Qn(xj)
∣∣ ⇔ ∥∥MAX(Λi, Λj)

∥∥
1, (20b)

therefore, we can rewrite the Jaccard similarity in (15) as:

sJ(xi, xj) =

∥∥MIN(Λi, Λj)
∥∥

1∥∥MAX(Λi, Λj)
∥∥

1

. (21)

Thus, the problems of slow operation and the same weight of data points in the original
Jaccard similarity are solved. First, the context neighbor set Qk is obtained based on the new
Jaccard similarity formula. Then, the transfer probability matrix P̂, which is the diffusion
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matrix based on local constraints, is obtained through (13) and (14), followed by local
constraint diffusion. The converged solution of the diffusion result P̃ is finally obtained:

P̃ = lim
t→∞

P̂(t) = (In+1 − αP̂)−1 − In+1. (22)

The converged solution contains the similarity information between the query image
as well as the retrieved list.

3.3. Convergent Diffusion of Multilayer Features

Different from the diffusion process in Section 3.1, which performs similarity degree
diffusion for only one weighted graph, fusion diffusion can solve the diffusion problem for
m ≥ 2 weighted graphs Gm = (X, Em) simultaneously. From the previous sections of this
paper, we can obtain the weighted maps and transfer probability matrices corresponding
to the high-level features and the low-level features, denoted as Ghigh, Glow, and P̃high,
P̃low, respectively. The goal of fusion diffusion is to learn a new similarity metric, M,
which is able to utilize the complementarities between multiple visual features to obtain an
enhanced similarity metric.

One way to compute M is to perform a weighted linear combination of multiple
similarity measures:

M =
1
m

m

∑
i=1

Pi, (23)

where Pi denotes the transfer matrix of the ith weighted graph.
This approach is simple and easy to implement, but ignores the correlation between

different similarity measures. There are two other fusion strategies including Tensor
Product Fusion [28,29] and Cross Diffusion Process [30,31]. The general process of Tensor
Product Fusion is that, given two different similarity measures, the tensor product graph
(TPG) is first constructed, and then two similarities are jointly diffused on the TPG using a
diffusion process. Cross Diffusion algorithms are similar to the idea of co-training, where
the two state matrices exchange similarity information with each other during iteration,
and two parallel diffusion processes are generated. These methods can effectively utilize
the correlation between similarities.

Compared with Tensor Product Fusion, Cross-Diffusion has a smaller computational
load. Here, we adopt the alternating diffusion algorithm proposed by Lederman et al. [31]
to enact Cross-Diffusion, merging similarity information on two graphs. In the literature,
the algorithm was utilized to extract common sources of variation from the measurement
results of multiple sensors and defined the alternating diffusion operator O and diffusion
distance d. The alternating diffusion operator can capture the structure of common variables
in multiple sensors while disregarding any distinct variables present in a single sensor.
The diffusion distance has the ability to seize the structure of a chart by measuring the
“connectivity” between two samples across the entire sample set, as opposed to comparing
the distances between solitary samples, such as cosine distance or Euclidean distance.

To capture the common similarity information in the two transfer probability maps,
we can construct the alternating diffusion operator based on the obtained transfer matrix P̃.
Then, we compute the diffusion distance between the samples, i.e., the distance between
the pictures after fusing the similarities. According to the diffusion distance sorting, that is,
the final retrieval list is obtained. The specific process is as follows.

1. Construct the alternating diffusion operator O:

O = P̃highP̃low. (24)

2. Calculate the diffusion distance between two samples:

dij =
n

∑
l=1

(Oil − Ojl)
2. (25)
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Intuitively, alternating diffusion operates on the same set of vertices X. However,
the diffusion process is divided into two steps, with the first step having a transition
probability matrix of P̃high and the second step having a transition probability matrix of
P̃low. The combination of the two consecutive steps is thus a Markov chain on a new
weighted graph G = (X, E), where the transition probabilities are determined by the
matrix O. The diffusion process can be performed in two steps.

3.4. Algorithmic Process

For easy algorithmic representation, the query image is denoted as x1, the original
retrieval list of the query image is denoted as Q, and the corresponding image vector lists
Vhigh and Vlow of the high level and the low level obtained from Resnet50 [32] are denoted
as V1 and V2, respectively. Firstly, we obtain the weighted graph G corresponding to the
single-layer features according to the image vector list V, realize the locally-constrained
diffusion based on the contextual similarity, obtain the transfer matrix convergence solu-
tion, then fuse the two similarity measures to get the diffusion distance between images,
and finally sort according to the diffusion distance to get the final retrieval list. In the pro-
posed method, most of the computation costs focus on calculating the contextual similarity
between images in the matrix. The time complexity of the MIN and MAX operations is
O(n), so the overall time complexity of the algorithm is O(n3), where n is the number of
images in the retrieval list. The additional space utilized in the algorithm is primarily for
storing neighboring vectors, and the space complexity is O(n ∗ Ng), where Ng is the total
number of the test set.

The specific processing flow is shown in Algorithm 1.

Algorithm 1 Feature fusion-based re-ranking of home textile images.
Input:

x1: Query image
V1 = {vi |i = 1, 2, . . . , n + 1},V2 = {vi = 1, 2, . . . , n + 1}: Image vector lists
Q = {xi |i = 2, 3, . . . , n + 1}: Initial query list
k: Parameters in locally constrained diffusion

Output:
Q∗ : Final query list

1: for i = 1 to 2 do
2: Calculate Ei according to (1)
3: Λ1 = [υ1]
4: for xj in Q do
5: Calculate υ1,j according to (18) and Vi

6: end for
7: for xj(j ̸= 1) in Q do
8: Get the search list Qj queried by xj

9: Λj = [υj ]
10: for xk in Qj do
11: Calculate υj,k according to (18)
12: end for
13: end for
14: S = [1]
15: for i = 1 to n + 1 do
16: for j = i + 1 to n + 1 do
17: Calculate

∥∥MIN(Λi , Λj)
∥∥

1 according to (20a)
18: Calculate

∥∥MAX(Λi , Λj)
∥∥

1 according to (20b)
19: Calculate context similarity S(xi , xj) and S(xj , xi) according to (21)
20: end for
21: end for
22: Sort S to obtain a set of k-contextual nearest neighbors
23: Calculate the weight Ei

k according to (13)
24: Calculate the transfer matrix P̂i according to (14)
25: Calculate the convergent solution P̃i according to (22)
26: end for
27: Calculate the alternating diffusion operator O according to (24)
28: for q = 2 to n + 1 do
29: Calculate the diffusion distance d1q between the query image x1 and the retrieved image xq

30: end for
31: The final search list Q∗ is obtained by sorting according to diffusion distance
32: return Q∗
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4. Experiments
4.1. Dataset

The original large-scale home textile image dataset comes from Raycloud Technology
Company, Hangzhou, China (https://www.raycloud.com/ (accessed on 26 May 2022)),
which contains 5,511,074 images of 512,231 products. Each product has 3–8 images, and each
image contains attributes such as product id, first-level category, second-level category,
third-level category, and so on. We selected images of 250 random ids from each third-level
category for the experiment, resulting in a final dataset containing 89,399 images from
11,973 categories. Table A1 in Appendix A shows the distribution of the dataset used in the
experiment. In the dataset, 43,800 images from 5986 categories are selected for training and
validation, 45,599 images from 5987 categories are used for testing, and the ratio of training
and validation sets is 4:1. Table 1 shows the details of the used dataset.

Table 1. The dataset used in the experiment.

Id Quantity Image Quantity

Training set + Validation set 5986 43,800
Test set 5987 45,599

Total 11,973 89,399

4.2. Evaluation Indicators

In our experiment, we use the standard Recall@K [33] to evaluate image retrieval
performance. If the returned image has the same label as the queried image, it is considered
a correct return. Otherwise, it is an incorrect return. For a query image, if there are Tk
correct results in the top K returned images, and as long as Tk is greater than 0, the score
of this query equals 1, otherwise it is 0. For the query set, Recall@K is the average of the
scoreq of each image in the dataset. The specific calculation formula is as follows:

score =
{

0, Tk = 0
1, Tk > 0

, (26)

Recall@K =
1
r ∑r

q=1 scoreq, (27)

where r represents the number of all query images and scoreq represents the score metric of
the q-th image.

To further evaluate the ranking performance of the model, we also use the Mean
Average Precision (mAP) [34] metric. Specifically, mAP first requires the calculation of the
Average Precision (AP) score for each query, and then the average of the APs for all query
images is taken as the final score. The formula for mAP is:

mAP =
1
r

r

∑
q=1

AP(q), (28)

AP =
1
R

n

∑
K=1

(p(K) · rel(K)), (29)

where r represents the total number of query images and q represents the current query
image. R represents the total number of images of the same category as q in the dataset.
K represents the ranking position, p(K) is the proportion of correct returns in the top K
results, and rel(K) represents the score of the image at position K, which is 1 if correct
and 0 otherwise.

https://www.raycloud.com/
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4.3. Experimental Environment

To ensure the fairness of performance comparison, we uses Resnet50 as the CNN
feature extractor. The image’s id is used as the label for metric learning training, with Ar-
cFace [35] as the loss function. The Resnet50 feature extractor was pre-trained on Ima-
geNet [15] using the Pytorch framework. Features were extracted from the last convolu-
tional layer of Resnet50 with adaptive average pooling. We used Adam as the optimizer.
The image size was set to 256 × 256, the batch size was set to 48, the maximum epoch
number was 100, and the learning rate was initialized to 0.0001. Data augmentation was
used during training, such as horizontal flipping, random rotation, and so on. All the
experiments were performed on GEFORCE RTX3080 Ti graphics processing unit. In the
testing phase, the dimension of the final global representation extracted from the stage-2
layer was 256 and the dimension of the final global representation extracted from the
stage-5 layer was 512.

4.4. Experimental Results
4.4.1. Similarity Distribution

Theoretically, in terms of the magnitude of similarity, it is better for the same home
textile products to have the bigger similarity values, while the different home textile
commodities to have smaller similarity values. In terms of the density of similarity, it is
better for the same home textile commodities to have the smaller similarity value range,
i.e., the smaller variance between the similarity values of the same commodities is better.
On the contrary, it is better for the different home textile commodities to have the larger
similarity value range, i.e., the larger variance between the similarity values of the different
home textile commodities is the better.

As can be seen in Figure 4, compared with cosine similarity, our method significantly
improves the distribution of similarity, as the similarity between the same home textile
commodities is large and almost concentrated at 1, while the similarity between different
home textile commodities is smaller and has a clearer boundary with the density curve
of the same home textile goods. Specifically, without the re-ranking, the similarity value
of the same home textile commodities mainly fluctuates between 0.9 and 0.95, with a
large variance, and the similarity value of the different home textile commodities mainly
fluctuates between 0.4 and 0.45. The difference between the peak similarity value of
the same home textile commodities and the peak similarity value of the different home
textile commodities is about 0.5. After re-ranking, the similarity of the same home textile
commodities mainly focuses on the range between 0.95 and 1 with very small variance,
while the similarity value of the different home textile commodities mainly fluctuates
between 0.25 and 0.6. The difference between the peak similarity value of the same home
textile commodities and the peak similarity value of the different home textile commodities
is about 0.6, which is larger than the difference between the peak values in the cosine
similarity curve. Therefore, the re-ranking is able to increase the similarity value of the
same home textile commodities and decrease the similarity value of the different home
textile commodities and the boundaries of the two kinds of similarity curves are clearer.
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Figure 4. The frequency distribution of similarity in the dataset using the proposed re-ranking and
the original cosine distance sorting.

4.4.2. Comparison with Other Approaches

The Recall and mAP accuracy of our method is compared with several other re-
ranking algorithms on the same dataset. We select eight re-ranking algorithms as the
comparison objects, which are SCA [11], Expanded_k-Re [17], RLS_k-Re [16], END_k-
Re [9], M_END [10], RDP [36], RDPAC [37], and MVD [38]. The first five methods have
been introduced in Section 2, and the parameters of the methods are shown in Table 2. RDP,
RDPAC, and MVD are manifold re-ranking methods. RDP is a diffusion process on tensor
product graph. RDPAC effectively approximates the diffusion process using ranking-based
information while ensuring its convergence. MVD is a multi-view graph learning method,
in which multiple affinity graphs are fused together via a weight learning scheme based
on the unsupervised graph smoothness and utilised as a consensus prior to the diffusion.
The parameter µ of RDP and MVD is set to 0.01, and the parameter ϵ of RDPAC is set to
5 × 10−5. The baseline stands for the original cosine similarity. In our method, the features
extracted from Stage 2 in Resnet50 serve as low-level features, while those from Stage 5
provide high-level features for subsequent similarity fusion.

Table 2. The parameters of methods in the comparison experiment.

Method k λ t q K c

SCA [11] 10 - - - - -
Expanded_k-Re [17] 15 0.3 - - - -

RLS_k-Re [16] - - 3 4 15 -
END_k-Re [9] 15 0.8 3 8 - 2
M_END [10] - 0.8 3 8 - 2

Ours 8 - - - - -

As can be seen from Tables 3 and 4, the proposed re-ranking algorithm has achieved the
optimal retrieval performance. Our method achieved performance scores of 89.44%, 93.56%,
and 94.05% on the performance indicators of Recall@1, Recall@5, and Recall@10, respec-
tively. Compared with the baseline performance, the proposed algorithm had the scores
improved by 1.3%, 0.6%, and 0.2%, respectively. On the mAP@5, mAP@10, and mAP@20
metrics, our method achieved scores of 74.79%, 66.75%, and 60.13%, respectively, with im-
provements of 6.2%, 5.5%, and 1.4% compared to the baseline. The first five methods are
context-based re-ranking methods, which scored lower than the baseline on the Recall met-
ric and partially higher on the mAP metric. These methods optimize the original retrieval
list by utilizing k-reciprocal nearest neighbors or extended distances, but do not leverage
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the underlying manifold structure of the data. While they enhance the ranking of positive
samples to a certain extent, they also tend to introduce more negative samples. Compared
to RDPAC and MVD, RDP exhibits lower retrieval accuracy due to its reliance solely on
high-level semantic similarity information for the diffusion process. RDPAC and MVD
calculate all paths between images during their diffusion process, introducing noise into
the similarity propagation, resulting in lower retrieval accuracy than our proposed method.
Overall, after obtaining the initial 20 retrieval results, our method has a higher accuracy
rate at Recall@1 and Recall@5 after re-ranking. The accuracy of each method is relatively
close at Recall@10, and our method also has a superior accuracy rate. The improvement in
mAP also confirms that our method effectively reduces the ranking of negative samples
and enhances the ranking of positive samples.

Table 3. Comparison of Recall@K on home textile dataset between the proposed method and other
representative methods.

Method R@1 R@5 R@10 R@20

Baseline 88.18% 93.00% 93.85% 94.45%
SCA [11] 84.59% 91.14% 93.44% 94.45%

Expanded_k-Re [17] 70.60% 91.00% 93.77% 94.45%
RLS_k-Re [16] 78.73% 88.30% 92.99% 94.45%
END_k-Re [9] 78.99% 87.11% 93.68% 94.45%
M_END [10] 76.34% 84.50% 92.51% 94.45%

RDP [36] 88.75% 90.35% 91.45% 94.45%
RDPAC [37] 88.81% 92.90% 93.61% 94.45%
MVD [38] 88.77% 90.37% 91.47% 94.45%

Ours 89.44% 93.56% 94.05% 94.45%
The bold in the results represents the optimal value.

Table 4. Comparison of mAP@K on home textile dataset between the proposed method and other
representative methods.

Method mAP@5 mAP@10 mAP@20

Baseline 68.57% 61.29% 58.69%
SCA [11] 72.51% 61.37% 58.98%

Expanded_k-Re [17] 68.77% 60.40% 58.22%
RLS_k-Re [16] 73.24% 61.34% 58.00%
END_k-Re [9] 73.62% 60.86% 58.29%
M_END [10] 70.88% 60.66% 58.09%

RDP [36] 71.29% 63.87% 57.27%
RDPAC [37] 71.84% 65.39% 58.50%
MVD [38] 71.85% 65.69% 59.63%

Ours 74.79% 66.75% 60.13%
The bold in the results represents the optimal value.

Table 5 lists the Recall@19 accuracies on the eight first-level categories in our home
textile dataset. Our method performed better than other methods in seven categories.
Compared to the baseline, SCA performs slightly worse in most categories. Expanded_k-
Re, RLS_k-Re, and END_k-Re, M_END show a slight decrease in performance in some
categories, while maintaining a slight advantage in others. Among them, END_k-Re
and M_END exhibit lower performance in the “Bathroom supplies” and “Protective gear”
categories. This could be attributed to the subtle features and minimal inter-class distinc-
tions of these products, leading to more erroneous samples introduced during extended
neighborhood calculation. RDP and RDPAC demonstrate performances close to or slightly
better than the baseline across multiple categories. Our approach consistently outperforms
others in most categories, particularly in “Bedding sets”, “Quilts”, “Pillows”, etc. These
product categories have more noticeable and complex colors and patterns. By utilizing the
contextual information of images and low-level texture similarity information, our method
can more accurately assess image similarity. Therefore, in these categories, our method
achieves superior retrieval lists and better performance.
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Table 5. The comparison of Recall@19 retrieval accuracy across eight first-level categories.

Method Bedding Sets Quilts Pillows Mattresses Bathroom
Supplies Protective Gear Indoor

Decorations
Children’s

Goods

Baseline 95.41% 93.64% 96.71% 93.51% 89.66% 92.26% 90.90% 92.70%
SCA 95.10% 93.23% 96.43% 92.69% 89.02% 91.91% 90.54% 92.17%

Expanded_k-Re 94.62% 93.23% 96.66% 93.10% 89.92% 91.81% 91.60% 92.93%
RLS_k-Re 94.53% 92.92% 96.49% 92.88% 88.50% 91.13% 89.79% 91.58%
END_k-Re 94.81% 92.96% 96.60% 93.14% 89.27% 91.08% 90.33% 92.46%

M_END 94.70% 92.93% 96.62% 93.25% 89.27% 90.97% 90.21% 92.34%
RDP 95.19% 93.40% 96.64% 93.36% 89.27% 91.94% 90.56% 92.58%

RDPAC 95.41% 93.63% 96.71% 93.58% 89.66% 92.21% 90.90% 92.75%
MVD 95.18% 93.40% 96.64% 93.36% 89.27% 91.91% 90.48% 92.58%
Ours 95.86% 94.09% 97.17% 93.91% 90.14% 92.72% 91.34% 93.29%

The bold in the results represents the optimal value.

In Figure 5, the top 15 retrieval results of the initial cosine similarity ranking and the
proposed re-ranking algorithm are listed for the comparison. In each row, the first image is
the query image, the images with green frames are correct returns (same product), and the
images with red frames are incorrect returns. After re-ranking, the meaning of the yellow
box is that the negative sample is correctly replaced by a positive sample at that position.
From the figure, it can be seen that for some negative samples with similar appearance
outlines and semantics (such as the top6 in the first row, the top3 in the second row, and the
top3 in the third row), their rankings can be lowered after merging texture similarity and
re-ranking (corresponding to the top12 in the first row, top6 in the second row, and top5 in
the third row after re-ranking). For some positive samples with high texture similarity but
dissimilar appearances (such as the top13 in the second row and the top5 in the third row),
their ranking can be improved after re-ranking (corresponding to the top8 in the second
row and the top2 in the third row after re-ranking). Overall, our re-ranking algorithm can
alleviate the situation of negative samples being at the forefront of the original retrieval list,
improve the ranking of positive samples, and return an optimized retrieval list.

Figure 5. Example of retrieval results using original cosine similarity and the proposed re-ranking
algorithm. The red box represents incorrect returns and the green and yellow boxes represent correct
returns, where the meaning of the yellow box is that the negative sample is correctly replaced by the
positive sample at that position.

4.4.3. Multilayer Characterization of Resnet50

Different layers of the convolutional neural network have different attribute features.
In the bottom layer of the network, the extracted features are mainly detailed features such
as texture and color. In the middle layer, most of the extracted features are style details,
etc., and in the higher layers of the network, most of the extracted features are the overall
features of the image. In this paper, Resnet50 is used as the feature extraction network.
The Resnet50 model consists of five stages. Stage 1 is the lowest layer of the model and
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Stage 5 is the highest layer of the model. For a given image, the Gard-CAM [39] method is
used to generate a heat map to visualize the features extracted from each stage as shown
in Figure 6. For the query image, the features extracted by Stage 4 and Stage 5 carry more
semantic information, while those from Stages 1 to 3 carry more texture information.

Figure 6. Heat maps corresponding to different stages in Resnet50. Stage 4 and Stage 5 extract more
semantic information; Stage 1 to Stage 3 extract more pattern and detail information.

In general image retrieval frameworks and the output features from the highest layer
of the model are used as the final representation, and similarity retrieval is conducted based
on these features. The re-ranking method we proposed aims to combine the lower-level
texture similarity, therefore we still use the Stage 5 of the model to extract the semantic
similarity. In order to accurately integrate high-level semantic similarity and low-level
texture similarity, we separately treat Stages 1–3 as the low-level features to be fused,
calculate the texture similarity, and combine it with the semantic similarity calculated from
the features extracted by Stage 5. The experimental results are shown in Figure 7. The re-
ranking method integrated by Stage 2 achieves the optimal retrieval precision, reaching
89.44%, 93.56%, and 94.05% on Recall@1, Recall@5, and Recall@10 performance indicators,
respectively, which are 1.0%, 1.9%, and 1.8% higher compared to Stage 1, and 0.9%, 2.9%,
and 2.8% higher compared to Stage 3. Therefore, Stage 2 is used as the low-level feature in
our re-ranking method.

Figure 7. The impact of different Stages as low-level features on the precision of re-ranking retrieval.
The metric is Recall@K, where K takes 1, 5, 10, and 20.
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4.4.4. Parameter Analysis

The proposed re-ranking algorithm has an important parameter, that is the local
constraint neighboring parameter k. In Section 3.2, in order to mitigate the influence of
noise on the calculation of transition probabilities, we have the random walk constrained
on the weighted graph within the range of k contextual neighbors of the current data
point. Hereinafter, we will discuss the impact of the neighboring parameter k on the Recall
indicator, with the feature baseline being Resnet50.

The experimental results are shown in Figure 8. When k < 8, the indexes of the
Recall@5 and Recall@10 performances steadily increase and then tend to the maximum
value, and the precision of the two retrieval indexes shows a downward trend when k > 8.
Recall@1 achieves larger values at k = 8 and k = 14. Generally, our proposed algorithm is
relatively sensitive to the parameter k. As k increases, the Recall index shows an upward
and then downward trend in general, reaching the optimal precision value when k = 8.
The size of value k determines the k-nearest neighbor set of data points, which further
affects the process of local constraint diffusion. From the experiments, we can find that too
large a k value will lead to more impact of noise data points on the diffusion process, while
too small a k value will prevent similarity from being better propagated.

Figure 8. The impact of parameter k on the precision of re-ranking retrieval on the home textile
dataset. The possible values of k are integers from 1 to 20.

5. Conclusions

In this paper, we have proposed a home textile image retrieval re-ranking method
based on feature fusion to solve the problem of negative samples advancing in home
textile image retrieval. This proposed method integrates high-level semantic similarity
information and low-level detail similarity information, which can improve the accuracy
of retrieval. Firstly, we have established a Markov random walk to update each similarity
measure. To alleviate the impact of noise data points on the diffusion process, we have
proposed a locality-constrained diffusion based on context similarity, restricting the ran-
dom walk on the weighted graph within the range of the current data point’s k context
neighbors. To utilize the correlation among multiple similarity measures, we have adopted
the alternating diffusion algorithm to implement cross-diffusion, blending the similarity
information on two graphs. Finally, experimental results have shown that the proposed re-
ranking method have better performance than other classic algorithms, and can effectively
improve the performance of home textile image retrieval.
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Appendix A

Table A1. Distribution of the dataset used in the experiment.

First-Level Category ID Main Products Second-Level Category
Count

Third-Level Category
Count Number of Images Image Examples

11 Bedding sets 3 43 26,832

12 Quilts 3 21 13,305

13 Pillows 2 11 23,137

14 Mattresses 2 11 5404

15 Bathroom supplies 2 7 1636

16 Protective gear 2 10 6971

17 Indoor decorations 5 29 9013

18 Children’s goods 3 13 3101
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