
Citation: Wen, Y.; Zhou, Y.; Gao, K.

Binary Encoding-Based Federated

Learning for Traffic Sign Recognition

in Autonomous Driving. Mathematics

2024, 12, 2229. https://doi.org/

10.3390/math12142229

Academic Editor: Andrea Scozzari

Received: 20 June 2024

Revised: 9 July 2024

Accepted: 16 July 2024

Published: 17 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Binary Encoding-Based Federated Learning for Traffic Sign
Recognition in Autonomous Driving
Yian Wen 1, Yun Zhou 2,* and Kai Gao 3

1 School of Electrical and Information Engineering, Changsha University of Science and Technology,
Changsha 410114, China; 202103130815@stu.csust.edu.cn

2 School of Information Technology and Management, Hunan University of Finance and Economics,
Changsha 410205, China

3 College of Automotive and Mechanical Engineering, Changsha University of Science and Technology,
Changsha 410114, China; kai_g@csust.edu.cn

* Correspondence: yunzhou_hufe@163.com

Abstract: Autonomous driving involves collaborative data sensing and traffic sign recognition.
Emerging artificial intelligence technology has brought tremendous advances to vehicular networks.
However, it is challenging to guarantee privacy and security when using traditional centralized
machine learning methods for traffic sign recognition. It is urgent to introduce a distributed ma-
chine learning approach to protect private data of connected vehicles. In this paper, we propose a
local differential privacy-based binary encoding federated learning approach. The binary encoding
techniques and random perturbation methods are used in distributed learning scenarios to enhance
the efficiency and security of data transmission. For the vehicle layer in this approach, the model
is trained locally, and the model parameters are uploaded to the central server through encoding
and perturbing. The central server designs the corresponding decoding, correction scheme, and
regression statistical method for the received binary string. Then, the model parameters are aggre-
gated and updated in the server and transmitted to the vehicle until the learning model is trained.
The performance of the proposed approach is verified using the German Traffic Sign Recognition
Benchmark data set. The simulation results show that the convergence of the approach is better with
the increase in the learning cycle. Compared with baseline methods, such as the convolutional neural
network, random forest, and backpropagation, the proposed approach achieves higher accuracy in
the process of traffic sign recognition, with an increase of 6%.

Keywords: federated learning; local differential privacy; traffic sign recognition; autonomous driving

MSC: 68P27

1. Introduction

With the development of the internet of things (IoT) and artificial intelligence (AI),
autonomous driving is becoming an effective technology to solve traffic congestion and
reduce traffic accidents [1]. As a part of autonomous driving, in addition to using radar
to detect surrounding vehicles [2,3], vehicles also need to detect traffic signs in real-time
through onboard cameras [4]. The realization of these applications and services is depen-
dent on a large amount of data generated by the vehicles, which contains private data, such
as vehicle location information [5] or owner privacy information [6].

In autonomous driving, the commonly used methods for recognizing traffic signs
include convolutional neural networks (CNNs) [7], support vector machine (SVM) [8], and
random forest (RF) [9]. These classification methods belong to the traditional centralized
learning method. A central server is needed to collect all the data, including private data,
so as to better train the model and realize high-accuracy traffic sign recognition. However,
with the increase in personal privacy issues [10], the centralized learning method is no
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longer applicable to vehicle applications and services. How to achieve efficient traffic sign
recognition while ensuring vehicle data privacy and security has become an urgent problem.
Traditional centralized machine learning methods face privacy leakage and security risks
when processing vehicle network data, making it difficult to meet the high requirements of
modern autonomous driving systems for data protection. Therefore, there is an urgent need
to explore a distributed machine learning method to improve the accuracy and efficiency
of traffic sign recognition while protecting vehicle privacy.

Federated learning, proposed by Google, is a typical distributed machine learning
method that can avoid the above privacy problems. For federated learning, the model is
trained locally through the data owners, and then the model parameters are uploaded to
the server. All parameters are received and aggregated by the server, and then the updated
parameters are transmitted to each owner for model updating. This process continues
to be iterative until the learning model is trained. Federated learning works similarly to
centralized machine learning methods [11], except that it does not require the transfer of
local data.

While federated learning has already received great research interest in agricul-
ture [12], medicine [13], and intelligent security [14], its application to the internet
of vehicles is challenging. Although federated learning does not directly expose vehicle
information, attackers can obtain it by cracking model parameters, which means that there
are still security risks in federated learning [15]. Therefore, researchers have studied a series
of defense measures, including defense measures based on secure multi-party computation
and privacy protection technology based on differential privacy. In secure multi-party
computation, participants can use private data to participate in secure computing without
disclosing private data. However, encrypted data onto different technologies cannot be
intercommunicated, which easily causes new data island problems. Differential privacy
protection technology can be divided into centralized differential privacy and local dif-
ferential privacy. Centralized differential privacy requires an absolutely credible third
party. Once the third party is no longer trusted, private data of the users may be leaked at
any time [16]. Local differential privacy technology can resist security attacks by adding
random perturbations to model parameters or gradients, but it is still possible to leak
private data, although inversion will incur higher costs [17].

In order to address the security risks in federated learning and better apply it to the
internet of vehicles, we propose a binary encoding federated learning method based on
local differential privacy technology (BCFL-LDP). It can effectively prevent privacy leakage
during data transmission by implementing local differential privacy protection. It employs
binary encoding technology to reduce data transmission volume and improve processing
efficiency. Furthermore, leveraging the federated learning framework, BCFL-LDP realizes
distributed training and model aggregation, thereby enhancing the model’s generalization
capabilities. BCFL-LDP not only resolves privacy and security issues in autonomous driving
but also improves the system’s adaptability and computational efficiency, offering a novel
solution for the advancement of autonomous driving technology. From the perspective
of security, federated learning algorithms are superior to centralized ML algorithms and
can better protect the privacy of vehicle users. Meanwhile, compared with traditional
federated learning algorithms, the proposed BCFL-LDP algorithm adds binary encoding
and perturbation techniques before uploading model parameters to the central server.
Even if the model parameters are leaked, attackers cannot obtain any valid information,
further enhancing the security of the model. In autonomous driving scenarios, the shooting
angle of each vehicle and the number of traffic signs captured is limited. Therefore, the
vision models trained for traffic signs may not be particularly accurate by employing
the information of individual vehicles. Benefiting from federated learning with privacy
protection, each vehicle can be trained locally; then, the trained model parameters are
encrypted and randomly perturbed and uploaded to the central server. All collected
vehicle model parameters are decrypted and aggregated by the central server, and then
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updated model parameters are transmitted to each vehicle for model updating. Specifically,
the contributions of this paper are as follows:

• A local differential privacy-based federated learning method is proposed. The model
is trained locally in vehicles, and then the model parameters are uploaded to the
central server. The advantage is that the original data can be saved in the vehicle
itself, which can achieve higher recognition accuracy while protecting the privacy of
vehicle users.

• A new random perturbation method of binary string bits is proposed. Before the
model parameters are uploaded to the central server, binary encoding and disturbance
are carried out. Therefore, even if the model parameters are leaked, the attacker cannot
obtain any valid information.

• Through the training of the GTSRB dataset, the proposed BCFL-LDP is verified to be
superior to the existing traffic sign recognition methods. The proposed BCFL-LDP
has a faster convergence speed than the baselines and is more suitable for actual
autonomous driving scenes.

The rest of the paper is organized as follows: Section 2 reviews the relevant work.
Section 3 presents the basic framework of federated learning for traffic sign recognition in
the internet of vehicles. Section 4 introduces federated learning and local differential privacy
encryption techniques. The experiment and evaluation results are shown in Section 5.
Conclusions are presented in Section 6.

2. Related Work

With the development of the information age, more and more research on privacy
protection methods is coming along. The purpose of the privacy protection method in the
internet of vehicles is to protect the identity information and location privacy of vehicles
during data mining, data analysis, and processing, so as to prevent the illegal tracking down
of vehicles by attackers. The aim of our work is to enhance the security and privacy of the
traffic sign recognition model, so we mainly introduce privacy protection techniques. This
section includes three subsections. In Section 2.1, the related works of federated learning
are presented. In Sections 2.2 and 2.3, two traditional privacy protection technologies of
federated learning are presented: differential privacy and secure multi-party computation.

2.1. Federated Learning

In the intelligent transportation industry, federated learning [18] is generally used
to protect the data privacy of users. In traditional machine learning [19,20], all data are
concentrated on a single server for training. In federated learning, each model is first
trained locally, and the gradient or parameter of the training model is uploaded to the
aggregation server to solve privacy problems. McMahan et al. [21] introduced the federated
averaging algorithm, which combined the random gradient descent of each client with
the model averaging of the server to protect the original training data. Yuan et al. [10]
connected federated learning and broad learning systems and offloaded data sharing into
clusters. They improved the aggregation ability of the model and protected the privacy of
data sharing.

Traditional federated learning adopts synchronous aggregation, which will undoubt-
edly produce high communication costs, making it easy for attackers to extract private data
information from the model gradient in reverse. Therefore, researchers have made some
improvements to existing federated learning methods. Zhu et al. [22] proposed a semi-
supervised federated learning framework, which does not require users to provide original
trajectory data or rely on prominent data labels. Yu et al. [23] applied federated learning
techniques to construct a global model to predict content popularity while protecting the
privacy of training data on local vehicles.
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2.2. Differential Privacy
2.2.1. Centralized Differential Privacy

In centralized differential privacy protection technology, the privacy of algorithm
expansion is defined by the nearest neighbor dataset. Therefore, it requires an absolutely
credible third party to aggregate the data together and then add disturbance to the dataset
to achieve differential privacy. According to this definition, the data collector has to manage
the centralized dataset. In order to obtain private data, the attacker can only infer private
information by querying the distribution of statistical data several times. Poddar et al. [24]
attempted to predict traffic flow through a real-time traffic state estimator with differential
privacy technology to protect the potentially sensitive location information of private users.

2.2.2. Local Differential Privacy

In local differential privacy, each user can process private data independently; that is,
the model training process is transferred from the data collector to a single user. Therefore,
it can also ensure that users’ private information will not be leaked, even if the third
party is not reliable. Although local differential privacy technology can resist security
attacks by adding random perturbations to model parameters or gradients, private data
may still be leaked, even if the cost of backstepping is higher. Wang et al. [25] used local
differential privacy technology based on a histogram algorithm to interfere with the context
information about the vehicle and then upload it to the base station for offloading decision,
which protects the privacy of the resume. Nie et al. [26] introduced Gaussian differential
encryption, adding Gaussian noise directly to the Q-network of the output Markov decision
process rather than to the model gradient.

2.3. Secure Multi-Party Computation

As a sub-field of cryptography, secure multi-party computation allows multiple users
to calculate tasks together and output the calculation results in the case of mutual distrust.
Moreover, in the entire user set, two arbitrary users will know nothing about each other
except the output results. In terms of the implementation principle, MPC does not rely on
a single security algorithm but a comprehensive application of a variety of basic cryptog-
raphy tools, including homomorphic encryption [27], unintentional transmission, secret
sharing [28], symmetric encryption [29], asymmetric encryption [30,31], etc. Through the
combination of various algorithms, cipher text data can realize cross-domain flow and
security calculation. Peng et al. [29] proposed a security optimization algorithm using
symmetric encryption to achieve secure multimedia data transmission of vehicles.

3. Model Definition
3.1. A Basic Model Structure

The vehicular network system consists of a central server and a large number of
vehicles, as shown in Figure 1. The distributed vehicles obtain the information of traffic
signs through the camera in real-time, and train the model locally. Then, the trained model
parameters are uploaded to the central server after processing by local differential privacy
technology, which makes all data remain local and protects the privacy and safety of
vehicle owners.

In addition, a unified deep-learning model is shared for all vehicles. In this case,
vehicles only upload the model parameters to protect data privacy and ensure efficient
knowledge sharing. The parameters are received by the central server, and then decoded,
corrected, and aggregated. The server returns the updated parameters to each vehicle, until
the model is convergent.

The dataset generated by a single vehicle shares the same learning model with other
vehicles while training. Compared with a single vehicle, the vehicular network system
can obtain more different types of data. For example, one vehicle traveling in the city
may obtain data on vehicle speed limits, pedestrians, and traffic lights, while another
vehicle traveling in mountainous areas may obtain data drawing attention to falling rocks,
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continuous bends, uphills, etc. Therefore, using the same learning model, when vehicles
driving in mountainous areas enter the urban area, they can identify traffic signs faster and
better to ensure the safety and effectiveness of autonomous driving. Therefore, the model
can obtain better recognition accuracy and universality.

Local 
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Figure 1. Architecture diagram of the proposed BCFL-LDP for traffic sign recognition in autonomous
driving. The framework consists of two parts: the vehicle layer of the local training model and the
central server for aggregating model parameters.

3.2. Problem Definition

This paper constructs a vehicle-mounted network system composed of K vehicles
and a central server, in which the vehicle is represented by V = {vk}K

k=1 and the central
server is represented by CS. The vehicle takes photos with traffic signs as the original
data in real-time and then labels the data. We assume that the original data are imagek
and the corresponding label is labelk. For each group of data, Datek can be expressed
as Datek = (imagek, labelk). In traditional centralized learning, vehicles send all data,
including original data, location information, etc., to centralized processors (such as central
servers). In order to protect the private data of vehicles from being captured by attackers, a
federated learning framework is proposed for real-time traffic sign detection across vehicles.
In this framework, the vehicle can retain all data, train the deep learning model M = h(x, w)
locally, and then send the trained model parameter w to the central server, where x is the
dataset Date collected by the vehicles.

As a typical federated average learning framework, our purpose is to make the central
server protect the private information of all vehicles well. In order to achieve this, binary
encoding encryption and interference are needed for the model parameters trained locally
by the vehicle vk. Then, the encrypted model parameters are transmitted to the central
server for aggregation to ensure that the private data of all vehicles are not leaked.
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4. BCFL-LDP
4.1. Convolutional Neural Network

In order to better recognize traffic signs, a convolutional neural network (CNN) is
used to detect images captured by vehicle cameras. The input sample data of the vehicle vk
are set as xk, and the deep learning model can be expressed as follows:

h(xk, w) = FC(Pool(Conv(xk, wConv), wPool), wFC), (1)

where Conv(∗) , Pool(∗), and FC(∗) represent the convolution layer, pool layer, and full
connection layer, respectively, and w represents parameters corresponding to different
layers, which can be expressed as follows:

w = {wConv, wPool, wFC}. (2)

The prediction results of model h(xk, w) are expressed by the SoftMax function:

ypred = SoftMax(h(xk, w)). (3)

4.2. Federated Learning Based on Local Differential Privacy
4.2.1. Vehicle Layer

In order to prevent the model parameters from being leaked in the process of being
uploaded to the central server, a local differential privacy technology of federated learning
is introduced to deal with the privacy information contained in the parameters. A new
random perturbation method based on binary bits is then proposed. Thus, even if leaks
occur, the attacker will not obtain any useful information.

Suppose that the number of vehicles is K. For each iteration, every vehicle divides
its dataset into several parts of size M according to parameter M. Each piece of data is
updated locally by training round E, and the gradient of data loss is calculated. Then, the
gradient descent update is carried out to obtain the new local parameter wk.

wk ← wk − ηgt, (4)

where η is the learning rate, and gt is the mean model gradient.

gt =
K

∑
k=1

nk
n

gi. (5)

Before parameter wk is transmitted to the central server, vehicles perform a binary
conversion on wk and add a disturbance. The binary strings consist of three parts: the
symbol of the input, the integer part, and the decimal part. The positive and negative bits
of the input symbol are represented by 1 and 0, respectively. For ease of calculation, the
integer part is n bits, and the decimal part is d bits. So, the length of the binary string is
l = 1 + n + d.

The binary encoding processes are as follows:

• The initial value of a binary string of length l is set to 0.
• Model parameters are converted to binary strings and represented as bk.
• Each bit i on bk is added with random perturbation to obtain a new string b′k.

4.2.2. Central Server Layer

As we know from the above, the model parameter wk is binary encoded, so there are
only two results for each bit: 0 and 1. Assuming that the result of a bit in a binary string is
1, and its true proportion is π, but we do not know which one it is. Therefore, the model
parameters of all vehicles are counted to obtain the real proportion of bit 1. But, because of
privacy reasons, the vehicles answer the bit with probability p and answer the opposite
with probability 1− p.
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Perturbation statistics are the first proceeding. Suppose that in the statistical result,
the number of bits 1 is n1 and the number of bits 0 is n− n1, and Ji represents the answer
to the i bit. The probability of the two answers is as follows:

P(Ji = 1) = πp + (1− π)(1− p), (6)

P(Ji = 0) = (1− π)p + π(1− p). (7)

By correcting the above results, the likelihood function can be constructed as follow:

L = [πp + (1− π)(1− p)]n1 [(1− π)p + π(1− p)]n−n1 . (8)

Maximum likelihood estimation of π :

π̂ =
p− 1

2p− 1
+

n1

(2p− 1)n
. (9)

Mathematic expectations for π̂ :

E(π̂) =
1

2p− 1
[p− 1 + πp + (1− π)(1− p)] = π. (10)

It follows that π̂ is an unbiased estimate of π. Therefore, a corrected estimate of the
number of vehicle ends for which the bit is 1 can be obtained as follows:

N = π̂n =
p− 1

2p− 1
n +

n1

2p− 1
. (11)

Thus, the binary decoding process is as follows:

• The binary string b′k is received by the central server from the vehicles.
• The value 1 corresponding to each bit i of b′k in the central server is summed to

obtain B′k.
• Each B′k is corrected to obtain the statistical value Tk:

Tk =
p− 1

2p− 1
n +

B′k
2p− 1

. (12)

• The model parameter wk is obtained by aggregating the binary string T according to
its corresponding weights.

4.3. Model Aggregation Update

The vehicle model parameters wk in the central server are collected and aggregated
on average:

w̄ =
∑K

k=1 wk

K
. (13)

4.4. BCFL-LDP Method

Federated learning is proposed on the basis that participants retain local data. How-
ever, the attackers can obtain private data of vehicles by deducing model gradient or each
updated model parameter, which is still privacy leakage in essence. Therefore, if leaks
occur in the data transmission of participants (such as vehicles) and the central server, the
privacy and security of users cannot be protected.

To solve this problem, the BCFL-LDP method proposed in this paper applies local
differential privacy technology based on a random response mechanism. The BCFL-LDP
method is mainly divided into three steps to achieve the protection for private data. First
of all, binary conversion coding and random disturbance processes are performed on the
model parameters that need to be protected in the vehicle. Then, the received binary string
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is decoded, corrected, and averaged in the central server according to different disturbance
methods. Finally, the results are summarized in the server, and the model parameters
are aggregated (Algorithm 1).

Algorithm 1 Traffic sign recognitin based on BCFL-LDP.

Input: A set of raw provided by data owners X = {xk}K
k=1

Participated data owners V = {vk}K
k=1

Deep learning model h(xk, w)
Output: A trained global object detection model M

1: Initialize model parameter w0, maximum number of learning round R
2: for int r=1 to R do
3: for each vehicle vk ∈ V do
4: for each local epoch from 1 to E do
5: Update model parameters by Equation (4)
6: end for
7: Convert model parameter wk to binary string bk
8: Add random perturbations from bk to b′k
9: Send b′k to server CS

10: end for
11: CS sums the number 1 of each corresponding bit in all b′k to B′k
12: Correct B′k to Tk by Equation (12)
13: Convert Tk to wk by proportion value
14: Aggregat wi to obtain wt by Equation (13)
15: if the model does not converge then
16: goto 14
17: else
18: send the updated wt to all vehicles vi
19: end if The model parameters of all vehicles and the CS are updated once
20: end for The trained model is designated as the global object detection model M
21: return M

5. Experiment and Analysis
5.1. Dataset and Experiment Setup

We consider a dataset named the German Traffic Sign Detection Benchmark (GTSDB).
It contains 51,840 traffic sign images with 43 categories, among which 39,210 images
constitute the training set and 12,630 images constitute the test set. In this experiment, each
vehicle randomly samples the entire dataset.

A central server and 20 candidate vehicles are considered to constitute a vehicular
network system. The central server has a huge computing capacity, which can aggregate the
obtained model parameters globally and finally transmit them to the vehicles for updating.
Candidate vehicles have different categories of data. The size of the dataset owned by either
of them is the same. When the number of vehicles involved in training is [1,5,10,15,20], the
convergence times and classification accuracy of the model are analyzed, respectively.

In order to evaluate the advantages and disadvantages of the proposed method, the
experimental results of three commonly used methods are compared. This experiment is
completed on a Windows 10 system, NVIDIA GeForce RTX 3050 Laptop GPU.

In the experiments, the CNN model was chosen for its powerful ability to extract image
features. The learning rate was set to 0.0001 to stably and efficiently approach the optimal
solution. The batch size was set to 200 to balance computational efficiency and memory
usage while enhancing the model’s generalization capabilities. The maximum number of
training epochs was set to 500 to ensure that the model learns sufficiently and converges.

5.2. Experiment Results

In order to validate the significance of the results, the proposed BCFL-LDP method
was compared with the traditional baselines of the convolutional neural network (CNN),
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random forest (RF), and backpropagation (BP) methods. The superiority of the BCFL-LDP
method was validated from three perspectives: convergence time, loss, and accuracy.

We first evaluated the learning efficiency of this method. The learning rate was set to
0.0001, the batch was 200, and the maximum number of learning rounds was 500.

Figure 2 shows the differences in model accuracy of the four methods with the increase
in the number of training vehicles. As can be seen from the figure, the proposed BCFL-LDP
had the best accuracy in all cases. When only a small number of vehicles were involved, the
model maintained good accuracy, while the accuracy of the baseline methods decreased
significantly. Meanwhile, the error rate of the proposed BCFL-LDP was only 4.01%, which
is 56% lower than that of BP and RF and 68% lower than that of CNN.
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CNN
BCFL-LDP

Figure 2. The variation of global model training accuracy of four different methods with a different
number of training vehicles is illustrated. As the number of vehicles participating in the training
increases, the training accuracy of each method increases. At the same time, the proposed method
maintains the highest accuracy regardless of the number of training vehicles.

Figure 3 compares the model convergence time of the proposed method with the other
three baseline methods under different numbers of training vehicles. The four methods
generally reach a state of convergence around 100 epochs, with the proposed BCFL-LDP
method exhibiting the lowest loss value. It can be seen from Figure 3 that BCFL-LDP has
a long convergence time when there are fewer participating vehicles, which is roughly
the same as BP. When only five vehicles are involved, the convergence time of BCFL-
LDP is increased by 7% compared with CNN, which has the fastest convergence. The
convergence time of BCFL-LDP and the three baseline methods is approximately the same
when there are more vehicles involved. When the number of participating vehicles is 15,
the convergence time of BCFL-LDP only increases by 0.4% longer than that of CNN, with
the fastest convergence.
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Figure 3. The convergence time variation of four different methods with different number of training
vehicles is illustrated. When the number of training vehicles is 10, the convergence time gap between
the proposed BCFL-LDP and the three baseline methods starts to become small.

Figures 4 and 5 show the comparison results of the influence of BCFL-LDP and three
baseline methods on accuracy and loss when the training vehicle is 10. As can be seen
from the figure, the number of learning rounds required for BCFL-LDP convergence is the
least. This is not inconsistent with the above experimental results because each learning
round of BCFL-LDP consumes more time. At the same time, the accuracy of BCFL-LDF is
the best (up to 96.6%) when convergence is achieved. From Figure 5, it can be seen that
as the training epochs increase, the accuracy of the BCFL-LDP method always remains
the highest, and the convergence is very smooth. Finally, a comparison table was drawn
for the convergence time and model accuracy of four methods with a vehicle quantity of
10, as shown in Table 1. Based on the benchmark results of the most classic CNN method,
the BCFL-LDP method has 10% higher accuracy, while the convergence times of the four
methods are relatively similar.

Table 1. Comparisons on traffic sign recognition performance.

Model Methods

Performance CNN RF BP BCFL-LDP

Accuracy 1 104% 104% 110%

Convergence time 1 98% 102% 101%

Finally, we compared four traffic sign recognition methods when the training vehicle
is 10. Based on Table 1, the proposed BCFL-LDP had the highest accuracy, which was 110%
of the CNN. The convergence time of BCFL-LDP was 101% of the CNN. This shows that
compared with other baseline methods, the proposed BCFL-LDP has obvious advantages
in traffic sign recognition, with a slight sacrifice in time, but the cost is acceptable.
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Figure 4. The change trend of model loss with an increasing number of learning rounds was compared
between the proposed method and the three baseline methods. When the number of learning rounds
was 100, the loss of the four methods was below 0.5 and tends to converge, and the loss of the
proposed method was the lowest.
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Figure 5. The variation trend of model accuracy with the increase of learning rounds was compared
between the proposed method and the three baseline methods. As the number of learning rounds
increased, the model accuracy of each method increased and gradually converged, and the proposed
BCFL-LDP always achieved the highest accuracy.



Mathematics 2024, 12, 2229 12 of 13

6. Conclusions

In this paper, a federated averaging method based on the model parameter averaging
was proposed for intelligent traffic sign recognition in autonomous driving. This method
has a generalization ability and aims to achieve faster model convergence speed and higher
training accuracy.

In particular, a federated learning method based on local differential privacy tech-
nology was proposed, which uses a locally trained model and only uploads parameters
to the central server. This method can protect the privacy of vehicle users and effectively
improve the recognition accuracy of model training. On this basis, a new random pertur-
bation method based on binary bit string was proposed. An integrated BCFL-LDP was
also constructed. Before model parameters were uploaded to the central server, binary
encoding and disturbance were carried out. Therefore, even if parameters are leaked, no
privacy information of vehicle users will be exposed to the attacker. However, in extremely
complex or highly variable traffic environments, the recognition performance of BCFL-LDP
may be affected.

The experimental results show that the proposed BCFL-LDP has higher training
accuracy (up to 96%), approximately 6% higher than the three baseline methods, and has a
better convergence effect.

In the future, with the continuous development of autonomous driving technology,
it is necessary to further improve the real-time processing capability and computational
efficiency of BCFL-LDP and consider the crossing pedestrians. Meanwhile, exploring more
advanced privacy protection techniques and optimization algorithms to further enhance
the robustness and scalability of BCFL-LDP is also a topic worthy of in-depth research.
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