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Abstract: Zero-shot learning (ZSL) enables models to recognize categories not encountered during
training, which is crucial for categories with limited data. Existing methods overlook efficient tempo-
ral modeling in multimodal data. This paper proposes a Temporal–Semantic Aligning and Reasoning
Transformer (TSART) for spatio-temporal modeling. TSART uses the pre-trained SeLaVi network to
extract audio and visual features and explores the semantic information of these modalities through
audio and visual encoders. It incorporates a temporal information reasoning module to enhance the
capture of temporal features in audio, and a cross-modal reasoning module to effectively integrate au-
dio and visual information, establishing a robust joint embedding representation. Our experimental
results validate the effectiveness of this approach, demonstrating outstanding Generalized Zero-
Shot Learning (GZSL) performance on the UCF101 Generalized Zero-Shot Learning (UCF-GZSL),
VGGSound-GZSL, and ActivityNet-GZSL datasets, with notable improvements in the Harmonic
Mean (HM) evaluation. These results indicate that TSART has great potential in handling complex
spatio-temporal information and multimodal fusion.

Keywords: audio-visual zero-shot learning; transformer

MSC: 68T07

1. Introduction

With the growth of social media, audio-visual content has proliferated across various
domains, making zero-shot learning for audio-visual tasks a crucial research direction in
the field of deep learning. Utilizing lots of labeled data to train models is a common ap-
proach in traditional supervised learning. However, acquiring such annotated data is often
costly and complex. In real-world applications, we frequently encounter scenarios where
new classes emerge during the identification and classification training phases. Therefore,
zero-shot learning for audio-visual tasks becomes crucial for handling large-scale and
diverse multimodal information. From a theoretical standpoint, audio-visual zero-shot
learning has propelled the development of multimodal data fusion and zero-shot learning
fields, offering a richer understanding for machine learning. In practical applications, it
aids in constructing more intelligent audio-visual processing systems capable of addressing
challenges in new contexts and with new objects, such as applications in security surveil-
lance systems, intelligent audio-visual search, and multimodal content understanding.
Existing methods for audio-visual zero-shot learning introduce additional complexity, such
as preprocessing audio-visual data, leading to increased computational demands. How-
ever, these approaches have not effectively addressed the challenge of efficiently modeling
temporal information. To tackle this issue, previous methods can be broadly categorized
into four types: feature learning [1–3], capturing motion information [4,5], decoupling
scene and motion information [6,7], and multimodal data fusion [8,9]. The approach of

Mathematics 2024, 12, 2200. https://doi.org/10.3390/math12142200 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12142200
https://doi.org/10.3390/math12142200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5165-1546
https://doi.org/10.3390/math12142200
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12142200?type=check_update&version=1


Mathematics 2024, 12, 2200 2 of 16

utilizing feature learning enhances classification and recognition capabilities by learning
discriminative features. In the study by Huang et al. [1], two pre-text tasks are designed to
supervise context and motion information separately. MCL [2] proposes leveraging optical
flow information for temporal and spatial sampling of video blocks, and enhancing the
representation of motion information in feature learning through aligning gradient and op-
tical flow maps. To focus more on foreground features, Modist [3] proposes a method that
pays closer attention to learning objectives and cross-modal learning objectives. Feature
learning addresses how to enhance classification and recognition capabilities, yet it still
faces challenges in dealing with uncertainties in motion information. Therefore, we propose
a method for capturing motion information. MDFT [4] constructs a spiking neural network
to capture motion information, resolving the challenge of capturing motion information by
focusing on contextual semantic information and dynamic motion information.

However, in this approach, the dependence on background scenes is overlooked.
Building on this, the study by Bhat et al. [6] references an end-to-end visual tracking
architecture, predicting the appearance information of both the target and the background.
Similarly, the study by Wang et al. [7] proposes a method to decouple scene and motion
information, coupling them through positive and negative clips of videos, enhancing the
network’s sensitivity to time to reducing bias towards background scenes in video learning.
Nevertheless, this method overlooks scenarios with multiple different modalities, for which
a common strategy is multimodal data fusion. For instance, AVMST [9] mentions the use
of a transformer module to fuse audio and visual data, and AVCA [8] employs a spiking
neural network module to extract salient temporal information, a cross-attention module
to fuse time and semantic information, and a transformer inference module to explore
the relationships between fused features for multimodal learning. Despite these methods
addressing a majority of the challenges in deep learning, efficiently modeling temporal
information remains a critical challenge yet to be resolved. In this paper, we focus on
how to efficiently model temporal information to further enhance the performance and
robustness of video analysis.

Based on the action captured in the images of a person shooting, it is evident that
objects undergo significant changes over time, illustrating that the extracted features exhibit
temporal dependencies. For instance, as depicted in Figure 1, the position and bending
degree of the arm and bow vary each second. In conjunction with this, Figure 2 shows
that the intensity of the sound signal, corresponding to the video in Figure 1, varies over
time across different frequencies. This variation in sound, generated by the release of the
bowstring and the flight of the arrow, underscores the significant temporal changes in the
audio signal strength. To capture these nuances, the spectrogram of the audio signal is
computed with specific parameters: a window length of 1024, which balances the time and
frequency resolution; a Hann window, a widely used type that helps reduce spectral leakage
and enhances the smoothness of the spectrum; and an FFT size of 2048, which determines
the frequency resolution of the spectrum and is typically set to the nearest power of two
greater than or equal to the window length. Additionally, to enhance the visualization
of the spectrogram and facilitate the representation of a wide dynamic range of intensity
values, a logarithmic transformation Sxxlog = −np.log10

(
Sxx + 1 × 10−10) is applied.

Understanding these parameters is crucial for the model to predict and comprehend
changes at different time points for unseen categories. By considering temporal information,
the model can gain a deeper understanding of the context and background, enabling more
accurate inference on unknown categories. Therefore, efficient modeling of temporal
information plays a crucial role in audio-visual zero-shot learning. This approach ensures
that the model not only captures static features but also appreciates the dynamic aspects of
the scenes it analyzes, leading to more robust and context-aware predictions.

This paper focuses on efficiently modeling temporal information for audio-visual zero-
shot learning. We propose a novel model comprising four key components: audio encoder,
visual encoder, temporal information reasoning, and cross-modal reasoning module.
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Figure 2. The intensity variation of sound signals at different frequencies in the audio.

Specifically, the audio encoder module is constructed based on a pre-trained feature
extraction network. Its purpose is to extract rich audio features from the raw audio signal.
Through a sequence of linear layers, batch normalization, ReLU activation functions, and
dropout operations, the module further processes and refines audio data, uncovering deep
semantic information within the audio signal.

Similar to the audio encoder, the visual encoder is established based on a pre-trained
model, aimed at extracting features from visual data. The temporal information reasoning
module is specifically designed to handle and leverage temporal information. It employs a
multi-layer perceptron (MLP) to enhance the extraction capability of key temporal features
within the audio modality. By incorporating layer normalization and residual connections,
this module enables the model to comprehend and process dynamic audio-visual data that
change over time.

The cross-modal reasoning module serves as the core of the model, combining audio
and visual information to create a joint multimodal feature representation. Leveraging
a cross-attention mechanism, this module fuses and strengthens semantic relationships
between different modalities, enhancing the model’s performance in integrating temporal
and semantic features.

In summary, our paper aims to achieve the following primary objectives:

1. Introduce the temporal information reasoning module to efficiently model multimodal
temporal information. By using an MLP, it strengthens the extraction of key temporal
features within the audio modality, enhancing the efficiency of zero-shot learning.

2. The cross-modal reasoning module, employing a cross-attention mechanism, not only
integrates information from different modalities but also reinforces semantic connec-
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tions between them. This significantly boosts the model’s capability in combining
temporal and semantic features.

3. Extensive experiments validate the advanced efficiency of our method in modeling
temporal information. Various ablation studies further prove the crucial value of each
module in our approach.

The remainder of this paper is organized as follows. Section 2 provides a review
of related work. Section 3 details the proposed methodology, including the design and
functionality of the Temporal–Semantic Aligning and Reasoning Transformer (TSART).
Section 4 presents the experimental setup and results, followed by a discussion of the
findings. Section 5 concludes the paper and suggests directions for future research.

2. Related Work

With the progress of deep learning, there have been emerging methods in recent years
dedicated to constructing a joint embedding space to effectively capture the correlation
between audio and visual features, especially in the field of audio-visual zero-shot learning.

2.1. Multiple Learning

Multimodal learning has made significant strides in various fields, such as audio-
visual learning. In the separation and localization of sound within videos [4,10–16], the
study by Afouras et al. [17] offers a novel perspective and approach. Early on, it employed
CNN architectures for detection and, through self-supervised learning, enhanced the
accuracy and efficiency of object detection and sound localization, thereby furnishing
valuable references for subsequent related research.

In the context of audio–video synchronization, the emphasis is on addressing the
synchronization challenges, especially in uncontrolled (‘wild’) environments [18–22]. This
includes investigating effective ways to synchronize audio and visual signals in settings
with challenges such as noisy backgrounds, varying audio quality, and visual obstructions.
In the realm of speech recognition and spoken-key-word-spotting [23–25], the emergence
of attention mechanisms has led to the introduction of an attention-based visual keyword
detection method [23]. This approach utilizes attention models to enhance the recognition
accuracy of oral gestures in videos, effectively detecting key words in spoken language. By
incorporating attention mechanisms and an end-to-end learning framework, this method
brings a new research perspective and technological advancement to the field of visual
keyword detection.

In the domain of utilizing visual information for audio synthesis [26–32], an innova-
tive deep learning model has been introduced [26,33–35]. This model has the capability
to comprehend and predict corresponding music or audio based on the observed video
scenes. Unlike these methods, our model places a greater emphasis on aligning multimodal
information, such as audio and visual. Closely associated with aligning multimodal infor-
mation is the task of image-text retrieval. In previous research, the proposed Lightweight
Transformer Alignment Network (LTAN) [32] enhanced the performance and efficiency of
image-text retrieval by integrating lightweight transformers and an augmented pathway.
Moreover, NSTRN is built upon a spiking neural network [36], effectively addressing the
challenges of image-text retrieval in wireless communication environments. It achieves effi-
cient binary encoding and transmission of features, reducing bandwidth requirements and
enhancing retrieval accuracy. CKSTN [37] has introduced an efficient image-information
retrieval network, leveraging shared knowledge and style embeddings to enhance cross-
modal matching performance. Additionally, a novel dual-stream network, MDFT, is
proposed to decouple contextual semantics and dynamic motion information, improving
the accuracy of video classification in zero-shot learning. This approach utilizes a spiking
neural network to handle sparse data and surpasses existing technologies on standard
benchmarks. Inspired by the aforementioned papers, we employ an attention mechanism
to integrate multimodal features and achieve efficient alignment.
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2.2. Zero-Shot Learning for Audio-Visual Tasks

Many image-based generative zero-shot learning methods have been suggested now.
For instance, the study by Narayan et al. [38] introduces an approach that enhances the
classification performance of zero-shot learning by combining latent embedding feed-back
and discriminative feature representation. However, a limitation lies in the requirement of
prior knowledge about unseen classes, and the model’s generalization capability may still
be constrained. In contrast, non-generative methods focus on learning the mapping from
input features to class semantics, such as text category label embeddings, without the need
for prior knowledge. Video-based zero-shot learning has also been extensively explored.
For instance, the AVCA model [8] enhances the efficiency of the model framework by using
pre-extracted audio and visual features as inputs. Differing from these methods, we focus
on efficiently modeling temporal information, enhancing the feature extraction process,
and improving the model’s generalization capability. This allows for better performance
on unseen classes or tasks.

In the realm of audio-visual zero-shot learning, a notable research contribution is
the proposed MDFT architecture [4]. By decoupling semantic information and dynamic
motion information, it significantly improves classification accuracy, particularly in biased
background scenarios. A method employing cross-modal attention was introduced [8],
utilizing text label embeddings for knowledge transfer. In the context of generalized
audio-visual zero-shot learning, the introduction of training classes as distractors increases
the difficulty while ensuring unseen testing classes are not part of supervised training
data. The AVCA model has demonstrated excellent performance in generalized zero-shot
learning tasks on the VGGSound, UCF, and ActivityNet datasets. As a novel self-supervised
video representation learning approach, MoDist [3] focuses on explicitly extracting motion
information. In contrast to previous methods that implicitly learn motion cues in RGB
inputs, MoDist’s learned representation pays more attention to foreground motion regions,
exhibiting superiority in action recognition and detection tasks. Diverging from previous
approaches, our emphasis lies in efficiently modeling temporal aspects, enhancing cross-
modal alignment, aiding the model in better understanding the correlation be-tween audio
and video. This facilitates improved comprehension of temporal data for new classes.

3. Methodology

The audio, visual, and embedding features for real labels are, respectively, represented
as xa

i , xv
i , and xt

i . During the model training phase, the training set for the seen class i can be
expressed as the set X = (xa

i ,xv
i ,xt

i ), while the invisible class is represented as Y = (ya
i ,yv

i ,yt
i ).

The Temporal–Semantic Aligning and Reasoning Transformer proposes learning a map-
ping function within the seen classes, denoted as f (ya

i ,yv
i )→yg, where yg

i represents the
class-level text embedding for class j. Similarly, the test set for unseen classes Y can also be
mapped as f (ya

i ,yv
i )→ yg

i . The framework of the Temporal–Semantic Aligning and Reason-
ing Transformer is illustrated in the diagram. As shown in Figure 3, the Temporal–Semantic
Aligning and Reasoning Transformer (TSART) architecture seamlessly integrates audio,
visual, and textual features, represented by blue, green, and orange lines, respectively. The
system initially inputs raw audio and visual data. The audio encoder and visual encoder
then extract distinctive features from their respective modalities, utilizing the pre-trained
SeLaVi network. These features are further refined by feature extractors. A cross-modal
reasoning module fuses and infers the interrelations between features of different modali-
ties, enhancing the understanding of their mutual connections. The temporal information
reasoning module and temporal transformer encoder analyze time-series data, capturing
the dynamics of temporal changes. A projection layer maps the features into dimensions
suitable for model processing. The model is ultimately applied to test tasks, such as the
reconstruction of bowling movements, thereby validating its performance. This architec-
ture effectively models temporal information in audio-visual content, demonstrating its
capability to handle complex, multimodal data within a unified framework.
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3.1. Semantic–Temporal Relationship Reasoning

The robust and discriminative audio and visual features are extracted using pre-trained
SeLaVi [39]. The distinctive feature of SeLaVi lies in its self-supervised learning approach,
enabling it to learn from a substantial amount of unlabeled data. This capability allows
SeLaVi to delve deeply into understanding the inherent patterns and subtle differences
present in multimedia content. By leveraging SeLaVi’s pre-trained network, we can make
use of its extensive feature representation capabilities without the need to invest significant
computational resources in training such a complex model from scratch. Moreover, SeLaVi’s
self-supervised characteristics ensure that the extracted features not only exhibit robustness
to variations in the data but also possess sufficient distinctiveness. This distinctiveness
enables the identification of subtle differences in audio and visual signals.

3.2. Audio Encoder

After feature extraction, to further explore the semantic information of the audio
modality, an audio encoder, denoted as Aenc, is proposed. The output of this encoder can
be represented as at = Aenc(xa), where at ∈ Rk f , obtained through a pre-trained feature
extractor. The audio encoder comprises two linear layers, f a

1 and f a
2 , specifically, f a

1 :Rkinput

→ Rkhidd and f a
2 :Rkhidd → Rk f . After each linear layer, batch normalization, ReLU activation

functions, and dropout with a rate of denc are applied. Through these processes, Aenc can
effectively delve deeper into the semantic information of the audio data.

3.3. Visual Encoder

Similarly, a visual encoder, denoted as Venc, is introduced to explore the semantic
information of the visual modality. The output of the visual encoder can be expressed as
vt = Venc(xv), where vt ∈ Rk f , obtained through a pre-trained feature extractor. The visual
encoder also consists of two linear layers, f v

1 and f v
2 , specifically, f v

1 :Rkinput → Rkhidd and
f v
2 :Rkhidd → Rk f . Like the audio encoder, after each linear layer, batch normalization, ReLU

activation functions, and dropout with a rate of denc are applied. Through these processes,
Venc is capable of further extracting the semantic information from the visual data.
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3.4. Temporal Information Reasoning

To address the effective capture and utilization of temporal information in zero-shot
learning for audio-visual content, the growth of audio-visual content across various do-
mains, driven by the development of social media, has become widespread. This surge
has resulted in an increased demand for systems capable of handling unseen categories
in audio-visual processing. These systems require not only the recognition of static fea-
tures but also an understanding of how objects evolve and change over time. Efficient
modeling of temporal information is crucial for comprehending the dynamics of entities
and contributes to improving the accuracy and generalization capability of models in the
recognition of new contexts and objects. As social media continues to evolve, the ability
to handle the temporal dimension becomes increasingly vital in audio-visual zero-shot
learning systems.

In the context of multimodal temporal information modeling, the processing flow
Pa = MLP(LN(Ra)) + Ra emphasizes the fine-grained extraction and enhancement of
temporal features in the audio modality. In this module, we refine and strengthen the
time-dependent audio features Ra by incorporating a self-attention mechanism.

Firstly, Ra, representing the time-dependent features of the audio modality, is fed
into Layer Normalization (LN). This step serves not only to mitigate potential internal
covariate shift during training but also, through normalization, ensures consistent scaling
of features extracted at different time points within the model. This promotes stability and
comparability in time-series data, contributing to the overall stability and interpretability
of the model.

Subsequently, the temporally adjusted feature LN(Ra) is fed into a multi-layer percep-
tron (MLP). The MLP, with its multi-layer structure, not only captures complex nonlinear
relationships within the audio signals, but also, due to the selective attention capabil-
ity of each layer’s weight allocation, enhances self-attention to critical features in the
temporal sequence. This enables a better extraction of patterns and trends within the
temporal information.

Ultimately, the output of the MLP is combined with the original temporal features Ra,
forming a composite representation pa that includes both the original temporal information
and the features enhanced through the deep neural network. This design of residual
connection not only provides a self-correction mechanism for features, preserving the
integrity of the original temporal characteristics, but also introduces deep and rich temporal
dynamics extracted by the MLP through its self-attention learning process. Consequently,
the final output Pa offers a comprehensive understanding of the audio features, which is
crucial for processing and interpreting multimodal temporal information. The formula can
be represented as follows:

Pa = MLP(LN(Ra)) + Ra (1)

Pv = MLP(LN(Rv)) + Rv (2)

In the framework of multimodal learning, this formula not only reflects the intuitive
characteristics of audio signals but also integrates rich contextual information along the
temporal dimension, providing downstream tasks with a more profound and comprehen-
sive feature representation. Through this design, the model can effectively capture and
utilize crucial information when faced with multimodal temporal data, thereby enhancing
the system’s perception and responsiveness to temporal changes.

3.5. Cross-Modal Reasoning Module

The cross-modal reasoning module (CRM) aims to integrate temporal and semantic
features from different modalities efficiently, creating a unified feature representation for
both audio and visual information. This is achieved by adding a residual connection
between two layers and applying layer normalization to enhance complementarity and
stability between features.
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In the cross-modal reasoning module (CRM), the audio attention fusion block utilizes a
cross-attention mechanism (CA) to integrate the audio feature at with the information from
the previous time step, processed through a sigmoid activation function, forming a new
audio feature representation Ra. To further refine these fused features, Ra is passed through
a multi-layer perceptron (MLP). This MLP initially undergoes Layer Normalization (LN) to
eliminate potential scale differences between different layers. The features processed by the
MLP are combined with the original audio features Ra to form the final audio feature output
Pa. This step is accomplished through a residual connection, which not only preserves the
integrity of the original features but also incorporates the depth-learning information from
the MLP layer. In this way, the CRM captures subtle changes in the temporal dimension
while retaining the original audio data features, resulting in a comprehensive audio feature
representation Pa.

In summary, the processing flow and formulas pertaining to audio and video in the
CRM module can be, respectively, represented as follows:

Ra = CA(at, Sigmoid(at−1)) (3)

Pa = MLP(LN(Ra)) + Ra (4)

Rv = CA(vt, Sigmoid(vt−1)) (5)

Pv = MLP(LN(Rv )) + Rv (6)

This design ensures that CRM can effectively capture and leverage crucial information
from cross-modal temporal data, providing robust support for modeling multimodal
temporal information. Additionally, a standard transformer layer is introduced in this
module, described as follows:

Wav = HMCA(Pa, Pv) (7)

Fav = MLP(LN(zi)) + zav (8)

Our objective is to predict the category of text labels. To project joint audio-visual
embeddings into the space of text label embeddings, we employ the reconstruction and
projection technique. This involves utilizing reconstruction and projection features to
restore the initial information, achieving a comparable effect on features across different
modalities. The projections consist of two linear layers, namely f a

3 and f a
4 for audio and f v

3
and f v

4 for video. After each layer, normalization, ReLU activation function, and dropout
with a ratio of dproj are applied. Ultimately, the embedded audio and video features can be
expressed as:

Pra = Aproj(Fa) (9)

Prv = Aproj(Fa) (10)

where Aproj represents the projection function, and the embeddings of text labels Pra
and Prv are obtained by projecting the embedding of the k-th class label Wk through the
projection layer Wproject. The structure of Wproject is similar to that of Pra and Prv, with the
distinction lying in the dropout ratio dwproject compared to them.

3.6. Training Strategy

During the training process of the TSART model, to expedite the convergence of
our model, we employed a composite loss function L f al for updates, consisting of three
components: triplet loss Lt, projection loss Lpro, and reconstruction loss Lre. The amalga-
mation of these triplet losses allows us to more accurately cluster the final audio and visual
embeddings, thereby enhancing the coherence and reliability of the model output.

The design of the joint triplet loss Lt aims to tightly cluster the final audio-visual
embeddings for more coherent results. This loss function achieves this objective by ensuring
that negative samples between different modalities have a minimal margin with the audio-



Mathematics 2024, 12, 2200 9 of 16

visual embeddings that correspond to true matches. This minimum margin is defined by
the margin parameter Z, and the formula is as follows:

Lt =
[
Z + Pr+a + Pr+v −

(
Pr−a + Pr−v

)]
+

[
Z + Pr−a + Pr−v −

(
Pr+a + Pr+v

)]
(11)

Pr+a , Pr+v , Pr−a , and Pr−v represent positive and negative samples. The projection loss
Lpro aims to reduce the distance between the joint embeddings from the projection layer
output and the corresponding text label embeddings. This optimization helps the model
generate embedded representations that are closer to the text labels.

Lpro = ∑i
x=1

Pra + Pr−v − Prw

x
(12)

The reconstruction loss Lre is introduced to preserve the original data distribution
while projecting audio-visual features into a shared embedding space. This helps the model
learn the ability to reconstruct the original data during the reconstruction phase. The
overall composite loss function is:

L f al = Lt + Lpro + Lre (13)

By combining these three losses to guide the model training, we observed that when
applying our designed composite loss function, the model demonstrated outstanding
Generalized Zero-Shot Learning (GZSL) performance on the UCF-GZSL, VGGSound-GZSL,
and ActivityNet-GZSL datasets. Moreover, it significantly outperformed in the Harmonic
Mean (HM) evaluation.

4. Experiment

In our research, we conducted a comprehensive evaluation of the proposed model,
specifically focusing on zero-shot learning (ZSL) and generalized zero-shot learning (GZSL).
We carried out extensive experiments to ensure that our model assessments were both
thorough and comprehensive.

We trained the TSART model on a single NVIDIA GeForce RTX 4080 Laptop GPU,
strictly following the procedures described in reference [8] to extract audio and visual
embeddings per second. During this process, we set kinput to 512, khidd to 512, and kf to 64.
For the UCF, VGG-Sound, and ActivityNet datasets, dropout rates were set as denc = 0.5,
0.2, 0.3, ddec = 0, 0.1, 0, and dwproj = 0.1, 0.2, 0.2, respectively. In our cross-modal transformer
architecture, we designed a structure with eight attention heads, each having a dimension
of 64. The training process utilized the Adam optimizer, and the entire TSART model
underwent 50 training epochs, with a learning rate set to 0.001. This rigorous training
regimen ensured that the model learned robust audio and visual embeddings, facilitating
its performance across diverse datasets and tasks.

In evaluating ZSL, we not only focused on the model’s overall recognition ability
for the visible categories but also conducted a detailed analysis of its performance across
various unseen categories. This approach ensured that the model exhibited balanced gen-
eralization across different dimensions. In addition, to evaluate the model’s capability in
capturing subtle differences among unseen categories, we introduced more complex classi-
fication scenarios designed to simulate real-world category distribution and variability.

In the evaluation of GZSL, our approach not only addresses the model’s recognition
capability for unseen categories but also assesses its performance when both seen and
unseen categories coexist. This implies that our evaluation was not conducted in a simpli-
fied environment but rather in a more complex setting that closely resembles real-world
applications. In this environment, the model is required to make precise discriminations be-
tween seen and unseen categories. We employed the Harmonic Mean (HM) as the primary
evaluation metric. The Harmonic Mean is a balanced measure of both seen and unseen
category performance, calculated using the formula HM = 2US/(U + S), where (U) repre-
sents the accuracy of unseen categories, and (S) represents the accuracy of seen categories.
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This evaluation framework ensures that we can fully understand the model’s performance,
especially in complex scenarios that may occur in the real world. By evaluating the model’s
ability to recognize both seen and unseen categories, we can better understand and improve
the model’s generalization and practicality for future applications.

4.1. Data Statistic

The UCF101 dataset stands as a cornerstone in action recognition, housing 13,320 video
segments spread across 101 action categories. These categories cover a broad spectrum
of human activities, ranging from sports and musical performances to various physical
movements. The dataset is meticulously organized into 25 groups, each containing videos
from four to seven action categories. This structured layout of UCF101 serves as a pivotal
benchmark for evaluating the performance of video understanding models, particularly in
the realm of action recognition. Derived from UCF101, the UCF101 Generalized Zero-Shot
Learning (UCF-GZSL) dataset is utilized to delve into video action recognition within the
framework of Generalized Zero-Shot Learning.

ActivityNet is another indispensable dataset in video understanding, with a dedicated
focus on human activity recognition. Comprising approximately 27,801 video segments
categorized into 200 different activity classes, ActivityNet aims to capture a wide array of
complex activities, from sports to daily actions. It provides a comprehensive benchmark for
evaluating video understanding and activity recognition algorithms. The diverse activity
types and temporal dynamics present in ActivityNet pose a robust challenge for models
aimed at interpreting and predicting human behavior from video data. ActivityNet-GZSL,
a derivative of ActivityNet, is employed to explore activity recognition within the context
of Generalized Zero-Shot Learning.

The VGG Sound Generalized Zero-Shot Learning (VGG Sound-GZSL) dataset is built
upon the VGG Sound dataset and is utilized for studying sound event recognition within
the Generalized Zero-Shot Learning paradigm. Additionally, the VGGSound dataset, en-
compassing 212,894 video segments categorized into 309 distinct audio classes, serves as
a crucial resource in audio event detection and classification research. It covers various
acoustic events such as instrument sounds, human speech, animal sounds, and environ-
mental noises. VGGSound is invaluable for tasks requiring an understanding of audio
backgrounds in video segments. These three datasets, UCF101, ActivityNet, and VG-
GSound, play pivotal roles as benchmarks in audio-visual analysis. They significantly
contribute to the development and evaluation of models designed to comprehend and
classify a wide range of human activities and sounds.

4.2. Comparison with State-of-the-Art

To demonstrate the effectiveness of our model, we have compared it with the state-
of-the-art audio-visual generalized zero-shot learning (GZSL) methods on three major
benchmark datasets. In this section, we will delve into a detailed exploration and discussion
of the differences between various methods and our model. SJE [39] introduced a novel
learning strategy that effectively distinguishes matching embeddings from non-matching
embeddings by learning a compatibility function between image and category embeddings.
This strategy assigns higher scores to matching embeddings.

This approach enables the model to more accurately identify and classify visual objects,
especially in scenarios with multiple categories. Apn [40] introduced an innovative zero-
shot representation learning framework that not only co-learns global and local features
but also leverages class-level attributes to enhance attribute-based knowledge transfer.

This approach allows the model to recognize categories it has not directly encountered,
which is particularly useful in practical applications. VAEGAN [41] employs a conditional
generative model that combines the advantages of variational autoencoders and gener-
ative adversarial networks. This enables the model to better understand and generate
images that have not been seen during the training process, especially those with marginal
feature distributions.
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In contrast to the aforementioned methods, our work emphasizes the efficient mod-
eling of multimodal temporal information [42]. By integrating time-series modeling tech-
niques, our model can not only handle static image data but also comprehend and analyze
the temporal dynamics in videos, as well as temporal patterns in audio signals.

This allows our model to capture richer contextual information, providing deeper
insights into understanding complex audio-visual scenes. In this way, our model exhibits
significant improvements in generalized zero-shot learning tasks, particularly when han-
dling unlabeled and diverse real-time data streams, offering more accurate and robust
recognition capabilities.

Results comparison: By comparing with recent mainstream methods in Table 1, we
demonstrate the outstanding performance of the temporal–semantic aligning and reasoning
transformer. In the case of the VGGSound-GZSL dataset, our model achieves a score of 10.45
in the seen domain (S), which is lower than SJE’s 48.33. However, in the unseen domain (U),
our model outperforms SJE with a score of 3.43 compared to SJE’s 1.10. Moreover, in the
harmonic mean (HM), our model achieves a score of 5.16, indicating a 3.01 improvement
over SJE’s result. This suggests that our framework exhibits a stronger ability to transfer
knowledge from seen to unseen classes. However, due to the improvement potential in our
external noise handling module for input audio, our framework does not outperform SJE in
ZSL results for this dataset. On the ActivityNet-GZSL dataset, while SJME focuses more on
handling highly sparse event data, our model emphasizes efficient modeling of temporal
information in multimodal data. As a result, we achieve a harmonic mean (HM) of 8.12 and
a Zero-Shot Learning (ZSL) score of 7.65, surpassing CJME’s harmonic mean of 5.12 and
ZLS of 5.84. On the UCF-GZSL dataset, our model achieves superior performance, with
an HM score of 21.11, surpassing APN’s 18.05. In terms of ZSL, our model outperforms
AVGZSLNet with a score of 22.86 compared to 13.65, exhibiting a significant improvement
of 9.21.

Table 1. We assessed the performance of our Temporal–Semantic Aligning and Reasoning Transformer
alongside state-of-the-art baseline methods in audio-visual (G)ZSL across three benchmark datasets.

Model
VGGSound-GZSL UCF-GZSL ActivityNet-GZSL

S U HM ZSL S U HM ZSL S U HM ZSL

SJE [39]
APN [40]

VAEGAN [41]

48.33
7.48

12.77

1.10
3.88
0.95

2.15
5.11
1.77

4.06
4.49
1.91

63.10
28.46
17.29

16.77
16.16
8.47

26.50
20.61
11.37

18.93
16.44
11.11

4.61
9.84
4.36

7.04
5.76
2.14

5.57
7.27
2.87

7.08
6.34
2.40

CJME [43]
AVGZSLNet [44]

8.69
18.05

4.78
3.48

6.17
5.83

5.16
5.28

26.04
52.52

8.21
10.90

12.48
18.05

8.29
13.65

5.55
8.93

4.75
5.04

5.12
6.44

5.84
5.40

TSART 10.45 3.43 5.16 4.03 20.96 21.27 21.11 22.86 8.99 7.41 8.12 7.65

The bold numbers in Table 1 indicate where the TSART model significantly outperforms other models.

Our primary evaluation metrics are the harmonic mean (HM) and Zero-Shot Learning
(ZSL). Overall, these results confirm that our model has stronger domain adaptation and
knowledge transfer capabilities.

4.3. Ablation Study

In the ablation study conducted on the UCF-GZSL task, as shown in Table 2, different
dropout configurations had a significant impact on the model’s performance metrics,
including seen classes (S), unseen classes (U), harmonic mean (HM), and Zero-Shot Learning
(ZSL). Notably, setting dropout rates for the reconstruction (rdec), encoding (renc), and
projection (rproj) parts to 0.2, 0.3, and 0.5, respectively, resulted in the model achieving the
highest performance on unseen classes (U) with a score of 18.57, indicating a strong domain
adaptation ability. However, this configuration did not exhibit the best performance on
harmonic mean (HM) and Zero-Shot Learning (ZSL), suggesting a tendency to overfit seen
classes. On the other hand, configuring drop-out rates for rdec, renc, and rproj as 0.5, 0.3,
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and 0.2, respectively, resulted in the model showing optimal performance on seen classes
(S) and harmonic mean (HM), with scores of 24.93 and 19.89, demonstrating the model’s
efficient domain adaptation and knowledge transfer capabilities.

Table 2. Ablation study on the advantage of dropout in processing event information.

Dropout UCF-GZSL

rdec renc rproj S U HM ZSL

0.5 0.3 0.2 24.93 16.54 19.89 21.61

0.2 0.3 0.5 17.4 18.57 17.97 19.36

0.3 0.2 0.5 8.66 21.39 12.33 21.56

0.5 0.2 0.3 20.96 21.27 21.11 22.86

This analysis highlights that finely adjusting dropout rates can effectively control the
model’s recognition abilities for both seen and unseen classes, optimizing the model’s
adaptability to different data distributions while preserving its generalization ability.

The effectiveness of temporal–semantic aligning and reasoning transformer com-
ponents. In the evaluation of UCF-GZSL, as shown in Table 3, different variants of the
model exhibit varying degrees of accuracy differences. Specifically, when the audio en-
coder is removed (W/O ATEM), the recognition accuracy for seen classes (S) is 6.73, and
for unseen classes (U) it is 13.56, with a harmonic mean (HM) of 8.99 and a Zero-Shot
Learning (ZSL) accuracy of 13.71. In contrast, when removing the visual encoder (W/O
VTEM), the model achieves S and U accuracies of 21.07 and 12.67, respectively, with an
improved HM of 15.82, and a slightly increased ZSL accuracy of 13.77. Our complete model
(OURS) outperforms in all metrics, particularly showing significant improvements in U
and ZSL, reaching 21.27 and 22.86, while achieving an HM of 21.11. This indicates that the
complete model possesses stronger capabilities in generalizing between seen and unseen
categories. This result highlights the importance of the audio encoder and visual encoder
for the overall performance of the model, especially in enhancing the model’s ability to
recognize unseen categories.

Table 3. Analysis of ablation study on UCF-GZSL dataset.

Model
UCF-GZSL

S U HM ZSL

W/O ATEM 6.37 13.56 8.99 13.71

W/O VTEM 21.07 12.67 15.82 13.77

TSART 20.96 21.27 21.11 22.86

Setting the learning rate is crucial in training machine learning models because it
determines the size of the step that the model takes while searching for the optimal solu-
tion [45,46]. If the learning rate is too small, the model may take a long time to converge
to the optimal solution, or it may get stuck in a suboptimal solution [47,48]. On the other
hand, if the learning rate is too large, the model may overshoot the optimal solution and
fail to converge. Therefore, we evaluate the learning rate for ActivityNet-GZSL, as shown
in Table 4. We observe that at a learning rate of 0.0005, the model achieves a ZSL score of
7.65, identical to that at a learning rate of 0.01. However, its HM score of 4.01 is significantly
lower compared to the HM score of 8.12 achieved at a learning rate of 0.001. Similarly, at a
learning rate of 0.01, both the HM and ZSL scores are much lower than those obtained at a
learning rate of 0.001. Furthermore, at a learning rate of 0.001, the model achieves the best
results on seen classes (S) and unseen classes (U), with values of 8.99 and 7.41, respectively,
indicating its high domain adaptation and transfer capabilities in this setting.
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Table 4. Ablation study on the impact of learning rate on processing event information.

Learning Rate
ActivityNet-GZSL

S U HM ZSL

0.0005 5.14 3.29 4.01 7.65

0.01 4.28 4.20 4.24 4.50

0.001 8.99 7.41 8.12 7.65
The bold numbers in Table 4 represent the best results achieved on HM and ZSL.

Finally, we evaluated the impact of using different loss functions during the training
of TSART on the performance of GZSL and ZSL, as shown in Table 5. Our analysis
indicates that the complete loss function L f al produces the strongest GZSL results (HM)
on the UCF-GZSL, VGGSound-GZSL, and ActivityNet-GZSL datasets. This significant
improvement demonstrates the crucial importance of our proposed complete loss function
L f al for achieving strong overall performance on all three datasets. On the VGGSound-
GZSL dataset, the model omitting Lt slightly outperforms the complete loss function L f al
in ZSL, with 4.84 compared to 4.03. However, the complete loss function L f al demonstrates
superior performance in GZSL, with a Harmonic Mean (HM) of 5.16, outperforming other
approaches. On the UCF-GZSL dataset, using the complete loss function L f al significantly
improves GZSL performance, with HM of 21.11 and ZSL of 22.86. On the ActivityNet-GZSL
dataset, the ZSL performance of L f al −Lpro is superior to that of the complete loss function
L f al , with 8.02; however, using the complete loss function L f al yields better results in ZSL,
with 8.12. Our ablation study confirms that when trained using our proposed complete
loss function, strong overall performance can be achieved on all three datasets.

Table 5. Comparative analysis of TSART training using our full loss function L f al versus removing
individual components (Lt, Lpro, Lre) on the GZSL and ZSL performance across the VGGSound-
GZSL, UCF-GZSL, and ActivityNet-GZSL datasets.

Model
VGGSound-GZSL UCF-GZSL ActivityNet-GZSL

HM ZSL HM ZSL HM ZSL

L f al −Lt 5.06 4.84 18.51 19.17 7.39 7.53

L f al −Lpro 4.87 4.31 17.88 17.51 8.02 8.02

L f al −Lre 4.24 4.43 21.03 17.01 7.14 7.94

L f al 5.16 4.03 21.11 22.86 8.12 7.65
The bold numbers in Table 5 are the best results on HM and ZSL among different models.

5. Conclusions

In general, we have explored how to model temporal information efficiently in the
domain of zero-shot learning (ZSL) for audio-visual data.

Through a detailed analysis of the growing demand for audio-visual content in the
evolution of social media, we are confident that effective temporal modeling is crucial for
handling unseen categories.

To extract robust and discriminative audio and visual features, we employed the
pre-trained self-supervised network SeLaVi. This network has the ability to learn from
unlabeled data, allowing it to comprehend intrinsic patterns and subtle differences in
multimedia content.

By adopting this approach, we circumvented the need for substantial computational re-
sources required for training complex models from scratch. To efficiently capture and lever-
age temporal information, we devised a temporal information inference pipeline, empha-
sizing the nuanced extraction and enhancement of temporal features in the audio modality.

We utilized a self-attention mechanism to handle and analyze the temporally changing
audio features Ra. Through layer normalization, a multi-layer perceptron (MLP), and resid-
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ual connections, we created a composite representation for the audio signal, incorporating
both the raw temporal information and enhanced features.

We utilized a cross-attention mechanism and a multi-layer perceptron (MLP) to rein-
force the complementarity and stability between different modality features.

Finally, to project the joint audio-visual embeddings into the space of text label em-
beddings and restore the initial information, we designed reconstruction and projection
functions. These functions consist of linear layers optimized through normalization, ReLU
activation functions, and dropout. Our experiments thoroughly demonstrate the superiority
of the model in efficiently modeling multimodal temporal information.
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