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Abstract: When it comes to modelling complex systems using an agent-based approach, there is
a problem of choosing the appropriate parameter optimisation technique. This problem is further
aggravated by the fact that the parameter space in complex agent-based systems can have a large
dimension, and the time required to perform numerical experiments can be large. An alternative
approach to traditional optimisation methods are the so-called metaheuristic algorithms, which
provide an approximate solution in an acceptable time. The purpose of this study is to compare
various metaheuristic algorithms for parameter tuning and to analyse their effectiveness applied
to two agent-based models with different complexities. In this study, we considered commonly
used metaheuristic algorithms for agent-based model optimisation: the Markov chain Monte Carlo
method, the surrogate modelling approach, the particle swarm optimisation algorithm, and the
genetic algorithm, as well as the more novel chaos game optimisation algorithm. The proposed
algorithms were tested on two agent-based models, one of which was a simple toy model of the
spread of contagious disease, and the other was a more complex model of the circulation of respiratory
viruses in a city with 10 million agents and 26 calibrated parameters.
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MSC: 68T20; 68T42; 90C59; 93A14; 93A16; 93B30

1. Introduction

Agent-based models (ABMs) [1] are used to model systems of varying complexity in a
wide variety of applications [2], where the correct estimation of the model parameters be-
comes essential for the successful model application. Their parameter space can have a large
dimension (>20), which makes the task of finding an optimal solution extremely difficult
considering the increased demands of ABMs on the hardware and software performance,
and the number of possible solutions is usually far too large for a simple enumeration.

When it comes to ABMs, finding an optimal solution to an optimisation problem
is a very challenging task that is often unattainable. Due to the complexity of ABMs,
most of them are incompatible with methods requiring analytical expressions, such as
gradient-based methods that are model-specific and require rather simple model structure
and no complex decision rules for the agents [3]. The problem is further complicated by the
fact that it is often infeasible to identify marginal and conditional likelihood functions [4].
Therefore, the idea is to have an algorithm that can produce a solution that would be good
enough according to the comparison of model outputs with different parameter values to
empirical data using some distance-based loss function.

While there are no agreed guidelines for the choice of the optimisation algorithm for
complex ABMs, the most common way to tackle the problem is by using metaheuristic
methods [5], since they allow one to find solutions that are close to optimal with lower
computational costs. The main advantage of metaheuristic methods lies in the fact that they
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do not require any knowledge about the model and can be equally applied to any model.
While there are many metaheuristic algorithms that can be used for model optimisation,
choosing the right one for the given problem is a challenging task considering the limited
time and resources for testing different algorithms. The comparison of methods in the
literature is quite limited due to the abundance of different metaheuristic algorithms [6–8].

Studies in the field [9–11] tend to introduce new optimisation methodologies without
comparing them to well-established methods. This, coupled with the lack of rigorous
testing of the quality of the estimates produced by them applied to complex agent-based
systems, presents a difficulty for a modeller to choose one particular method over another.
In this work, we analysed well-established metaheuristic methods commonly used to
solve the problem of identifying the parameters in ABMs in the literature [11–19]. The
methods we consider in this study are the Markov chain Monte Carlo method (MCMC),
the surrogate modelling method (SM), the particle swarm optimisation (PSO) algorithm,
the genetic algorithm (GA), and the chaos game optimisation (CGO) algorithm.

Most works that focus on comparing different optimisation methods only apply them
to highly simplified models with a number of parameters less than 20 [4]. For testing
purposes, we use two ABMs of different complexity in the area the authors are most
familiar with, namely, epidemiology. The source code of the models is publicly available in
the GitHub repository. The first one is a simple toy ABM with four calibrated parameters
without any practical value, which is used to model the spread of the contagious disease in
the population where agents are divided into three groups based on their state: susceptible
to the disease, infectious, or recovered (ABM-SIR). The other model is a more complex ABM
of the dynamics of acute respiratory viral infections in a city with a population of about
10 million people (ABM-ARI) with 26 calibrated parameters. The model simulates one
year and has a discrete time step equal to a single day. Transmission of the viruses occurs
through close contact between agents in the same social setting, which is modelled using
complete graphs for households and Barabasi–Albert graphs for educational institutions
and workplaces. Agents can also be in different states: susceptible to the virus, exposed,
infectious, or recovered according to the stage of the infection.

This paper proceeds as follows: first, we conduct a literature analysis (Section 2). Next,
we describe in detail every metaheuristic algorithm used in this study (Section 3). Then, we
describe two ABMs that we use to test the proposed methods (Section 4). We present the
results of numerical experiments using different model calibration techniques (Section 5).
In the last section, we summarise our findings and conclude with a discussion about the
obtained results (Section 6).

2. Related Work

Parameter calibration poses a significant challenge when it comes to ABMs. There have
been a number of articles describing the application of different metaheuristic methods
aiding agent-based model calibration.

The work [12] proposed using the Markov chain Monte Carlo method (MCMC),
namely, the Metropolis algorithm, for the exploration of the parameter space of the discrete-
time agent-based economic model simulating the behaviour of the consumer and financial
markets. The model had 8 calibrated parameters, and simulations consisted of 2 competing
firms, 50 stock traders, and 200 consumers. The authors found that the proposed method
allows for the efficient exploration of large parameter spaces and leads to the reproduction
of empirical phenomena. Another example of using MCMC for the model calibration is the
work [13], where the Metropolis–Hastings algorithm was applied to the likelihood of the
recorded number of deaths in Liberia from Ebola virus disease to find the values of three
parameters of interest.

In the article [18], the authors proposed a method based on genetic algorithms (GAs)
for exploring the parameter space of ABMs. The method was tested on a simple ABM
simulating the ant foraging with the evolution of two parameters: the diffusion rate and the
evaporation rate. The results differed significantly depending on the choice of the fitness
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function. Another example of using GA for parameter tuning is the article [19], where an
ABM with eight parameters used to model retail petrol prices was calibrated with two
different methods, such as GA and modeller-driven parameter calibration, which produced
close results.

The work [11] proposed a method that combines supervised machine learning and
intelligent sampling in the design of a surrogate meta-model, which constitutes a computa-
tionally cheap approximation of the real model. The authors used the XGBoost machine
learning algorithm for the training of two surrogate models for the Brock and Hommes
model and the Islands model with 10 and 6 calibrated parameters, respectively. This ap-
proach was further explored in [15–17] in which such algorithms as the CatBoost machine
learning algorithm, support vector machine, and the neural network were used to train
the surrogate modelling. The authors of [17], based on the Linked Lives ABM of social
care provision in the UK with 10 parameters of interest, drew the conclusion that a deep
learning approach is the most promising candidate to create a surrogate of the ABM.

In the work [14], the authors analysed the performance of such metaheuristic al-
gorithms as the genetic algorithm, the firefly algorithm, the particle swarm optimisa-
tion algorithm, and the artificial bee colony algorithm by using three ABMs, namely, the
predator–prey model with three specified parameters, the eight queens model with eight
parameters, and the flow zombies model with three parameters. The results showed that
each of the algorithms achieved acceptable accuracy for each ABM. However, for each
problem, a different algorithm was most successful.

3. Parameter-Tuning Algorithms

While calibrating ABMs we use point estimation methods aimed at finding a single
parameter combination that will produce the best fit to the data according to the defined
loss function. In this study, we use the root mean square error (RMSE):

RMSE =

√
1
n

n

∑
k=1

(yd
k − ym

k )
2, (1)

where yd
k and ym

k are the observed values for the step k according to the data and as a result
of a numerical experiment from the model, respectively.

Initial selection of parameter values can be done manually based on the domain
knowledge or using statistical methods for generating parameter samples. In this work,
we use the Latin hypercube sampling method [20]. The Latin hypercube of k parameters
and N samples is constructed by partitioning the intervals of possible values of each of k
parameters into N intervals of equal length, after which a value is randomly taken from each
of these intervals, which is then randomly combined with the values of other parameters.
One value of one parameter can only correspond to one value of another parameter.

For convenience, symbols used to describe parameter-tuning algorithms are sum-
marised in Tables 1 and 2.

Table 1. General symbols and their meanings used to describe parameter-tuning algorithms.

Symbol Description

Θ = {θj ∈ [θmin
j , θmax

j ]} Set of parameters

RMSEΘ Root mean square error associated with Θ

Nparams Number of parameters

t Step of the algorithm

Tmax Maximum step of the algorithm

ABM Numerical experiment with the agent-based model
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Table 2. Algorithm-specific symbols and their meanings.

Symbol Description

Markov chain Monte Carlo

Θ̂ = {θ̂j} Candidate set of parameters

Nreject Number of consecutive candidate rejections

Surrogate model

SM Surrogate model for ABM approximation

X Features of the training set

Y Labels of the training set

Particle swarm optimisation

Nparticle Number of particles

Vi Velocity of particle i

w ∈ [wmin, wmax] Inertia weight hyperparameter

c1 Personal acceleration hyperparameter

c2 Social acceleration hyperparameter

Pi Best found position of particle i

G Best found solution by all particles

Genetic algorithm

Npop Size of the population of parameter sets

Nparent Number of parents for crossover procedure

Θ̃ = {θ̃j} Offspring set of parameters

Chaos game optimisation

Nseed Number of seeds

GB Global best position of the seed

MG Mean position of the group containing random seeds

Sk
i Position of the potential k-th seed spawned by i-th seed

3.1. Markov Chain Monte Carlo Method

Markov chain Monte Carlo (MCMC) methods [21] are used to draw samples from an
unknown probability distribution where each next sample is dependent on the existing
one. The proposed algorithm (Algorithm 1) is as follows:

1. In the first step, the intervals of possible parameter values are determined and their
initial values are set {θ1

j }Nparams

j=1 .

2. Next, at each step t of the algorithm, a candidate set of model parameter values
Θ̂t = {θ̂t

j}Nparams

j=1 is generated based on the set parameters from the previous step Θt−1.
We transform previous parameter values so that the candidates would stay within
parameter boundaries:

θ̂t
j =

θmax
j exp (δt

j ) + θmin
j

1 + exp (δt
j )

,

δt
j ∼ N (log (

θt−1
j − θmin

j

θmax
j − θt−1

j

), σ2),

(2)
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where σ2 is a hyperparameter of the algorithm corresponding to the variance for gen-
erating candidate parameter values. If the parameter value is equal to the boundary
value, we add a small value to keep it in the defined boundaries.

3. Next, we either accept or reject the candidates based on the loss function. If the
loss for the candidate is lower than the loss on the previous step, the candidate
set of parameters is accepted as the new set in the next step of the algorithm, and
rejected otherwise.

4. To avoid local minima, we accept a new set of parameters after 10 consecutive failures.
5. Repeat the algorithm from Step 2 until the specified number of iterations is reached

and select the set of parameter values with the lowest RMSE.

Algorithm 1: Markov chain Monte Carlo algorithm

Input: Θ0, RMSEΘ0 , ABM
Output: argminΘt RMSEΘt

1 Nreject ← 0
2 for t = 1 to Tmax do
3 Set candidate set of parameter values Θ̂t (2)
4 Find corresponding error RMSEΘ̂t ← ABM(Θ̂t)
5 if RMSEΘ̂t < RMSEΘt−1 or Nreject = 10 then
6 Θt ← Θ̂t

7 RMSEΘt ← RMSEt
Θ̂t

8 Nreject ← 0
9 else

10 Θt ← Θt−1

11 RMSEΘt ← RMSEΘt−1

12 Nreject ← Nreject + 1

3.2. Surrogate Modelling Method

The surrogate modelling approach (SM) for solving the parameter identification
problem is based on the work [11]. This algorithm is defined by the fact that the results
obtained from numerical experiments with ABM are approximated using the surrogate
model. The process of training a surrogate model (Algorithm 2) is as follows:

1. In the first step, we build the initial training set for the surrogate model by conduct-
ing numerical experiments using sets of parameter values obtained from the Latin
hypercube sampling method.

2. We use XGBoost [22], a gradient-boosting algorithm that creates an ensemble of
decision trees for training the surrogate model on the resulting training set.

3. We use the Markov chain Monte Carlo method with the RMSE (Section 3.1), but in
this case we use the trained surrogate model to predict the value of the loss function,
so we obtain a set of parameter values that gives a minimum of the loss function
according to the surrogate model.

4. We conduct a numerical experiment with the ABM using set of obtained parameter
values and find corresponding loss.

5. We update the training set.
6. Repeat the algorithm from Step 2 until the specified number of iterations is reached

and select the set of parameter values with the lowest RMSE.
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Algorithm 2: Surrogate modelling algorithm

Input: Θ0
1, . . . , Θ0

Ntrain , RMSEΘ0
1
, . . . , RMSEΘ0

Ntrain
, ABM, SM

Output: argminΘt RMSEΘt

1 X1 ← ∪Ntrain

k=1 Θ0
k

2 Y1 ← ∪Ntrain

k=1 RMSEΘ0
k

3 for t = 1 to Tmax do
4 Train SM using Xt and Yt

5 Find Θt using trained SM
6 RMSEΘt ← ABM(Θt)

7 Xt+1 ← Xt ∪Θt

8 Yt+1 ← Yt ∪ RMSEΘt

3.3. Particle Swarm Optimisation Algorithm

Particle swarm optimisation (PSO) algorithm [23] simulates the behaviour of particles
observing their positions in the space of the model parameters and the vector of their
movement speed. In addition, particles store the position of the best solution found
for a particular particle, as well as the best solution among all particles. The algorithm
(Algorithm 3) is as follows:

1. In the first step, the number of particles, the values of the hyperparameters of the
algorithm, as well as positions of particles, their boundaries, and initial velocities
are specified.

2. We update the velocity of each particle on each step t.
3. We update the position of each particle, and if it goes out of the boundaries, we sample

the parameter value from the uniform distribution.
4. We conduct numerical experiments with the new positions using the model. If the

RMSE of the particle is less than the lowest error found by this particle or found by
all particles, we update the corresponding RMSE values and best positions.

5. Repeat the algorithm from Step 2 until the specified number of iterations is reached
and select the set of parameter values with the lowest RMSE.

3.4. Genetic Algorithm

Genetic algorithm (GA) [24] imitates the process of natural selection using selection,
crossover, and mutation operators. The algorithm (Algorithm 4) proceeds as follows:

1. In the first step, we choose the size of the population consisting of parameter value
combinations and the number of parents we want to select for reproduction. We
also define the initial population of parameter values using Latin hypercube sam-
pling method.

2. Selection: we select potential parents from the existing population using the binary
tournament selection method where we select the best out of two random individuals
from the population in each tournament round based on RMSE.

3. Crossover: we randomly select two parents from the pool of potential parents.
Crossovers occur randomly with a given probability using one-point crossover, where
we split the set of parameter values into two sets and exchange them between the
parents, creating two offsprings.

4. Mutations occur randomly with a given probability by adding Gaussian noise to one
or more parameter values of the offspring to avoid the stagnation of the algorithm:
θij = θij + δj, where δj ∼ N (0, σ(θmax

j − θmin
j )), i = 1, . . . , Npop, and j = 1, . . . , Nparams.

If the parameter value goes out of the boundaries, we set θij ∼ U (θmin
j , θmax

j ).

5. Finally, following the elitism strategy, we replace the current population with the best
individuals from the current and offspring populations combined together.
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6. Repeat the algorithm from Step 2 until the specified number of iterations is reached
and select the set of parameter values with the lowest RMSE.

Algorithm 3: Particle swarm optimisation algorithm

Input: Θ0
1, . . . , Θ0

Nparticle , V0
1 , . . . , V0

Nparticle , RMSEΘ0
1
, . . . , RMSEΘ0

Nparticle
, ABM

Output: GTmax

1 P0
1 , . . . , P0

Nparticle ← Θ0
1, . . . , Θ0

Nparticle

2 G0 ← argminΘ0
i
RMSEΘ0

i

3 for t = 1 to Tmax do
4 for i = 1 to Nparticle do
5 wt ← (wmax − wmin)

Tmax−t
Tmax

+ wmin

6 rt
1, rt

2 ∼ U (0, 1)

7 Vt
i ← wtVt−1

i + c1rt
1

(
Pt−1

i −Θt−1
i

)
+ c2rt

2

(
Gt−1 −Θt−1

i

)
8 Θt

i ← Θt−1
i + Vt

i
9 if θt

ij > θmax
j or θt

ij < θmin
j then

10 θt
ij ∼ U (θmin

j , θmax
j )

11 RMSEΘt
i
← ABM(Θt

i)

12 if RMSEΘt
i
< RMSEPt−1

i
then

13 RMSEPt
i
← RMSEΘt

i

14 Pt
i ← Θt

i
15 else
16 RMSEPt

i
← RMSEPt−1

i

17 Pt
i ← Pt−1

i

18 if RMSEΘt
i
< RMSEGt−1 then

19 RMSEGt−1 ← RMSEΘt
i

20 Gt ← Θt
i

21 else
22 RMSEGt ← RMSEGt−1

23 Gt ← Gt−1

Algorithm 4: Genetic algorithm

Input: Θ0
1, . . . , Θ0

Npop , RMSEΘ0
1
, . . . , RMSEΘ0

Npop
, ABM

Output: argminΘt RMSEΘt

1 for t = 1 to Tmax do
2 Θ̂t

1, . . . , Θ̂t
Nparent ← selection(Θt−1

1 , . . . , Θt−1
Npop , RMSEΘt−1

1
, . . . , RMSEΘt−1

Npop
)

3 Θ̄t
1, . . . , Θ̄t

Npop ← crossover(Θ̂t
1, . . . , Θ̂t

Nparent )
4 Θ̃t

1, . . . , Θ̃t
Npop ←mutation(Θ̄t

1, . . . , Θ̄t
Npop )

5 if θ̃t
ij > θmax

j or θ̃t
ij < θmin

j then
6 θt

ij ∼ U (θmin
j , θmax

j )

7 for i = 1 to Npop do
8 RMSEΘ̃t

i
← ABM(Θ̃t

i)

9 Θt
1, . . . , Θt

Npop ← next_generation(Θt−1
1 , . . . , Θt−1

Npop , RMSEΘt−1
1

, . . . ,

RMSEΘt−1
Npop

, Θ̃t
1, . . . , Θ̃t

Npop , RMSEΘ̃t
1
, . . . , RMSEΘ̃t

Npop
)
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3.5. Chaos Game Optimisation

The chaos game optimisation (CGO) algorithm is a novel approach to a model calibra-
tion first described in [25]. This algorithm is based on the chaos theory principles and goes
as follows (Algorithm 5):

1. In the first step, we choose the number of seeds (Nseed) consisting of parameter
value combinations and set the initial seed positions using the Latin hypercube
sampling method.

2. Find GB the best seed according to RMSE.
3. For each seed i, we determine the mean value of the group (MGi) defined as the group

of randomly selected seeds with equal probability of including the current one.
4. For each seed i we find the positions of four new potential seeds S1

i , S2
i , S3

i , and S4
i and

check their boundary conditions. If the parameter value goes out of the boundaries,
we set sij ∼ U (θmin

j , θmax
j ).

5. Replace current seeds with Nseed best seeds from the current and potential seeds
combined together.

6. Repeat the algorithm from Step 2 until the specified number of iterations is reached
and select the set of parameter values with the lowest RMSE.

Algorithm 5: Chaos game optimisation algorithm

Input: Θ0
1, . . . , Θ0

Nseed , RMSEΘ0
1
, . . . , RMSEΘ0

Nseed
, ABM

Output: argminΘt RMSEΘt

1 for t = 1 to Tmax do
2 for i = 1 to Nseed do
3 GBt ← argminΘt−1 RMSEΘt−1

4 MGt
i ← mean{Θt−1

i }i=i1,...,ik
5 rt, rt

1, rt
2 ∼ U (0, 1)

6 Set randomly α1,2,3
i ∈ {rt, 2rt, rt

1rt + 1, rt
2rt + (1− rt

2)}
7 Set randomly β1,2,3

i , γ1,2,3
i ∈ {1, 2}

8 S1t
i ← Θt−1

i + α1
i × (β1

i × GBt − γ1
i ×MGt

i )

9 S2t
i ← GBt + α2

i × (β2
i ×MGt

i − γ2
i ×Θt−1

i )

10 S3t
i ← MGt

i + α3
i × (β3

i × GBt − γ3
i ×Θt−1

i )

11 Set randomly S4t
i ← {θ

t−1
ij or st

ij ∼ U (θmin
j , θmax

j )}
12 Check boundary conditions for S1t

i , S2t
i , S3t

i , and S4t
i

13 Find RMSE for S1t
i , S2t

i , S3t
i , and S4t

i by using ABM

14 Set {Θt
i}Nseed

i=1 to be best seeds from {Θt−1
i , S1t

i , S2t
i , S3t

i , S4t
i }Nseed

i=1

4. Agent-Based Models

In order to observe the effectiveness of the proposed methods, we use two different
ABMs: the first one is a simple toy example without any practical value, while the other is
a complex model with a real application, so we can see how the behaviour of the proposed
methods changes with increased complexity.

4.1. Agent-Based Model of the Spread of Contagious Disease (ABM-SIR)

As a toy model, we use the ABM that simulates the spread of contagious diseases.
Each agent has three states: susceptible to the disease, infectious, and recovered (SIR),
similar to the SIR model [26]. The model has discrete time steps, and on each step, agents
interact with each other with the number of contacts following Poisson distribution. If an
infectious agent interacts with a susceptible one, the latter can be infected with a certain
probability. Infectious agents recover after some time and become immune to the disease.
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The population consists of 100 thousand agents. The model simulates 40 days with a step
of 2.4 h.

The step of the model is as follows: we iterate over the agents, and if we find a suscep-
tible agent, we randomly choose agents with whom it would make contact. If we choose
an infectious agent, there is a defined probability that the virus will be transmitted to the
susceptible agent. If we find an infectious agent, it can recover with a defined probability.

The model has four adjustable parameters: β is the probability of the disease transmis-
sion from an infectious agent to a susceptible one, c is the contact rate between agents, γ is
the probability of the recovery, and I0 is the initial number of infectious agents. Since it is
just a simple model without real data behind it, we manually set the reference parameter
values and get the curves that we want to reproduce (Figure 1).

Figure 1. ABM-SIR model output showing progression of population states for susceptible (S),
infected (I), and recovered (R) that we aim to reproduce by tuning parameters of the model.

4.2. Model of the Circulation of Respiratory Viruses in a City (ABM-ARI)

In order to analyse the behaviour of different parameter tuning methods on more com-
plex models with a real application, we use the ABM, called ABM-ARI, of the co-circulation
of seven respiratory viruses (influenza A and B, rhinoviruses, respiratory syncytial viruses,
adenoviruses, parainfluenza and common human coronaviruses) in a city [27]. In the
model, viruses differ in their properties, such as the mean viral load, duration of incubation
period, duration of symptoms, and the probability of developing symptoms. Moscow was
chosen as the model city. The model consists of 10 million agents representing city residents
who are characterised by a set of properties. Properties such as age, sex and social status
were based on the demographic and socio-economic data for various municipalities of
the city according to the 2010 Russian census. Epidemiological properties include total
immunoglobulin levels dependent on the age and health status of the agent. Each agent
may be fully or partially susceptible to different viruses, exposed to the virus for one day,
infectious with or without symptoms, or resistant to all viruses, depending on the stage of
infection (Figure 2).

Agents are assigned to households, as well as other social groups, which include
groups of educational institutions and workplaces. Interactions of agents with each other
are modelled using contact networks in the form of complete graphs for households and
Barabasi-Albert graphs [28] for groups of educational institutions and workplaces with
connectivity parameters equal to 10 and 5, respectively (Figure 3). The model simulates
one year, starting from August 1, and has a discrete time step of one day.

Transmission of viruses occurs through contact between fully or partially susceptible
agents and infectious agents. The risk pi(t) of infection of the agent i includes the risks of
infection by each simulated virus v in each simulated social setting c that agent i attends at
the model step t from each infectious agent j with whom agent i makes contact:

pi(t) = Pr{Xi(t + 1) ∈ I|Xi(t) ∈ S} = 1−∏
v∈V

∏
c∈Ci

∏
j∈Avc

i

(1− pvc
j→i(t)), (3)
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where V is the set of modelled viruses, Ci is the set of social settings to which the agent i
belongs, Avc

i is the set of infectious agents with whom agent i makes a contact, Xi(t) is the
state of the agent’s health, I and S are infectious and susceptible states, respectively.

Figure 2. Flowchart for the stages of disease progression. Susceptible agents can be infected by
viruses to which they do not have immunity. After getting infected agents become exposed for a
day. Then, they are able to transmit the virus to others while being in an infectious state which is
further subdivided into incubation, asymptomatic or symptomatic periods. During the incubation
period, the viral load of an agent increases, while in asymptomatic and symptomatic periods it
decreases. When agents with symptoms self-isolate at home, they are considered to be diagnosed.
After recovering, they obtain immunity to the virus and do not become infected with any viruses for
a short period of time.

Figure 3. Contact networks for different activity settings represented as fully connected graphs for
households, and Barabasi-Albert graphs for groups of educational institutions and workplaces.

The risk of virus transmission is determined by the product of five independent risks:

pvc
j→i(t) = f v(t− tj|j) · gv

1(i) · gv
2(t− tv

i |i) · h(t|i, j, c) · kv(t), (4)

where f v is the risk of transmitting the virus v from infectious agent j infected t− tj days
ago, and gv

1 and gv
2 are the risks of infecting the susceptible agent i with the virus v for

a given total level of immunoglobulins and a number of days t − tv
i that have passed

since its last recovery from an illness caused by the virus v, respectively. h is the risk of
infection transmission between two agents for a given contact duration, and kv is the risk
of transmitting the virus v for a given average daily air temperature.

The risk of transmitting the virus from an infectious agent depends on the viral load,
which in turn depends on the age of the agent, the number of days passed since becoming
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infectious, the virus with which the agent was infected, and the presence or absence
of symptoms:

f v(t− tj|j) = 0, t ≤ tj or t ≥ tj + d1j + d2j,

f v(t− tj|j) =
ljv

2lmax
(

t−tj
d1j−1 −

1
d1j−1 ), tj < t ≤ tj + d1j and d1j > 1,

f v(t− tj|j) =
ljv

4lmax
, tj < t ≤ tj + d1j and d1j = 1,

f v(t− tj|j) =
ljv

lmax
(

t−tj
1−d2j

− d1j+d2j
1−d2j

), tj + d1j < t < tj + d1j + d2j,

and Xj(t) ∈ Iv
s ,

f v(t− tj|j) =
ljv

2lmax
(

t−tj
1−d2j

− d1j+d2j
1−d2j

), tj + d1j < t < tj + d1j + d2j,

and Xj(t) ∈ Iv
a ,

(5)

where lmax and ljv are the maximum and average viral load for the virus v and the age group
of agent j, respectively. d1j and d2j are durations of the incubation period and symptoms,
respectively. Iv

s and Iv
a are infectious states with symptoms and without, respectively.

The risk of infecting the susceptible agent depends on the total level of immunoglobu-
lins, which in turn depends on the age and sex of the agent:

gv
1(i) =

2
1 + exp(βvsi)

, (6)

where si ∈ [0, 1] is the normalised total immunoglobulin level of agent i, and βv is the
adjustable parameter for the virus v.

The risk of infecting the susceptible agent also depends on the level of virus-specific
antibodies, which in turn depends on the number of days passed since the recovery and on
the duration of the immunity to the virus:{

gv
2(t− tv

i |i) = 1, t ≤ tv
i or t ≥ tv

i + rv
i

gv
2(t− tv

i |i) =
1

rv
i −1 (t− tv

i − 1), tv
i < t < tv

i + rv
i ,

(7)

where rv
i is the adjustable parameter denoting the duration of specific immunity of agent i

to the virus.
The risk of infection transmission during the contact between two agents depends on

the duration of contact, which in turn depends on the social setting where it was made:

h(t|i, j, c) = 1− exp(−δut
ijc), (8)

where ut
ijc ∈ [0, 24] is the duration of contact (in hours) between agents i and j in the social

setting c on the step t, δ is the adjustable parameter.
The risk of transmitting the virus for a given average daily air temperature depends

on the time step of the model:
kv(t) = −γvτt + 1, (9)

where τt ∈ [0, 1] is normalised average air temperature for the step t, and γv is the adjustable
parameter for the virus v.

The model consists of initialisation and simulation stages (Figure 4). Simulation stage
consists of multiple model steps where each step goes as follows:

1. First, we determine whether the current day is a holiday or a day off for different social
settings. National holidays and Sundays are days off for everyone. Children have
summer, autumn, spring, and winter vacations. Workers do not work on Saturdays.

2. We iterate over the agents, and if we find an infectious agent, we iterate over the agents
with whom the agent makes contact with the current step. In the case of finding an
agent, susceptible or partially susceptible to the virus, we sample the duration of their
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contact from a given distribution [29] and evaluate the risk of infection transmission.
If the transmission is successful, the agent becomes exposed.

3. Next, we update the agents’ properties based on their health state:

(a) Susceptible. There is a small chance that the agent may have been exposed
to a virus from an unknown source at the current step. The virus is selected
randomly, and if it is able to overcome the level of specific immunity, the agent
becomes exposed.

(b) Immune to at least one of the viruses. We decrease the level of specific immu-
nity to the virus.

(c) Infected at the current step. We find the duration of the incubation period and
the duration of symptoms or the duration of the asymptomatic period from
the given distribution [30–32].

(d) Infectious. The agent can exhibit symptoms or progress to the asymptomatic
stage after the end of the incubation period, self-isolate and become diag-
nosed [33], or recover.

(e) Recovered. We check if it is able to be infected with viruses again.

4. In the end, we update the model date and air temperature.

Figure 4. Process algorithm of ABM-ARI.

The model has 26 adjustable parameters Θ = {θi}26
i=1 divided into 5 groups: a group

corresponding to the dependence of the risk of infection on the duration of contact (δ),
a group corresponding to the dependence of the risk of infection on the total level of
immunoglobulins (βv), a group corresponding to the dependence of the risk of infection
on the air temperature (γv), a group corresponding to the average durations of immunity
to each virus (rv), where v = 1, . . . , 7 is the virus, and a group corresponding to the
probabilities of infection from an unknown source (pa), where a = 1, . . . , 4 is the age group.

The model is used to reproduce the average weekly incidence of acute respiratory
infections in Moscow for different age groups and viruses for a single year based on the data
from 1997 to 2002. It consists of three groups of incidence curves: an overall incidence curve
(Figure 5), incidence curves for age groups 0–2, 3–6, 7–14 and 15+ years, and incidence
curves for seven modelled viruses.
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Figure 5. Weekly incidence of acute respiratory infections in Moscow averaged over the period
1997–2002. The 95% confidence intervals are represented as shaded areas.

5. Results

In this section, we compare the simulation results produced by the following algo-
rithms: the Markov chain Monte Carlo method (MCMC), the surrogate modelling approach
(SM), the particle swarm optimisation (PSO) algorithm, the genetic algorithm (GA), and
the chaos game optimisation algorithm (CGO). The proposed methods are tested on two
agent-based models (ABMs) of different complexity: simple ABM for simulating the spread
of contagious disease where each agent has three states: susceptible, infectious, and recov-
ered (ABM-SIR), and more complex ABM with a real application that simulates the spread
of acute respiratory infections in a city (ABM-ARI). We manually set the hyperparameter
values for the proposed algorithms, which are set to be the same for both models (Table 3).
We set the number of iterations for each method to be equal to 200.

Table 3. Hyperparameters of the parameter tuning algorithms: Markov chain Monte Carlo method
(MCMC), surrogate modelling approach (SM), particle swarm optimisation (PSO) algorithm, genetic
algorithm (GA), and chaos game optimisation (CGO) algorithm. The maximum number of iterations
for each algorithm is 200.

Method Parameter Description Value

MCMC σ
Standard deviation for the parameter

candidates 0.1

SM

Ntrain Number of initial training samples 1000
η Learning rate 0.1

mdepth Maximum depth of a tree 10
nround Number of rounds for boosting 150

PSO

Nparticle Number of particles 10
wmin Minimum inertia weight 0.4
wmax Maximum inertia weight 0.9

c1 Personal acceleration coefficient 2.0
c2 Social acceleration coefficient 2.0

GA

Npop Size of population 10
Nparent Number of parents 5

ktour Tournament size 2
pcross Probability of crossover 0.8
pmut Probability of mutation 0.15

σ Mutation deviation coefficient 0.33

CGO Nseed Number of seeds 10

For the simulation experiments, we use the Julia programming language with the
Threads package for parallel computing. We run the models on a Windows 10 machine
with an Intel Core i5-7300HQ quad-core processor and 16 GB of RAM.
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5.1. ABM-SIR Model Results

ABM-SIR has four parameters that we want to estimate in order to reproduce the
defined dynamics of the spread of contagious disease in a population of 100 thousand
agents. Table 4 describes each parameter, their constraints, and the set of reference values
that we manually set ourselves.

Table 4. ABM-SIR model parameters, their ranges and the reference set of parameter values that we
want to reproduce.

Parameter Description Range Reference

β Probability of the transmission [0.02, 0.2] 0.05

c Contact rate [5, 25] 10

γ Probability of recovery [0.01, 0.05] 0.02

I0 Initial number of infectious agents [1, 50] 25

As the criterion of comparison between different methods, we use root mean square
error (RMSE). For the ABM-SIR model, we use:

RMSE =

√
1

1200 ∑
i

(
(Sd

i − Sm
i )

2 + (Id
i − Im

i )2 + (Rd
i − Rm

i )
2
)
, (10)

where Sd
i and Sm

i are the number of susceptible agents in the step i based on the reference
data and model simulation, Id

i and Im
i are the number of infectious agents in the step i based

on the reference data and model simulation, and Rd
i and Rm

i are the number of recovered
agents in the step i based on the reference data and model simulation. The model simulates
400 steps, with one step being 0.1. Initially, there are no recovered agents.

Initial parameter values are set by either using the Latin hypercube sampling method
(LHS) or manually. For MCMC, we test both LHS with 10 initial samples and manual
selection by selecting a random point in the parameter space. For other methods, we only
use 10 initial samples of parameter values obtained from LHS. The results of the model
calibration using different methods with 9 algorithm runs and 200 model runs in each of
the run are presented in Figure 6 and Table 5. In general, MCMC produced better solutions
compared to the other methods. While SM was able to reach its best value on average
under 100 steps, it had the worst average performance out of all methods and also took the
most time to execute. PSO, GA, and CGO showed similar results with no particular winner.
For the best run, all of the methods were very close to the reference curves.

Table 5. The comparison of different methods for ABM-SIR model using the root mean square error
(RMSE) based on 200 iterations for each algorithm over 9 algorithm runs.

Method * Avg Initial
RMSE

Avg Best
RMSE

Best
RMSE

Avg Best
Decrease

Best
Decrease

Avg Best
Run

Best Run
**

Avg Time
***

MCMC LHS 17,868 791 243 96% 99% 148 171 169 s

MCMC manual 52,899 3342 1248 94% 98% 171 150 158 s

SM 17,842 7728 310 57% 98% 96 103 171 s

PSO 16,163 2360 627 85% 96% 121 101 100 s

GA 17,475 3175 1140 82% 93% 164 181 115 s

CGO 14,219 1614 704 89% 95% 27 11 105 s

* Markov chain Monte Carlo method with Latin hypercube sampling for initial parameter values selection
(MCMC LHS) or with manually selected initial parameter values (MCMC manual), surrogate modelling approach
(SM), particle swarm optimisation (PSO) method, genetic algorithm (GA), and chaos game optimisation (CGO)
algorithm. ** Best run is the number of iterations that reached the lowest value of RMSE among all runs. *** Avg
time is the average time needed for one algorithm run.
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(a) Median (b) Best

Figure 6. Rate of convergence of different parameter tuning algorithms applied to the ABM-SIR model
using the root mean square error (RMSE) based on 9 runs of the following methods: Markov chain
Monte Carlo method (MCMC) with Latin hypercube sampling method (LHS) used for selecting initial
parameter values or with them being selected manually (manual), surrogate modelling approach (SM),
particle swarm optimisation (PSO) method, genetic algorithm (GA), and chaos game optimisation
(CGO) algorithm.

Figure 7 shows three curves indicating the dynamics of the number of susceptible,
infectious, and recovered agents by using the best parameter values obtained from the
model calibration procedures. From the figures, we can see that MCMC with LHS is the
closest to the reference curves with PSO being second.

(a) Median Susceptible (S) (b) Best Susceptible (S)

(c) Median Infectious (I) (d) Best Infectious (I)

Figure 7. Cont.
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(e) Median Recovered (R) (f) Best Recovered (R)

Figure 7. Simulation results of toy ABM-SIR model compared to the author-defined reference data
using best parameter values obtained from the following algorithms: Markov chain Monte Carlo
method (MCMC) with Latin hypercube sampling (LHS) or with manual initial parameter values
selection, surrogate modelling approach (SM), particle swarm optimisation (PSO) method, genetic
algorithm (GA), and chaos game optimisation (CGO) algorithm. Results are based on 9 runs of each
method of 200 model runs each.

5.2. ABM-ARI Model Results

ABM-ARI has 144 parameters, with 26 of them being estimated to reproduce the
seasonal increase in the incidence of acute respiratory infections throughout a year in a city
with a population of 10 million residents. Simulations start on August 1, which corresponds
to the last month of summer vacation for children. The model has a time step of one day.
Table 6 describes every calibrated parameter of the model in detail. For model evaluation,
the data on the average weekly number of diagnosed cases of acute respiratory infections in
Moscow over the period 1997–2002 [34] are used together with the data on the distribution
of viruses throughout the year for the dynamics of detected cases of different respiratory
infections by PCR in Russia over from 2014 to 2016 [35].

Table 6. ABM-ARI model parameters, corresponding group and their ranges.

Parameter Description Group * Range

c Influence of the duration of contact All [0.1, 1]

β1

Susceptibility parameters

FluA

[1, 7]

β2 FluB
β3 RV
β4 RSV
β5 AdV
β6 PIV
β7 CoV

γ1

Temperature parameters

FluA

[0.01, 1]

γ2 FluB
γ3 RV
γ4 RSV
γ5 AdV
γ6 PIV
γ7 CoV

r1

Mean immunity durations

FluA

[30, 365]

r2 FluB
r3 RV
r4 RSV
r5 AdV
r6 PIV
r7 CoV
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Table 6. Cont.

Parameter Description Group * Range

p1 Probabilities of 0–2 y.o. [0.0008, 0.0012]
p2 infections from 3–6 y.o. [0.0005, 0.001]
p3 unknown 7–14 y.o. [0.0002, 0.0005]
p4 sources 15+ y.o. [0.000005, 0.00001]

* Influenza A (FluA), influenza B (FluB), rhinovirus (RV), respiratory syncytial virus (RSV), adenovirus (AdV),
parainfluenza (PIV) and common human coronavirus (CoV).

For the comparison between different methods, we use root mean square error
(RMSE):

RMSE =

√√√√ 1
1456

52

∑
w=1

4

∑
a=1

7

∑
v=1

(yd
wav − ym

wav)
2, (11)

where yd
wav and ym

wav are the number of diagnosed cases of infections with the virus v in the
week w in the age group a according to the data and the results of a numerical experiment.

Initial parameter values are set by either using the Latin hypercube sampling method
(LHS) or manually. For MCMC, we test both LHS with 1000 initial samples and manual
selection by selecting a point in the parameter space based on domain knowledge. For
SM, we use 1000 initial samples of parameter values obtained from LHS. For PSO, GA,
and CGO we use LHS with the number of samples equal to the number of particles, the
size of the population, and the number of seeds, respectively, that we set equal to 10. The
results of the model calibration using different methods with 3 runs and 200 iterations in
each method are presented in Figure 8 and Table 7. We can see that MCMC produced the
best RMSE due to a good initial parameter selection in the case of a manual selection or
using a large number of numerical experiments in the case of using LHS. SM takes the most
time to execute due to the large number of numerical experiments required for creating the
initial training set. In the case of a small number of initial samples (10), it demonstrates
much worse performance. SM provided the second-best RMSE. PSO, GA, and CGO all
showed similar performance. While CGO is the fastest method to achieve its best RMSE,
it stagnates at a local minimum afterwards. PSO has strong fluctuations from iteration to
iteration opposite to GA, which decreases more steadily.

(a) Median (b) Best

Figure 8. Rate of convergence of different parameter tuning algorithms applied to the ABM-ARI
model using the root mean square error (RMSE) based on 3 runs of the following methods: Markov
chain Monte Carlo method (MCMC) with Latin hypercube sampling method (LHS) used for select-
ing initial parameter values or with them being selected manually (manual), surrogate modelling
approach (SM), particle swarm optimisation (PSO) method, genetic algorithm (GA), and chaos game
optimisation (CGO) algorithm.
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Table 7. The comparison of different methods for ABM-ARI model using the root mean square error
(RMSE) based on 200 iterations for each algorithm over 3 algorithm runs.

Method * Avg Initial
RMSE

Avg Best
RMSE

Best
RMSE

Avg Best
Decrease

Best
Decrease

Avg Best
Run

Best Run
**

Avg Time
***

MCMC LHS 3214 2104 1945 35% 39% 167 196 ≈60 h

MCMC manual 4580 1757 1639 62% 64% 145 164 ≈9.5 h

SM 3214 2093 1978 35% 38% 146 116 ≈60.5 h

PSO 11,927 2889 2622 76% 78% 111 191 ≈10 h

GA 9120 2428 2147 73% 76% 164 141 ≈10 h

CGO 12,460 2813 2592 77% 79% 38 31 ≈10 h

* Markov chain Monte Carlo method with Latin hypercube sampling for initial parameter values selection
(MCMC LHS) or with manually selected initial parameter values (MCMC manual), surrogate modelling approach
(SM), particle swarm optimisation (PSO) method, genetic algorithm (GA), and chaos game optimisation (CGO)
algorithm. ** Best run is the number of iteration that reached the lowest value of RMSE among all runs. *** Avg
time is the average time needed for one algorithm run including LHS procedure.

Figure 9 shows two curves indicating the incidence of acute respiratory infections in
two age groups: the 7–14-year-old group and the over-15-year-old group. We only show
the results for two age groups since they represent 94% of the model population and show
the impact of different model calibration methods the best. The incidence for other age
groups and specific viruses can be found at [27]. From the figures, we can see that most
methods underestimated the incidence for the 7–14-year-old group and overestimated the
incidence for the over-15-year-old group.

(a) Median 7–14-year-old (b) Best 7–14-year-old

(c) Median over-15-year-old (d) Best over-15-year-old

Figure 9. Simulation results of ABM-ARI for two age groups compared to the real data using best
parameter values obtained from the following algorithms: Markov chain Monte Carlo method
(MCMC) with Latin hypercube sampling (LHS) or with manual initial parameter values selection,
surrogate modelling approach (SM), particle swarm optimisation (PSO) method, genetic algorithm
(GA), and chaos game optimisation (CGO) algorithm. Results are based on 3 runs of each method of
200 model runs each.
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6. Discussion

The aim of this work was to broaden the understanding of how classical metaheuristic
algorithms behave when applied to a more complex agent-based model with a number
of parameters of more than 20 and a number of agents being around 10 million, and to
compare the findings to a simple model. Due to computational limitations associated with
ABMs, most of the work conducted in this field focuses on simpler models with a number
of parameters often lower than 10 [4,36,37]. While we use well-established methods for
the model calibration, we implement our own versions of those methods, in particular our
implementation of the Markov chain Monte Carlo method.

We tested five different approaches for solving the model calibration problem using
two ABMs of different complexity. Our results suggest that the Markov chain Monte Carlo
method (MCMC) with the usage of the loss function is the most promising method of
parameter tuning. Unlike the surrogate modelling approach, MCMC algorithms do not
require conducting a large number of numerical experiments before using the algorithm. It
is possible to set an initial set of parameter values for the algorithm based on some domain
knowledge, and it can reach acceptable values of the loss function pretty quickly even if
the initial guess is not that good. Another advantage of MCMC is the ease of setting the
hyperparameters of the algorithm, since they are only needed for generating the candidates
from the distribution.

One of the challenges of using surrogate modelling for ABMs is that they have a strong
dependence on the machine learning algorithm used for the training. Even though they
significantly reduce the computational efforts of predicting the outcomes of ABM, there is
still a computational cost that lies in their training process. Neural networks, for example,
can take a long time to train from scratch. Another problem is that they require extensive
parameter space exploration before they can start making accurate predictions. One of the
benefits of using surrogate modelling is the ability to easily assess the relative importance
of model parameters.

The particle swarm optimisation (PSO), genetic algorithm (GA), and chaos game
optimisation (CGO) methods showed similar levels of performance. While they perform
very well for a simple ABM, they struggle with local minima when the parameter space
becomes large. For both PSO and GA, it takes a large number of model runs to reach
acceptable values of the loss function. One of the challenges of using PSO is that particles
tend to go out of the parameter boundaries creating a need for tackling this problem. PSO
also showed stronger fluctuations of the error function occurring because of choosing
values for both of the acceleration coefficients equal to 2, which is commonly used in the
literature. CGO was able to reach its best value in the least amount of steps, but it stagnated
afterwards while being stuck in a local minimum.

While this work provides the comparison of commonly used metaheuristic algorithms
applied to one simple toy ABM and one complex ABM with a real application, further
work can be used to expand on the results of this study. For example, the SM presented in
this article uses the XGBoost algorithm and a single output in the form of root mean square
error. It is possible to analyse the influence of other machine learning methods and the
impact of the multiple outputs on the problem. Another area is hyperparameter tuning. We
also did not consider other swarm intelligence algorithms, such as the artificial bee colony
algorithm or the firefly algorithm. Another problem is the stochasticity of the proposed
methods; for example, the ABM-SIR model shows that the average best error and the best
error can differ significantly; therefore, there is a need for multiple runs of the same method
in order to fully analyse its performance.

Author Contributions: Conceptualisation, A.I.V. and A.A.R.; funding acquisition, A.I.V. and A.A.R.;
investigation, A.I.V.; resources, A.I.V., A.A.R. and T.E.S.; data curation, A.I.V., A.A.R. and T.E.S.;
methodology, A.I.V.; software, A.I.V.; supervision, A.A.R. and T.E.S.; writing, A.I.V. All authors have
read and agreed to the published version of the manuscript.



Mathematics 2024, 12, 2208 20 of 21

Funding: This work was carried out with the financial support of the Moscow Center of Fundamental
and Applied Mathematics at INM RAS (Agreement with the Ministry of Education and Science of
the Russian Federation No.075-15-2022-286).

Data Availability Statement: The original data presented in the study are openly available at
https://github.com/Firkhraag/JuliaABM (accessed on 28 June 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABM Agent-based model
MCMC Markov chain Monte Carlo method
SM Surrogate modelling method
PSO Particle swarm optimisation algorithm
GA Genetic algorithm
CGO Chaos game optimisation
LHS Latin hypercube sampling
RMSE Root mean square error

References
1. Macal, C.M.; North, M.J. Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference,

Orlando, FL, USA, 4–7 December 2005; pp. 2–15. [CrossRef]
2. Macal, C.M. Everything you need to know about agent-based modelling and simulation. J. Simul. 2016, 10, 144–156. [CrossRef]
3. Kotthoff, F.; Hamacher, T. Calibrating agent-based models of innovation diffusion with gradients. J. Artif. Soc. Soc. Simul. 2022,

25, 4. [CrossRef]
4. Carrella, E. No free lunch when estimating simulation parameters. J. Artif. Soc. Soc. Simul. 2021, 24, 7. [CrossRef]
5. Hussain, K.; Mohd Salleh, M.N.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019,

52, 2191–2233. [CrossRef]
6. Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Metaheuristic algorithms in modeling and optimization. Metaheuristic Appl.

Struct. Infrastruct. 2013, 1, 1–24. [CrossRef]
7. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Computational

Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018;
pp. 185–231. [CrossRef]

8. Hare, W.; Nutini, J.; Tesfamariam, S. A survey of non-gradient optimization methods in structural engineering. Adv. Eng. Softw.
2013, 59, 19–28. [CrossRef]

9. Gilli, M.; Winker, P. A global optimization heuristic for estimating agent based models. Comput. Stat. Data Anal. 2003, 42, 299–312.
[CrossRef]

10. Chen, S.; Desiderio, S. A regression-based calibration method for agent-based models. Comput. Econ. 2022, 59, 687–700. [CrossRef]
11. Lamperti, F.; Roventini, A.; Sani, A. Agent-Based Model Calibration using Machine Learning Surrogates. J. Econ. Dyn. Control

2018, 90, 366–389. [CrossRef]
12. Sallans, B.; Pfister, A.; Karatzoglou, A.; Dorffner, G. Simulation and Validation of an Integrated Markets Model. J. Artif. Soc. Soc.

Simul. 2003, 6. Available online: https://jasss.soc.surrey.ac.uk/6/4/2.html (accessed on 12 July 2024).
13. Merler, S.; Ajelli, M.; Fumanelli, L.; Gomes, M.F.; Piontti, A.P.; Rossi, L.; Chao, D.L.; Longini, I.M.; Halloran, M.E.; Vespignani,

A. Spatio-temporal spread of the Ebola 2014 outbreak in Liberia and the effectiveness of non-pharmaceutical interventions: A
computational modelling analysis. Lancet Infect. Dis. 2018, 15, 204–211. [CrossRef] [PubMed]

14. Tan, R.K.; Bora, S. Adaptive parameter tuning for agent-based modeling and simulation. SIMULATION Trans. Soc. Model. Simul.
Int. 2019, 95, 003754971984636. [CrossRef]

15. Zhang, Y.; Li, Z.; Zhang, Y. Validation and calibration of an agent-based model: A surrogate approach. Discret. Dyn. Nat. Soc.
2020, 2020, 6946370. [CrossRef]

16. Perumal, R.; van Zyl, T.L. Surrogate Assisted Methods for the Parameterisation of Agent-Based Models. In Proceedings of the
2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), Stockholm, Sweden, 14–15 November
2020; pp. 78–82. [CrossRef]

17. Angione, C.; Silverman, E.; Yaneske, E. Using machine learning as a surrogate model for agent-based simulations. PLoS ONE
2022, 17, e0263150. [CrossRef] [PubMed]

18. Calvez, B.; Hutzler, G. Automatic tuning of agent-based models using genetic algorithms. In Proceedings of the Interna-
tional Workshop on Multi-Agent Systems and Agent-Based Simulation, Utrecht, The Netherlands, 25 July 2005; Springer:
Berlin/Heidelberg, Germany, 2005, pp. 41–57. [CrossRef]

https://github.com/Firkhraag/JuliaABM
http://doi.org/10.1109/WSC.2005.1574234
http://dx.doi.org/10.1057/jos.2016.7
http://dx.doi.org/10.18564/jasss.4861
http://dx.doi.org/10.18564/jasss.4572
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1016/B978-0-12-398364-0.00001-2
http://dx.doi.org/10.1016/B978-0-12-813314-9.00010-4
http://dx.doi.org/10.1016/j.advengsoft.2013.03.001
http://dx.doi.org/10.1016/S0167-9473(02)00214-1
http://dx.doi.org/10.1007/s10614-021-10106-9
http://dx.doi.org/10.1016/j.jedc.2018.03.011
https://jasss.soc.surrey.ac.uk/6/4/2.html
http://dx.doi.org/10.1016/S1473-3099(14)71074-6
http://www.ncbi.nlm.nih.gov/pubmed/25575618
http://dx.doi.org/10.1177/0037549719846366
http://dx.doi.org/10.1155/2020/6946370
http://dx.doi.org/10.1109/ISCMI51676.2020.9311568
http://dx.doi.org/10.1371/journal.pone.0263150
http://www.ncbi.nlm.nih.gov/pubmed/35143521
http://dx.doi.org/10.1007/11734680_4


Mathematics 2024, 12, 2208 21 of 21

19. Heppenstall, A.J.; Evans, A.J.; Birkin, M.H. Genetic algorithm optimisation of an agent-based model for simulating a retail market.
Environ. Plan. B Urban Anal. City Sci. 2007, 34, 1051–1070. [CrossRef]

20. McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code. Technometrics 1979, 21, 239–245. [CrossRef]

21. Brooks, S.P. Markov Chain Monte Carlo Method and Its Application. J. R. Stat. Soc. Ser. D Stat. 1998, 47, 69–100. [CrossRef]
22. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; KDD ’16; pp. 785–794.
23. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
24. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
25. Talatahari, S.; Azizi, M. Chaos game optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004.

[CrossRef]
26. Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond. Ser. A Contain.

Pap. Math. Phys. Character 1927, 115, 700–721.
27. Vlad, A.I.; Romanyukha, A.A.; Sannikova, T.E. Circulation of Respiratory Viruses in the City: Towards an Agent-Based Ecosystem

model. Bull. Math. Biol. 2023, 85, 100. [CrossRef]
28. Albert, R.; Barabasi, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [CrossRef]
29. Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al.

Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008, 5, e74. [CrossRef]
30. Lessler, J.; Reich, N.G.; Brookmeyer, R.; Perl, T.M.; Nelson, K.E.; Cummings, D.A.T. Incubation periods of acute respiratory viral

infections: A systematic review. Lancet Infect. Dis. 2009, 9, 291–300. [CrossRef]
31. Carrat, F.; Vergu, E.; Ferguson, N.M.; Lemaitre, M.; Cauchemez, S.; Leach, S.; Valleron, A.J. Time Lines of Infection and Disease in

Human Influenza: A Review of Volunteer Challenge Studies. Am. J. Epidemiol. 2008, 167, 775–785. [CrossRef]
32. Warrell, D.A.; Cox, T.M.; Firth, J.D.; Torok, E. Oxford Textbook of Medicine: Infection; Oxford University Press: Oxford, UK, 2012.
33. Elveback, L.R.; Fox, J.P.; Ackerman, E.; Langworthy, A.; Boyd, M.; Gatewood, L. An influenza simulation model for immunization

studies. Am. J. Epidemiol. 1976, 103, 152–165. [CrossRef] [PubMed]
34. Romanyukha, A.A.; Sannikova, T.E.; Drynov, I.D. The origin of acute respiratory epidemics. Her. Russ. Acad. Sci. 2011, 81, 31–34.

[CrossRef] [PubMed]
35. Karpova, L.S.; Volik, K.M.; Smorodintseva, E.A.; Stolyarova, T.P.; Popovtseva, N.M.; Stolyarov, K.A. The Impact of Influenza of

Different Etiologies on other ARVI in Children and Adults in 2014 to 2016. Epidemiol. Vaccinal Prev. 2018, 17, 35–47. [CrossRef]
36. Platt, D. A comparison of economic agent-based model calibration methods. J. Econ. Dyn. Control 2020, 113, 103859. [CrossRef]
37. Dyer, J.; Cannon, P.; Farmer, J.D.; Schmon, S.M. Black-box Bayesian inference for agent-based models. J. Econ. Dyn. Control 2024,

161, 104827. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1068/b32068
http://dx.doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1111/1467-9884.00117
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s10462-020-09867-w
http://dx.doi.org/10.1007/s11538-023-01203-x
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1016/S1473-3099(09)70069-6
http://dx.doi.org/10.1093/aje/kwm375
http://dx.doi.org/10.1093/oxfordjournals.aje.a112213
http://www.ncbi.nlm.nih.gov/pubmed/814808
http://dx.doi.org/10.1134/S1019331611010114
http://www.ncbi.nlm.nih.gov/pubmed/32288429
http://dx.doi.org/10.31631/2073-3046-2018-17-35-47
http://dx.doi.org/10.1016/j.jedc.2020.103859
http://dx.doi.org/10.1016/j.jedc.2024.104827

	Introduction
	Related Work
	Parameter-Tuning Algorithms
	Markov Chain Monte Carlo Method
	Surrogate Modelling Method
	Particle Swarm Optimisation Algorithm
	Genetic Algorithm
	Chaos Game Optimisation

	Agent-Based Models
	Agent-Based Model of the Spread of Contagious Disease (ABM-SIR)
	Model of the Circulation of Respiratory Viruses in a City (ABM-ARI)

	Results
	ABM-SIR Model Results
	ABM-ARI Model Results

	Discussion
	References

