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Abstract: In quantum computing, noisy intermediate-scale quantum (NISQ) devices offer unprece-
dented computational capabilities but are vulnerable to errors, notably measurement inaccuracies
that impact computation accuracy. This study explores the efficacy of error mitigation techniques in
improving quantum circuit performance on NISQ devices. Techniques such as dynamic decoupling
(DD), twirled readout error extraction (T-REx) and zero-noise extrapolation (ZNE) are examined
through extensive experimentation on an ideal simulator, IBM Kyoto, and IBM Osaka quantum com-
puters. Results reveal significant performance discrepancies across scenarios, with error mitigation
techniques notably enhancing both estimator result and variance values, aligning more closely with
ideal simulator outcomes. The comparison results with ideal simulator (having expected result value
0.8284) shows that T-Rex has improved results on IBM Kyoto and enhanced average expected result
value from 0.09 to 0.35. Similarly, DD has improved average expected result values from 0.2492 to
0.3788 on IBM Osaka. These findings underscore the critical role of error mitigation in bolstering
quantum computation reliability. The results suggest that selection of mitigation technique depends
upon quantum circuit and its depth, type of hardware and operations to be performed.

Keywords: quantum computing; measurement error mitigation; NISQ

MSC: 68Q12

1. Introduction

Quantum computing is the ultimate game-changer in the world of technology, bringing
about revolutionary changes and unparalleled computational power. With its transfor-
mative potential, this cutting-edge technology promises to revolutionize industries. The
global quantum technology market, valued at approximately USD 875.49 million in 2022,
is projected to skyrocket to around USD 4312.09 million by 2030, reflecting a remarkable
compound annual growth rate (CAGR) of roughly 22.06% between 2023 and 2030 [1]. This
exponential growth underscores the escalating interest and investment in quantum com-
puting technologies worldwide. In 2015, Google and NASA reported a groundbreaking
achievement with their 1097-qubit D-Wave quantum computer, highlighting the trans-
formative capabilities of quantum computing [2]. The machine processed a task within
seconds that would take a classical computer 10,000 years to accomplish, demonstrating
the immense potential of quantum computing in solving optimization problems [3].
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Significant strides have been made in fabricating, controlling, and deploying quantum
computing systems in recent years, pushing qubit counts to approximately 1000 or more.
This development offers glimpses of potential advantages over classical computation meth-
ods in selected scenarios. However, realizing such advantages is impeded by various noise
sources and errors inherent in quantum computers, compromising their efficacy in tackling
problems of substantial scale. Quantum bits are highly susceptible to environmental distur-
bances, leading to computational errors. Three primary categories of errors afflict quantum
computing [4]:

1. Phase Flip Errors (Dephasing): Result from environmental factors causing a qubit to
lose phase information.

2. Bit Flip Errors (Depolarization): Arise when qubits flip states due to external influences
like thermal vibrations and others.

3. Gate Operation Errors: Errors introduced during the manipulation of qubits by
quantum gates.

In quantum computing, noise introduces deviations from the desired outputs, result-
ing in inaccuracies [5]. The cumulative effect of noise on quantum circuits necessitates
examining how each gate amplifies or alters the impact of errors and how noise occurs dur-
ing the final measurement stage due to several factors at different stages of computations.
During the final measurement stage, a more straightforward form of noise emerges. In this
phase, the circuit’s primary objective is to extract a bit string from the existing qubits as
an output. For an n-qubit final measurement, this process involves selecting one of the
2n possible states. To illustrate the noise within this framework, one can envision a scenario
where the measurement initially selects an output ideally without any noise. However,
subsequently, noise disrupts this ideal output by randomly perturbing it before presenting
it to the user.

Understanding of patterns and characteristics of quantum noise [6] and errors [5] is
essential for effectively mitigating their impacts on quantum computations. A common
understanding is that quantum noise can lead to errors, where the presence of noise in
quantum states or operations increases the likelihood of errors occurring during compu-
tational processes. Quantum noise poses a significant challenge in harnessing the full
potential of quantum computing, stemming from environmental factors like temperature
or electromagnetic radiation, which disrupt the delicate quantum states of qubits, lead-
ing to errors and system integrity issues [6]. Various types of quantum noise, including
thermal, phonon, and photon noise, originate from different sources and impact qubits
differently, with effects ranging from calculation errors to complete failures, particularly
pronounced in large-scale quantum systems [7]. Mitigation strategies such as measurement
error correction circuits, calibration circuits, error-correcting codes and dynamical decou-
pling techniques offer avenues to safeguard quantum systems from noise-induced errors,
enhancing reliability and paving the way for more robust quantum computing [8]. Here
are some critical aspects regarding the need for quantum error mitigation and correction:

1. Fragility of quantum states: Quantum states used in computing are exceedingly
delicate and prone to errors, with even minor disturbances causing computational
inaccuracies. For instance, a single absorbed or scattered photon can induce a qubit
flip, leading to errors.

2. Exponential error rate growth: With the quantum computer’s size expansion, error
probabilities escalate, with errors propagating throughout the system, resulting in
a steep rise in error rates. Hence, there is a crucial need for error detection and
correction mechanisms.

Quantum error correction [9] is vital for constructing large-scale quantum computers,
enabling error detection and correction crucial for reliable and accurate computation
outcomes. One important thing that must be discussed here is distinguishing between error
mitigation and correction. Error mitigation techniques aim to lessen the impact of errors
through statistical methods; Quantum Error Correction (QEC) directly detects and corrects
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errors [10]. Today, we are in the Noisy Intermediate-Scale Quantum (NISQ) era as quantum
devices have limited qubit counts and error rates, mitigating measurement errors emerges
as a critical imperative [11]. The NISQ era marks a pivotal phase in quantum computing,
wherein the focus shifts towards harnessing the potential of available quantum hardware
while navigating the constraints imposed by noise and errors. To address the challenges
posed by measurement errors and other noise sources, publications from Google Quantum
AI and International Business Machines Corporation (IBM) [12] showcase progress in
creating more stable logical qubits and fault-tolerant quantum gates. However, scalability
remains a significant concern, given various control signals required when scaling the
number of physical qubits. These approaches encompass error correction codes, error
mitigation strategies, and calibration protocols aimed at enhancing the performance and
reliability of quantum circuits.

In this paper, we have utilized a quantum circuit for simulating quantum bits through
Trotterization techniques on the ideal IBM simulator and on IBM quantum computers and
then mitigate the measurement error using multiple error mitigation techniques. The major
contributions of this paper are listed below.

1. The paper investigates quantum Trotter circuits (QTC) with some modifications and
evaluates their performance with error mitigation techniques.

2. It compares results from an ideal simulator with those from IBM Quantum Computers,
highlighting discrepancies.

3. Error mitigation techniques such as dynamic decoupling (DD), twirled readout er-
ror extinction (T-REx), and Zero-noise extrapolation (ZNE) are applied, and their
effectiveness is quantitatively analyzed.

4. Significant improvements in both expected values and variances (variance analysis
reveals varying degrees of stability and reliability among different error mitigation
techniques) are observed when error mitigation techniques are implemented.

5. This study identifies that DD, T-Rex and ZNE have different enhancement capabilities
depending upon circuit, its depth and type of quantum hardware.

6. Recommendations are made for selecting appropriate error mitigation techniques
based on overall performance.

7. The study underscores the challenges and opportunities in harnessing quantum
computers in the NISQ era.

8. The findings emphasize the importance of error mitigation techniques in enhancing
the reliability and accuracy of quantum computations on NISQ devices.

The remaining article is divided as follows: Section 2 discusses the IBM Quantum
resources and processor specifications used for the experimentation and readout & mea-
surement error concept, Section 3 describes in detail Trotterization, QTC and how they are
designed, Section 4 sheds light on the in-depth theory and mathematics behind different
error mitigation techniques, and Section 5 is reserved for Results and Section 6 presents
Discussion, followed by Section 7 which is the Conclusion. The overall steps adopted
during the implementation of the proposed methodology/experimentation are shown
in Figure 1.
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Figure 1. General layout and flow of investigations.

2. IBM Quantum Resources

In quantum computing, the choice of quantum processor can significantly impact
the success and efficiency of computational tasks. IBM offers several quantum processors,
each with unique characteristics and performance metrics. Here, the specifications and
error rates of two openly available IBM quantum processors—IBM Osaka (IBMO) [13],
IBM Kyoto (IBMK) [14]—are discussed in addition to one IBM quantum simulator. The
designed quantum circuits were implemented on these quantum hardwares/simulator and
their results were then improved by applying three error mitigation techniques for analysis
and comparison.

2.1. Processor Specifications

Table 1 highlights the detailed comparison of IBMK vs. IBMO based upon 10 parame-
ters, the details of which are given below [5–9,11–13].

Table 1. Technical specification comparison of IBM Kyoto vs. IBM Osaka.

Parameter IBM Kyoto IBM Osaka Relational Equation

Qubits 127 127 QubitIBMO
= QubitIBMK

EPLG 3.6% 3% ELPGIBMO < ELPGIBMK

CLOPS 5K 5K CLOPSIBMO = CLOPSIBMK

Median ECR Error 9.468 × 10−3 8.428 × 10−3 MECREIBMO < MECREIBMK

Median SX Error 3.142 × 10−4 2.630 × 10−4 MSEIBMO < MSEIBMK

Median Readout Error 1.720 × 10−2 2.290 × 10−2 MREIBMO > MREIBMK

Median T1 207.58 us 296.87 us T1IBMO > T1IBMK

Median T2 93.28 us 141.93 us T2IBMO > T2IBMK

Processor Type Eagle r3 Eagle r3 Similar
Version 1.2.38 1.1.8 IBM Kyoto version is more advanced
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1. Number of qubits: the available number of qubits in each system.
2. Error Probability per Logic Gate (EPLG): the likelihood of an error occurring during

the execution of a logical gate operation in a quantum processor.
3. Composite Logical Operations per Second (CLOPS): the computational speed of a

quantum processor, measuring the rate at which logical operations are executed.
4. Error Correcting Rate (ECR): the rate at which errors are corrected in a quantum system.
5. Median ECR Error (MECRE): the average error rate associated with quantum gates

operating within an error-corrected environment, providing insight into the reliability
and precision of computational outcomes.

6. Single-Qubit X Gate (SX): used to rotate around the Bloch sphere’s X-axis, altering the
state of a single qubit in a quantum circuit.

7. Median SX Error (MSXE): the median error rate related to the SX gate operation,
indicating the accuracy of single-qubit quantum operations.

8. Median Readout Error (MER): the average error rate during the measurement stage
of a quantum computation, reflecting the fidelity of output results.

9. Median T1/Coherence Time: the duration for which a quantum state can main-
tain its coherence or superposition, highlighting the stability and robustness of
quantum operations.

10. Median T2/Decay Time: the duration until the coherence of a quantum state is lost
due to environmental interactions, offering insight into the temporal limitations of
quantum computations.

The comparison between IBM quantum computers Kyoto and Osaka by measuring
the above-mentioned parameters [13,14] generates a general picture of technical details
and is presented in Table 1. The parameters shown in Table 1 were collected in July 2024
and they may improve as IBM is improving the performance of all their computers.

2.1.1. IBM Osaka

IBMO features 127 qubits but presents a slightly lower error rate of 3% EPLG uti-
lizing the same Eagle r3 architecture. However, it has a higher median readout error
of 2.290 × 10−2, potentially impacting computational accuracy despite its slightly longer
median T1 of 296.87 microseconds [14].

2.1.2. IBM Kyoto

IBMK, another 127-qubit processor, showcases a marginally higher error rate of 3.6%
EPLG compared to its counterparts. It operates on the Eagle r3 architecture, providing
similar CLOPS capabilities and basis gates. However, IBMK presents a median readout
error of 1.720 × 10−2 and a median T1 of 207.58 microseconds, indicating a balance between
error rate and stability [15].

2.1.3. IBM QASM Simulator

IBM QASM simulator (IBMQS) is a tool for simulating quantum circuits, providing
ideal results, environment and realistic models incorporating noise [16]. Quantum As-
sembly Language (QASM) is the language used to describe quantum circuits and define
operations and transformations performed on qubits. With 32 qubits, the simulator allows
for the exploration and analysis of various quantum algorithms and protocols. Unlike
IBM’s actual quantum computers, which are subject to physical limitations and imperfec-
tions, the QASM simulator operates purely in software, offering a controlled environment
for experimentation. While real quantum devices showcase unique error rates and charac-
teristics, the QASM simulator provides a controlled environment where users can explore
quantum circuits’ behavior without physical hardware constraints.

2.1.4. Computer Resources

Initial circuit testing and quantum experimentation were conducted in Python 3.9 on
a Windows OS, powered by an Intel Core i9-9700F CPU running at 3.00 GHz, supported
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by 16 GB of RAM, and a 2x RTX 3090 GPU with 48 GB of GPU memory for enhanced
performance. The IBM quantum platform was accessed using an RTX 3090 GPU and all
results were simulated and collected from the IBM platform.

2.2. Readout Assignment Error and Measurement Error

Readout assignment error [16] occurs when the outcome of a measurement does not
match the expected outcome based on the assigned logical state. Mathematically, if we
denote the assigned logical state as |ψ〉 and the observed outcome as |m〉, the readout
assignment error Preadout can be quantified as follows:

Preadout = Pr(ψ | m) (1)

This error arises due to imperfections in the readout process, such as crosstalk between
qubits, imperfect calibration of measurement devices, or noise in the measurement appara-
tus. It can be estimated during the device calibration process by comparing the expected
logical states with the observed outcomes.

Measurement error [17] refers to inaccuracies in the measurement process itself, en-
compassing various sources of noise and imperfections. It includes errors stemming from
limitations of the measurement devices, environmental noise, and decoherence effects
during the measurement operation. While devices can estimate these errors through
statistical analysis, some transient and environmental factors may not be fully captured.
Mathematically, it can be expressed as follows:

PMeasurement = Pr
(
ψ | m′) (2)

where |m′〉 represents the true quantum state measured with error.
Figure 2 provides a detailed visualization of the readout assignment error for each

qubit in the IBMK (Figure 2a) and IBMO (Figure 2b) quantum processors. The x-axis
represents the individual qubits number, and the y-axis shows the readout assignment
error values. Higher readout assignment error values indicate qubits that are more prone
to readout errors. This figure shows that qubit numbers 117 and 78 in IBMK and IBMO
respectively had the highest readout assignment error. Roughly, it shows that 7 percent
of the total qubits are more prone to errors. This figure is essential for understanding
the distribution and severity of readout errors across different qubits in both processors.
Figure 3 illustrates the error connection rates between pairs of qubits with eagle architecture.
The connection error rates corresponding to IBMK (Figure 3a) and IBMO (Figure 3b) clearly
show that roughly 7% of connections have more pairwise error trends. The x-axis shows
the pairs of qubits involved in the error connection rate and the y-axis represents the error
connection rate value. The data utilized in plotting Figures 2 and 3 were acquired from the
IBM platform in July 2024 [11–13].
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Measurement error [17] and readout assignment error [16] are distinct in quantum
computing. Measurement error refers to inaccuracies arising from imperfections in the
measurement process itself, including noise in measurement devices, environmental dis-
turbances, and decoherence effects during the measurement operation. It encompasses a
broad range of factors affecting the fidelity of measurement outcomes. In contrast, readout
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assignment error specifically pertains to discrepancies between the expected and observed
outcomes due to imperfections in the readout process, such as crosstalk between qubits,
calibration errors in measurement devices, or noise in the readout apparatus. Unlike mea-
surement error, readout assignment error focuses solely on errors related to the correct
assignment of logical states during the measurement operation. Therefore, while mea-
surement error encompasses various sources of inaccuracies in measurement, readout
assignment error is a specific type of error that occurs during the assignment of measured
outcomes to logical states. To address both types of errors, we apply error mitigation
techniques, including DD, T-REx, and ZNE aiming to reduce the impact of these errors
and improve the reliability of quantum computations. These techniques help to encompass
inestimable errors by providing a more stable measurement environment, enhancing the
overall accuracy of quantum circuits simulated on IBM quantum computers. The focus
of this paper is to apply mitigation techniques to reduce generated measurement error in
quantum circuits simulated on IBM quantum computers.

3. Quantum Trotter Circuit
3.1. Hamiltonian in Quantum Mechanics

“Hamiltonian solution” typically refers to finding the eigenvalues and eigenvectors of
a Hamiltonian operator, which describes the total energy of a system. A Hamiltonian is a
mathematical operator that corresponds to the total energy of a system, encompassing both
kinetic and potential energies. Solving the Hamiltonian involves finding its eigenvalues
(possible energy levels of the system) and eigenvectors (quantum states corresponding to
those energy levels).

3.2. Trotter-Suzuki Decomposition

The Trotter-Suzuki decomposition is a method to approximate the exponential of a
sum of non-commuting operators. For a Hamiltonian H that can be decomposed into a
sum of simpler terms H = H1 + H2 + · · · + Hn, the time evolution operator e−iHt can
be approximated as: e−iHt ≈ e

−iH1t
ne e

−iH2t
ne . . . e

−iHnt
ne as n → ∞. This allows the complex

exponential to be broken down into a sequence of simpler operations, each involving only
one part of the Hamiltonian.

3.3. Trotterization

In quantum computing, Trotterization is a method used to approximate the evolution
of a quantum system over time by decomposing the time evolution operator into a series
of small, discrete steps [18]. This approach is particularly useful for simulating complex
quantum systems which are difficult to solve analytically. Several Trotterization techniques
have been developed to improve the accuracy and efficiency of quantum simulations:

First-Order Trotterization: This technique involves dividing the time interval into
equal subintervals and applying the Trotter-Suzuki decomposition with only one Trotter
step (m = 1) [19].

Higher-Order Trotterization: Higher-order Trotterization methods utilize multiple
Trotter steps (m > 1) to achieve higher accuracy. By incorporating additional terms in the
Trotter-Suzuki expansion, higher-order methods reduce the Trotterization error [20].

Adaptive Trotterization: Adaptive Trotterization techniques dynamically adjust the
number of Trotter steps based on the local properties of the Hamiltonian. This adaptive
approach optimizes the trade-off between accuracy and computational cost [21].

3.4. Quantum Trotter Circuit (QTC)

For this study, a Trotter circuit is a quantum circuit that implements the Trotter-Suzuki
decomposition. It breaks down the unitary evolution e−iHt into a series of gates that
correspond to the simpler exponentials eiHkt/n. This allows the quantum computer to
simulate the evolution of a quantum system under a Hamiltonian by applying a sequence
of simpler quantum gates.
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QTC is a quantum circuit designed to approximate the time evolution operator of a
quantum system by iteratively applying smaller unitary operators [18–21]. Let H(t) denote
the time-dependent Hamiltonian of the quantum system. The time evolution operator U(t)
corresponding to H(t) can be expressed as follows:

U(t) = e−iH(t) (3)

The Trotter-Suzuki decomposition approximates U(t) as a product of n commuting
operators:

U(δt) ≈ e−iH1 δte−iH2 δt. . . e−iHn δt (4)

where the time step δt = t
n , and H1, H2, ..., Hn are the components of the Hamiltonian.

The Trotterization error decreases with decreasing δt.
Algorithm 1 constructs Trotter circuits iteratively based on two parameters, number

of qubits and number of Trotter steps. It initializes by defining the number of qubits and
creates a quantum circuit object to build the Trotter layer. It then proceeds to construct each
Trotter circuit by iterating through defined Trotter steps. For each step, a new quantum
circuit object is created. Within each circuit construction loop, Rx gates with a specified
angle are applied to all qubits, followed by CNOT gates between selected qubit pairs and
Rz gates with predefined angles applied to specific qubits. This sequence is repeated for
each increment of circuit depth. The resulting Trotter circuit for each iteration is appended
to a list. Finally, the algorithm measures the final state of each circuit. It returns the list of
constructed Trotter circuits, each tailored to simulate the time evolution of a Hamiltonian
through sequential approximations using quantum gates.

Algorithm 1: Constructing Trotter Circuits

Require: nqubits, NTrottersteps
Initialization (1–2)
1: Define the number of qubits: nqubits
2: Create a Quantum circuit object for the Trotter layer
Construct Trotter circuits (3–14)
3: for i = 1 to NTrottersteps do
4: Create a new Quantum Circuit object for the Trotter circuit
5: for j = 1 to i do
6: Apply Rx gates with angle 0.1 to all qubits
7: Apply CNOT gates between qubits 0 and 1, and qubits 2 and 3
8: Apply Rz gate with angle −0.2 to qubits 1 and 3
9: Apply CNOT and then Rz gates
10: end for
11: Append the Trotter circuit to the list of Trotter circuits
12: Measure the final state of the circuit
13: end for
14: return Final Trotter circuits

Simulating quantum Trotter circuits on a quantum computer is crucial because it
enables the efficient approximation of the exponential of a Hamiltonian operator. This
task is computationally intensive on classical hardware. The Trotter-Suzuki decomposi-
tion breaks down the exponential of a sum of non-commuting Hamiltonian terms into a
sequence of simpler operations. On a classical computer, this process involves significant
computational overhead due to the need for high-precision matrix exponentiation and
manipulation, often requiring techniques such as diagonalization or numerical integration.
The classical methods, although effective for small systems, become infeasible for larger
quantum systems due to the exponential growth of the Hilbert space with the number of
particles or qubits. Consequently, simulating these circuits on a quantum computer not
only aligns naturally with the quantum nature of the problem but also leverages quantum
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parallelism and entanglement to perform these calculations exponentially faster, thereby
making the simulation of complex quantum systems and their time evolution tractable.

Trotter circuits and their modifications with different depths and gates are designed
so that error analysis could be thoroughly investigated. The quantum circuit constructed
in Figure 4a–e consists of a Trotter layer as defined in Algorithm 1. Each subfigure (a)
through (e) corresponds to circuits with 1, 2, 3, 4, and 5 Trotter steps, respectively. These
circuits are constructed by implementing the Trotter layer defined in Algorithm 1. The
quantum circuit in each subfigure uses a total of 4 qubits, with multiple Trotter layers
repeated to simulate the time evolution of a quantum system. Each iteration in the circuit
represents a discrete time step, enabling the simulation of quantum dynamics over several
intervals for a more accurate depiction of the system’s behavior. TC1 with 1 Trotter step
(shown in Figure 4a): depth is 7 containing 13 gates, TC2 with 2 Trotter steps (shown in
Figure 4b): depth is 14 containing 26 gates, TC3 with 3 Trotter steps (shown in Figure 4c):
depth is 21 containing 39 gates, TC4 with 4 Trotter steps (shown in Figure 4d): depth
is 28 containing 52 gates, and TC5 with 5 Trotter steps (shown in Figure 4e): depth is
35 containing 65 gates. The percentage increase in the number of gates and depth between
each successive Trotter circuit is consistent at 100% with respect to TC1. One important
point is that depth means number of sequence for applying gates. This linear scaling shows
the growing complexity with each additional Trotter step, making classical simulation
impractical due to exponential computational growth. Quantum computers, however, can
handle this increased complexity more efficiently through parallelism and entanglement,
solving these problems in a feasible time frame compared to classical methods.
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4. Error Mitigation Techniques

Error mitigation techniques play a crucial role in improving the performance of
quantum circuits on quantum computers [22]. By applying techniques such as DD, T-
REx, ZNE and others, it is possible to mitigate the adverse effects of errors, particularly
measurement errors, which are common in NISQ devices. When applied to Trotter circuits,
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these error mitigation techniques help to improve the accuracy and reliability of quantum
computations performed on quantum computers, leading to more consistent and reliable
results. The details of applied error mitigation techniques are discussed below.

4.1. Dynamic Decoupling

DD is a technique used to mitigate measurement errors in quantum circuits as de-
picted in Algorithm 2. It involves the application of sequences of pi-pulses at specific
time intervals. These pulses flip the qubit’s state, effectively mitigating the noise and
measurement errors [23]. By carefully designing the timing and sequence of these pulses,
DD can significantly improve the reliability of quantum computations, especially in the
presence of noisy environments. Mathematically, DD can be represented by the application
of a sequence of pulses, at regular intervals τ:

DD ≈ f (Xk(α)) = f (exp(−i(α/2)k)) (5)

where X is the Pauli-X operator, and α is the angle of rotation around axis k and the total
number of pulses applied depends upon the application/circuit under consideration. This
sequence effectively introduces a series of perturbations that counteract the accumulation
of noise and measurement errors over time.

DD serves as a potent tool for mitigating measurement errors by continuously “re-
setting” the qubit’s state throughout the computation. This continual intervention helps
to suppress the influence of environmental noise and fluctuations, thereby enhancing the
fidelity of measurement outcomes. Additionally, the flexibility in designing the timing
and composition of pulse sequences allows for tailored error mitigation strategies that
can adapt to specific quantum circuit architectures and noise profiles. Algorithm 2 shows
the detailed steps of DD applied to reduce measurement error on IBMO and IBMK. This
algorithm aims to mitigate decoherence effects in quantum systems by applying a series
of control pulses. It begins by initializing the qubits to a known state. Over N iterations,
for each qubit i, it applies a pulse π to flip the qubit’s state, waits for a duration τ to
allow environmental noise to accumulate, and then applies another pulse to reverse the
state back. This sequence of operations effectively introduces periodic interruptions in
the qubit evolution, reducing the impact of noise-induced phase errors that can degrade
quantum information. By repeatedly applying these pulses, the algorithm aims to extend
the coherence time of the qubits, thereby preserving quantum states and enhancing the
reliability of quantum computations. The final output is the decoupled quantum state |φ〉,
which ideally retains its coherence for a longer duration compared to unmitigated systems.

Algorithm 2: Dynamic Decoupling Algorithm

Require: nqubits, N Number of pulses, τ Pulse duration
Initialization (1)
1: Apply initial state preparation to the qubits
DD to prepared state (2–7)
2: for i = 1 to N do
3: Apply a π-pulse to each qubit
4: Wait for a duration of τ

5: Apply another π-pulse to each qubit
6: end for
7: return Decoupled |∅ 〉

4.2. Twirled Readout Error Extinction (T-REx)

T-REx, an error mitigation technique, uses Pauli twirling to diminish the noise induced
during the quantum measurement process, assuming no specific form of noise, render-
ing it highly versatile and efficient [24]. T-REx helps to mitigate measurement errors by
introducing diversity in the quantum state prior to measurement, thereby reducing the
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impact of systematic errors associated with the readout process. By “twirling” the quantum
state, T-REx effectively spreads out the probability distribution of measurement outcomes,
making it less susceptible to biases and inaccuracies in the measurement apparatus. One
notable advantage of T-REx is its versatility and adaptability to different quantum comput-
ing architectures and error models. The randomized nature of the twirling operation allows
for flexible implementation strategies that can be tailored to specific hardware configura-
tions and noise profiles. Algorithm 3 shows the detailed steps of T-REx applied to reduce
measurement error on IBMO and IBMK. This algorithm is designed to mitigate readout
errors in quantum computing systems using a statistical approach. It operates on qubits
and involves two sets of data: f (ρ0), which represents measurements of the zero state with
randomized bit flips, and f (ρ), which represents measurements of the desired (potentially
noisy) quantum state with the same randomized bit flips. Over N iterations, the algorithm
calculates a figure of merit f (ρ0) for the zero state data and f (ρ) for the desired state data
before measurement. It then computes the ratio f (ρ0)

f (ρ) to quantify the difference between
the desired and measured states, thereby correcting for systematic errors introduced during
measurement. By iterating this process, the algorithm aims to improve the accuracy of
quantum state measurements by statistically adjusting the observed outcomes based on
the relative probabilities derived from the initial data sets f (ρ0) and f (ρ). The corrected
measurement outcome is returned, providing a more reliable representation of the intended
quantum state despite the presence of readout errors.

Algorithm 3: Twirled Readout Error Extinction Algorithm

Require: nqubits, ρ0: Data for the zero state with randomized bit flips, ρ: Data for the desired
(noisy) state with randomized bit flips.
1: for i = 1 to N do:
2: Calculate f(ρ0) for the zero state data—before measurement
3: Calculate f(ρ) for the desired state data—before measurement
4: Compute the ratio f(ρ)

f(ρ0)

5: end for
6: return Corrected measurement outcome

4.3. Zero-Noise Extrapolation

This involves computing the expectation value at various noise levels and extrapolat-
ing the ideal expectation value to the zero-noise limit [25]. ZNE facilitates the mitigation of
measurement errors by effectively “correcting” for the distortions introduced by noise in
the measurement process. By extrapolating measurement outcomes to a noise-free regime,
ZNE provides a more accurate representation of the underlying quantum state, thereby
reducing the impact of measurement errors as shown in Algorithm 4. This algorithm aims
to estimate the ideal expectation value 〈ϕ|O|ϕ〉 of an observable O in a quantum system by
leveraging data obtained from multiple noise levels. The algorithm initializes by defining
the number of qubits n, setting the number of noise levels N, and choosing an extrapolation
model f (·). In Step 1, noise scaling techniques are applied to increase the noise levels in
the quantum system intentionally. This results in obtaining noisy expectation values for
O across different levels of noise. In Step 2, the algorithm fits the chosen extrapolation
model f (·) to the measured noisy expectation values. By extrapolating these values to the
noiseless limit (zero noise), the algorithm estimates the ideal expectation value 〈ϕ|O|ϕ〉
under ideal conditions. This approach helps to mitigate the impact of noise in quantum
computations, allowing for more accurate predictions of quantum states and observables
even in the presence of significant environmental disturbances. One of the key advantages
of ZNE is its ability to adapt to different noise profiles and error sources encountered in
quantum computing systems, thereby optimizing the mitigation of measurement errors.
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Algorithm 4: Zero-noise Extrapolation Algorithm

Require: nqubits, Number of noise levels N, Extrapolation model f (.)
Ensure Estimated ideal expectation value < ∅ | O | ∅ >
Initialization (1–3)
1: Define the number of qubits: n
2: Set the number of noise levels: N
3: Choose an extrapolation model: f (.)
Step 1: Intentionally scale noise (4–5)
4: Apply noise scaling techniques to increase noise levels
5: Obtain noisy expectation values for different noise levels
Step 2: Extrapolate to the noiseless limit (6–8)
6: Fit the extrapolation model f (.) to the measured noisy expectation values
7: Estimate the ideal expectation value < ∅ | O | ∅ > at zero noise using the fitted model
8: return Estimated ideal expectation value < ∅ | O | ∅ >

4.4. Techniques Comparison

The comparison of methods mentioned in Table 2 gives a brief overlook on mitigation
techniques those enhances the accuracies of quantum computations in different scenarios.
The core aim of researchers in quantum computation field is to stabilize quantum computa-
tions, aligning observed outcomes closer to theoretical predictions. The global expectation
serves as a metric of success, reflecting the cumulative impact of error mitigation strategies
on quantum algorithm performance. As quantum computing evolves towards practical
applications, the requirement of refining quantum techniques becomes pivotal for achiev-
ing reliable and reproducible results essential for advancing quantum technology across
scientific, industrial, and computational domains.

Table 2. Theoritical Comparison of Error Mitigation Techniques.

Aspect Dynamic Decoupling Twirled Readout Error Extinction Zero-Noise Extrapolation

Concept Applies sequences of
pi-pulses to mitigate noise

Introduces randomness via Pauli
twirling to reduce readout errors

Extrapolates expectation
values to zero-noise limit

Applicability
Effective in noisy
environments and for long
coherence times

Versatile across different quantum
computing architectures

Adaptable to various noise
profiles and error sources

Implementation Flexibility Requires precise timing and
sequence design of pi-pulses

Flexible due to randomized
nature of Pauli twirling

Depends on accurate
characterization of noise
characteristics

Effectiveness
Effective in reducing
decoherence and
measurement errors

Efficient in spreading out
probability distribution of
outcomes

Effective in correcting
distortions caused by noise

Quantum System Impact Acts periodically to counteract
noise accumulation

Introduces variability to mitigate
systematic readout errors

Improves fidelity by
extrapolating to noise-free
conditions

Practical Complexity
Complex due to timing
constraints and pulse
sequence design

Moderate complexity in
implementation, depends on
hardware specifics

Complex in data processing
and noise characterization

5. Results

QTCs comprises four qubits in total, and each Trotter layer is iteratively replicated/
modified to generate a sequence of Trotter circuits. Trotter circuits are shown in Figure 4a–e
as TC1, TC2, TC3, TC4 and TC5. Each of the circuits TC1–TC5 have been implemented on
both of quantum hardware, i.e., IBMO & IBMK with and without three error mitigation
techniques. Additionally, all Trotter circuits TC1–TC5 have been simulated on the IBM
QASM simulator (SIMIBMQ). Each iteration corresponds to a time step in the quantum
system’s evolution, as depicted in Figure 5 illustrating the quantum circuit at each Trotter
step. Figure 5a–c depicts the results related to IMBK and Figure 5d–f presents results
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corresponding to IBMO. Each of the subfigures in Figure 5 contains estimator value results
related to SIMIBMQ in black for each step corresponding to TC1–TC5 respectively against
state <zzzz>. The results of Trotter circuits running on IBMK & IBMO without mitigation
techniques are shown in red (Figure 5a–e). Similarly, Trotter circuits run on IBMK & IBMO
with mitigation techniques (DD, T-REx & ZNE) are shown in light blue, yellow orange,
and purple (Figure 5a–c) and in blue, green and purple (Figure 5d–f), respectively. As we
progress from TC1 to TC5, there is a noticeable increase in the percentage difference of the
estimator value results across all cases, indicating a rise in error levels with the complexity
of the circuits, as displayed by Figures 6–10 and Table 3.
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Table 3. Results Obtained After Ideal Simulator RIS, IBMK and IBMO.

Parameters RIS RKN RKDD RKT-REx RKZNE RON RODD ROT-REx ROZNE

E(X)TC1
0.982 0.156 0.318 0.813 0.25 0.628 0.686 0.7945 0.7586

E(X)TC2
0.936 0.134 0.224 0.363 0.11 0.358 0.508 0.4704 0.4626

E(X)TC3
0.836 0.13 0.168 0.3 0.137 0.166 0.354 0.168 0.1684

E(X)TC4
0.762 0.018 0.114 0.292 0.023 0.05 0.21 0.0648 0.079

E(X)TC5
0.626 0.012 0.04 0.015795 0.03016 0.044 0.136 0.01 0.0132

E(X)TCavg
0.8284 0.09 0.1728 0.356759 0.110032 0.2492 0.3788 0.30154 0.29636

σ2
TC1 0.03567 0.982044 0.898876 15.183124 0.949824 0.0591 0.6056 0.5294 0.4567

σ2
TC2 0.1239 0.9831 0.949824 15.712896 0.96 0.1828 0.8718 0.742 0.8234

σ2
TC3 0.3011 0.999676 0.971776 15.754814 0.979836 0.2638 0.9724 0.8747 0.9156

σ2
TC4 0.41935 0.999856 0.987004 15.759492 0.96 0.31358 0.88908 0.8167 0.83874

σ2
TC5 0.60812 0.999856 0.9984 15.844637 0.96 0.4642 0.9975 0.9559 0.9987

σ2
Tavg 0.29762 0.9929064 0.961176 15.650993 0.961932 0.25669 0.86727 0.78374 0.80662
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5.1. Metrics to Evaluate Quantum Trotter Circuit Results

To evaluate QTC results, the percentage difference is calculated for both expected
values and variances using formulas mentioned in Equations (6)–(11). For estimator value
results, the formula compares result between SIMIBMQ and IBM Quantum Computers
IBMO/IBMK (IBMQC) as well as results with no mitigation and those with error mitigation
techniques. Similarly, for variances, the percentage difference is computed using the same
comparisons. These formulas enable quantitative assessment of the effectiveness of error
mitigation techniques and the accuracy of quantum computations.

%∆ =
| E(X)SimIBMQ

− E(X)IBMQC
|

E(X)SimIBMQ

× 100 (6)

%∆ =
| σ2

SimIBMQ − σ2
IBMQC |

σ2
SimIBMQ

× 100 (7)
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%∆ =
| E(X)no mitigation − E(X)error mitigation |

E(X)no mitigation
× 100 (8)

%∆ =
| σ2

no mitigation − σ2
error mitigation |

σ2
no mitigation

× 100 (9)

%∆ =
| E(X)SimIBMQ

− E(X)error mitigation |
E(X)SimIBMQ

× 100 (10)

%∆ =
| σ2

SimIBMQ − σ2
error mitigation |

σ2
SimIBMQ

× 100 (11)

5.1.1. CASE A—Ideal Simulator vs. Quantum Computers (IBMO & IBMK) Results without
Error Mitigation Techniques

Figure 6 represents results of estimator value results (a) and variance (b) corresponding
to SIMIBMQ (green bars) versus both IBMO (blue bars) and IBMK (red bars). The percentage
difference of estimator value results and variances are shown in teal (SIMIBMQ vs. IBMO)
and purple (SIMIBMQ vs. IBMK) lines utilizing Equations (6) and (7), respectively. These
results generally show smaller deviations from the SIMIBMQ compared to IBMO as shown
in Figure 6, with a percentage difference ranging from 4.47% to 94.73% for expectations
and 12.38% to 65.14% for variances. IBMK results exhibit larger difference, ranging from
25.84% to 94.73% for expectations and 25.34% to 637.37% for variances. Although IBMO
performs better in expectation values as compared with IBMk, n general, both quantum
computers demonstrate significant discrepancies from the SIMIBMQ.

5.1.2. CASE B—Ideal Simulator vs. IBMk Results with Error Mitigation Techniques

Figure 7 depicts results of estimator value results (a) and variance (b) corresponding
to SIMIBMQ (green bars) versus three mitigation techniques: DD (mint green bars), T-REx
(coral pink bars) and ZNE (mustard yellow bars) applied after each TC1–TC5 on IBMK.
The percentage difference of estimator value results (Figure 7a,b) are shown in navy blue
line (SIMIBMQ vs. IBMk with DD technique), dark green line (SIMIBMQ vs. IBMk with
T-REx technique) and dark red line (SIMIBMQ vs. IBMk with ZNE technique) utilizing
Equations (10) and (11). In Case B, substantial improvements are evident as shown in
Figure 7. In general comparison of IBMk results with DD, T-REx & ZNE implementa-
tion versus SIMIBMQ, has shown percentage difference ranges [67.59 93.58], [17.20 97.48]
& [74.52 96.99] respectively for expectation values and [64.18 2404.42], [57.95 384.84] &
[54.46 600.16] respectively. For Trotter Circuits on IBMk, ZNE technique yielded lowest
average expectation value of 0.110032 and T-REx technique has shown lowest % difference
of 60.28% among other mitigation techniques. Similarly, the variance comparison shows
that, ZNE technique yielded lowest average variance value of 0.1100384 and lowest %
difference of 187.37%. Therefore, T-Rex technique improves estimator results more closer to
simulator value and ZNE technique enhances variance value approaching simulator value.

5.1.3. CASE C—IBM Kyoto Results without Error Mitigation vs. Error
Mitigation Techniques

Figure 8 depicts results of estimator values and variance corresponding to IBMK with
and without error mitigation techniques. The estimator result (Figure 8a) and variance
(Figure 8b) values without mitigation techniques are shown in carrot orange bars, and
estimator result values are shown after applying mitigation techniques DD (mint green
bars), T-REx (coral pink bars) and ZNE (corn yellow bars) implemented after each TC1-
TC5 on IBMK. The percentage differences of estimator result (Figure 8a) and variance
(Figure 8b) are shown in navy blue line (IBMk without mitigation technique vs. IBMk
with DD technique), green line (IBMk without mitigation technique vs. IBMk with T-REx
technique) and dark red line (IBMk without mitigation technique vs. IBMk with ZNE
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technique) utilizing Equations (8) and (9). In general comparison of IBMk results with and
without error mitigation techniques, DD, T-REx & ZNE has shown percentage difference
ranges [29.23 533.3], [31.63 1522.22] & [5.38 151.33] respectively for expectation values and
[0.14 8.47], [1444.41 1584.02] & [2.01 3.90] respectively for variance values. These results
show that implemented mitigation techniques has major difference with results produced
without mitigation techniques.

5.1.4. CASE D—Ideal Simulator vs. IBM Osaka Results with Error Mitigation Techniques

Figure 9 depicts results of estimator values (a) and variance (b) corresponding to
SIMIBMQ (green bars) versus three mitigation techniques: DD (light pink bars), T-REx
(purple bars) and ZNE (navy blue bars), applied after each TC1-TC5 on IBMO. The per-
centage differences of estimator result (Figure 9a) and variance (Figure 9b) are shown
in navy blue line (SIMIBMQ vs. IBMO with DD technique), green line (SIMIBMQ vs.
IBMO with T-REx technique) and dark red line (SIMIBMQ vs. IBMO with ZNE tech-
nique) utilizing Equations (10) and (11). In general comparison of IBMO results with
DD, T-REx & ZNE implementation versus SIMIBMQ, has shown percentage difference
ranges [30.11 78.26], [19.04 115.37] & [22.75 97.89] respectively for expectation values and
[64.17 1596.47], [57.28 1388.60] & [64.45 1179.05] respectively for variance values. For Trotter
Circuits on IBMO, ZNE technique yielded lowest average expectation value of 0.29636 and
DD technique has shown lowest % difference of 56.82% among other mitigation techniques.
Similarly, the variance comparison shows that, T-REx technique yielded lowest average
variance value of 0.78374 and ZNE has lowest % difference of 422.68%. Therefore, DD
technique improves estimator results more closer to simulator value and T-Rex (compared
to others) technique enhances variance value approaching simulator value.

5.1.5. CASE E—IBM Osaka Results without Error Mitigation vs. Error
Mitigation Techniques

Figure 10 depicts results of estimator result values and variance corresponding to
IBMO with and without error mitigation techniques. The estimator result (Figure 10a)
and variance (Figure 10b) values without mitigation techniques are shown in scarlet red
bars while expected values are shown after applying mitigation techniques DD (light pink
bars), T-REx (purple bars) and ZNE (blue bars) implemented after each TC1-TC5 on IBMO
utilizing Equations (8) and (9). In general comparison of IBMO results with and without
error mitigation techniques, DD, T-REx & ZNE has shown percentage difference ranges
[9.24 320], [1.20 318.18] & [1.44 70.91] respectively for expectation values and [115.61 924.05],
[106.78 796.94] & [115.76 673.90] respectively for variance values. These results show that
implemented mitigation techniques has major difference with results produced without
mitigation techniques.

6. Discussion

The following points can be summarized after going through the results collected
and analyzed.

Disparity in Performance: The substantial differences observed between the results
from the ideal simulator and the real quantum computers without error mitigation tech-
niques may be due to various factors. These could include inherent noise and imperfections
in the physical quantum hardware, environmental disturbances during computation, and
limitations in qubit connectivity and coherence times [26]. QTC based upon Hamilto-
nian [27] are potential candidate for error mitigation analysis.

Most Effective Error Mitigation Technique: Among the error mitigation techniques
applied to IBMK and IBMO, ZNE appears to be the most effective in improving the expected
values. Significant improvements are observed in the expectation values after applying
ZNE compared to DD and TRE-x, indicating its superior error suppression capability. But
in general, the selection of error mitigation technique depends upon several factors for
example circuit design, circuit depth, type of gates utilized and quantum hardware nature.
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Variance Analysis: Analysis of the variances across different parameters suggests
varying degrees of stability and reliability among the error mitigation techniques. T-REx
consistently demonstrates lower variances compared to DD and ZNE, indicating better
error suppression and improved stability in quantum computations.

Performance Comparison: When comparing the error mitigation techniques applied
to the quantum computers IBMK and IBMO, the results indicate that IBMO shows more
closer results with ideal simulator both in expected values and variances based upon their
average values related to all QTCs.

Effectiveness Across Parameters: While error mitigation techniques generally improve
both the expected values and variances, there are instances where certain techniques are
less effective. Factors contributing to these variations may include the specific error sources
prevalent in each parameter, the complexity of the quantum circuit, and the compatibility
of the error mitigation technique with the given quantum computer [28].

Recommended Error Mitigation Technique: For IBMK, T-REx is better performing due
to reason that it improves the results closer to SIMIBMQ as compared to other mitigation
techniques. Similarly, For IBMO, DD is better performing due to reason that it improves the
results closer to SIMIBMQ as compared to other mitigation techniques.

Implications for the NISQ Era: These findings underscore the challenges and oppor-
tunities in harnessing the potential of quantum computers in the NISQ era. While error
mitigation techniques offer significant improvements in computation accuracy, further
research and advancements are needed to address the complexities of quantum hardware
and enhance the robustness of quantum computations [29].

In Table 3, expected values and variances are presented by E (X) and σ2, respectively,
with subscript corresponding to Trotter circuits TC1, TC2, TC3, TC4 and TC5. The results
obtained on SIMIBMQ are represented by RIS in column 1, results obtained on IBMK
with no error mitigation are represented by RKN and after error mitigation techniques
are represented by RKDD, RKT-REx and RKZNE, results obtained on IBMO with no error
mitigation are represented by RON and after error mitigation techniques are represented by
RODD, ROT-REx and ROZNE.

7. Conclusions

This study explores the effectiveness of error mitigation techniques in improving the
performance of quantum circuits on quantum computers, especially for NISQ devices.
Through extensive experimentation and analysis, significant enhancements in the accuracy
of quantum computations on IBMK and IBMO with implementation of these techniques was
observed. Trotter circuits exhibit varying degrees of error, as evidenced by their expectation
values and variances. The comparison results with ideal simulator (having expected result
value 0.8284) shows that T-Rex has improved results on IBM Kyoto and enhanced average
expected result value from 0.09 to 0.35. Similarly, DD has improved average expected result
values from 0.2492 to 0.3788. These advancements pave the way for more practical and
efficient quantum computing applications in the NISQ era, bringing us closer to realizing
the full potential of quantum technologies across various domains. Future work includes
focus on the integration of advanced error mitigation techniques with scalable quantum
algorithms to further enhance computational accuracy. Additionally, the development of
hybrid quantum-classical approaches will offer new avenues for mitigating errors and
optimizing quantum computations.
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