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Abstract: This paper proposes a novel, five-dimensional memristor synapse-coupled Izhikevich
neuron model under electromagnetic induction. Firstly, we analyze the global exponential stability of
the presented system by constructing an appropriate Lyapunov function. Furthermore, the Hamilton
energy functions of the model and its corresponding error system are derived by using Helmholtz’s
theorem. In addition, the influence of external current and system parameters on the dynamical
behavior are investigated. The numerical simulation results indicate that the discharge pattern of
excitatory and inhibitory neurons changes significantly when the amplitude and frequency of the
external stimulus current are applied at different degrees. And the crucial dynamical behavior of the
neuronal system is determined by the intensity of modulation of the induced current and the gain
in the electromagnetic induction. Moreover, the amount of Hamilton energy released by the model
could be evaluated during the conversion between the distinct dynamical behaviors.

Keywords: five-dimensional neuron model; Hamilton energy; dynamical behaviors
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1. Introduction

Neurons are the basic structure and function of the nervous system; they are the
foundation of the brain. There are about 1011 neurons in the brain, which can perceive
changes in the environment and complete the reception and transmission of information.
And these neurons have some crucial properties, such as excitability, conductivity, and
plasticity. Therefore, it is necessary to study the dynamical behavior of neurons. Many
researchers tend to use mathematical models with parameters to describe neurons and use
these models to study the complex nonlinear behavior of neurons [1]. With the further
consideration and improvement of the neuron model by researchers, the Hodgkin–Huxley
neuron, Fitzhugh–Nagumo neuron, Morris–Lecar neuron, Chay neuron, Hindmarsh–Rose
neuron, Izhikevich neuron, Hopfield neural network, and TrueNorth chip models [2–10]
were proposed successively, and these models have become major tools for computational
neuroscience research.

In recent years, many works have concentrated on the discharge activity and rich
nonlinear dynamics of single neurons and neuronal networks [11–13]. These studies
provided an analytical mechanism for neurons to participate in information coding and
energy metabolism during brain operation. Lakshmanan et al. [14] analyzed the stability,
bifurcation, and chaos of the Hindmarsh–Rose neuron model with time delay, it was found
that the neuron model can show different discharge behaviors by setting corresponding
bifurcation parameters, and the enactment of synchronization criteria can make the system
achieve global asymptotic stability. In [15], the authors took into account the method in
which two FHN neuron circuits are coupled with a Josephson junction and realized the
synchronization stability of the whole neural circuit by adjusting the parameters of the
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Josephson junction in the coupling channel. And the investigation results revealed that the
synchronization between the neural circuits is determined by the coupling method and
also depends on the physical properties of the nonlinear oscillator in the coupling channel.
In fact, the activation of magnetic field coupling is the result of the continuous release and
propagation of intracellular and extracellular ions. Therefore, magnetic field coupling may
play a crucial role in modulating collective behavior among neurons.

Importantly, the fluctuation in ion concentration inside and outside the cell membrane
would cause changes in electromagnetic field distribution inside and outside the cell, re-
sulting in electromagnetic induction. The influence of the electromagnetic effect should
be considered in many investigations of neurons [16,17]. A memristor is a kind of circuit
element with memory characteristics which is defined by magnetic flux and charge. A mem-
ristor can be used to simulate the synapses of biological neurons, and memristor synapses
can be used to characterize this electromagnetic effect [18]. Xu et al. [19] established a
bi-neuron Rulkov network with a memristive synapse and explored the multi-stability
and phase synchronization of a neural network; it was also observed that the dynamical
behaviors of the neural network depended on the setting of the synaptic coupling strength
and initial value, and the neural network could produce rich discharge patterns under
the influence of different conditions. Kafraj et al. [20] discussed the dynamical behav-
iors of neurons under electromagnetic induction and noise by virtue of the memristive
Izhikevich neuron model. Their studies revealed that the neuron model showed complex
discharge modes under different parameter conditions. Mondal et al. [21] established
a single Izhikevich neuron under periodic signal stimulation; the chaotic resonance of
the model could produce corresponding dynamic responses in different chaotic states
by relying on Lyapunov exponent diagrams and bifurcation diagrams. Fang et al. [22]
studied the discharge patterns in the three-dimensional memristive Izhikevich neuron
model and constructed an MIZH neuronal network. It was found that it could show rich
collective dynamical behaviors, and MIZH neuronal networks may remember and retrieve
information efficiently. These investigations revealed that neuronal networks can exhibit
several types of complex phenomena, including symmetry-breaking and period-doubling
scenarios. It is well known that the nervous system has a large number of neurons with
different biological structures and functions [23]. Therefore, it is necessary to develop more
different memristive neuron and neural network models based on the different biological
neuronal systems as well as different mathematical models.

As we know, energy is consumed so that neurons can save normal and continuous
electric activity during the metabolic process of the neuronal system. Thus, it is interesting
to detect the energy transmission and release dependencies on the electric activity mode
in these neuronal models. In other words, the supply and consumption of energy is a
key step in the metabolism and life activities of organisms. There also exists energy ab-
sorption and release in neurons and neural networks; the work of the brain is supported
by energy [24–27]. In [28], the authors used Helmholtz’s theorem to derive the Hamilton
energy function of the dynamics system, which provided a theoretical basis for the calcula-
tion of energy. Lu et al. [29] estimated the dynamical behaviors and Hamilton energy of
the improved memristive Hindmarsh–Rose neuron model under the effect of an external
stimulation current and magnetic field. In their numerical simulations, the results showed
that the transition of neuronal discharge patterns is closely related to energy changes, and
the electrical activity patterns stimulated by periodic signals are more complex than those
stimulated by mixed signals. Yang et al. [30] investigated the effect of periodic current and
high–low-frequency electromagnetic radiation on neuronal discharge activity and energy;
the model was built by a single Izhikevich neuron model under electromagnetic induction.
The results revealed that the injection of stimulus signals can bring energy which is able
to make the discharge mode transform to bursting. Besides the above-mentioned studies,
there are many studies on the rich dynamic behavior of neuron models. However, the
Hamilton energy of coupled neurons has rarely been reported in previous investigations;
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the study of the interaction between coupled neurons is also a key step in exploring the
mysteries of the brain.

Inspired by the above contributions, in the present paper, we will investigate the
complex dynamical behavior and Hamilton energy of the coupled neuron model. The five-
dimensional neuronal system with memristor synapses is presented in Section 2. The global
exponential synchronization of the neuron system is proved in Section 3. Moreover, the
Hamilton energy functions of the improved Izhikevich neuron system and the error system
are derived by Helmholtz’s theorem. In Section 4, numerical simulations are discussed,
which describes the effects of the external stimulus current and parameters on the complex
dynamics and energy in the improved system. Finally, Section 5 concludes the paper.

2. Model Description

To further understand how the brain works, we need to combine experimental studies
of human nervous systems with the numerical simulation of large-scale brain models. A
neuron model with a simple structure called the Izhikevich model was proposed in 2003,
which has rich physiological meanings and unfolds all the known neural behaviors of the
cortical neuron [31]. This model is suitable for large-scale simulations. Depending on four
parameters, the model reproduces the spiking and bursting behavior of known types of
cortical neurons.

The expression of the Izhikevich model is most consistent with the behavior of cortical
neurons. The mathematical expression of this model can be described as follows:{ dv

dt = 0.04v2 + 5v + 140− u + I,
du
dt = a(bv− u).

(1)

with the post-spike resetting

if v ≥ 30 mV,then
{

c→ v,
u + d→ u.

where t is time, the variables v and u are the membrane potential and recovery variable
in the Izhikevich neuron model (1), and I is the applied current. The control parameter
a represents the rate of change in recovery variable u, and b represents the sensitivity of
recovery variable u to the fluctuation of membrane potential v near the threshold. c, d
represent the reset value of membrane potential v and recovery variable u after neuron
discharges, which accounts for the activation of K+ ionic currents and the inactivation of
Na

+ ionic currents, and it provides negative feedback to v. After the spike reaches its apex
(+30 mV), the membrane voltage and the recovery variable are reset. Synaptic currents or
injected dc currents are delivered via variable I. The 0.04v2 + 5v + 140 part was obtained
by fitting the spike initiation dynamics of a cortical neuron so that the membrane potential
v has an mV scale and the time has a scale. The resting potential in the model is between
−70 and −60 mV depending on the value of b. Depending on the history of the membrane
potential prior to the spike, the threshold potential can be as low as −55 mV or as high as
−40 mV. By adjusting the value of these four parameters, the model can simulate spiking
or bursting behaviors of neurons.
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In the following, considering the existence of electromagnetic induction, a five-dimension
neuron system is proposed by coupling two Izhikevich neurons with memristor synapses.
The improved Izhikevich model can be written as follows:

dv1
dt = 0.04v2

1 + 5v1 + 140− u1 + I − k1ρ(φ)(v1 − v2),
du1
dt = a(bv1 − u1),

dv2
dt = 0.04v2

2 + 5v2 + 140− u2 + I − k1ρ(φ)(v2 − v1),
du2
dt = a(bv2 − u2),

dφ
dt = k2(v1 − v2)− k3 φ.

(2)

with the post-spike resetting

if vi ≥ 30 mV, then
{

v← c,
u← u + d,

where vi and ui (i = 1, 2) indicate membrane potentials and recovery variables in the cou-
pled Izhikevich neuron model and φ describes the magnetic flux. k1ρ(φ)(v1 − v2) and
k1ρ(φ)(v2− v1) are the induced currents generated by electromagnetic induction in bidirec-
tionally coupled neurons; ρ(φ) = α + 3βφ2 indicates memory conductance controlled by a
magnetic flux in the memristor [32]; k1 denotes the intensity of modulation of vi by induced
current; α is constant conductance; β is the feedback rate of magnetic flux; k2(v1 − v2)
is the effect induced by vi on magnetic flux; k2 means the gain of the electromagnetic
induction; k3 φ is the magnetic leakage; k3 means the flux feedback coefficient modulated
by the neuron itself.

Analysis of Synchronous Stability

In this section, the global exponential synchronization of the corresponding model
is proved by the Lyapunov stability theorem. In order to achieve the global exponen-
tial stability for the error system, the drive-response synchronization approach will be
employed.

The drive system of the improved Izhikevich model is

dv(1)1
dt = 0.04v(1)21 + 5v(1)1 + 140− u(1)

1 + I − k1ρ(φ(1))(v(1)1 − v(1)2 ),

du(1)
1

dt = a(bv(1)1 − u(1)
1 ),

dv(1)2
dt = 0.04v(1)22 + 5v(1)2 + 140− u(1)

2 + I − k1ρ(φ(1))(v(1)2 − v(1)1 ),

du(1)
2

dt = a(bv(1)2 − u(1)
2 ),

dφ(1)

dt = k2(v
(1)
1 − v(1)2 )− k3 φ(1).

(3)

Then, the response system is described as follows:

dv(2)1
dt = 0.04v(2)21 + 5v(2)1 + 140− u(2)

1 + I − k1ρ(φ(2))(v(2)1 − v(2)2 )−U1,

du(2)
1

dt = a(bv(2)1 − u(2)
1 )−U2,

dv(2)2
dt = 0.04v(2)22 + 5v(2)2 + 140− u(2)

2 + I − k1ρ(φ(2))(v(2)2 − v(2)1 )−U3,

du(2)
2

dt = a(bv(2)2 − u(2)
2 )−U4,

dφ(2)

dt = k2(v
(2)
1 − v(2)2 )− k3 φ(2).

(4)
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In Equation (4), Ui(i = 1, 2, 3, 4) is the controllers which are the nonlinear functions
designed. Let e1 = v(2)1 − v(1)1 , e2 = u(2)

1 − u(1)
1 , e3 = v(2)2 − v(1)2 , e4 = u(2)

2 − u(1)
2 , e5 = φ(2)−

φ(1), so the error system of the drive system and the response system can be calculated.
The synchronization manifold is as follows:

de1
dt = 0.04(v(2)1 + v(1)1 )e1 + 5e1 − e2 − k1αe1 + k1αe3

−3k1β[(φ(2)2v(2)1 − φ(1)2v(1)1 )−(φ(2)2v(2)2 − φ(1)2v(1)2 )] + U1,
de2
dt = abe1 − ae2 + U2,

de3
dt = 0.04(v(2)2 + v(1)2 )e3 + 5e3 − e4 − k1αe3 + k1αe1

−3k1β[(φ(2)2v(2)2 − φ(1)2v(1)2 )− (φ(2)2v(2)1 − φ(1)2v(1)1 )] + U3,
de4
dt = abe3 − ae4 + U4,

de5
dt = k2(e1 − e3)− k3e5.

(5)

Theorem 1. The given initial value of the drive system (3) is (v(1)1 (t0), u(1)
1 (t0), v(1)2 (t0), u(1)

2 (t0),

φ(1)(t0)), and the initial value of the response system (4) is taken as (v(2)1 (t0), u(2)
1 (t0), v(2)2 (t0),

u(2)
2 (t0), φ(2)(t0)).

The controllers are designed as follows:

U1 = −0.04(v(2)1 + v(1)1 )e1 + k1αe1 + 3k1β[(φ(2)2v(2)1 − φ(1)2v(1)1 )

−(φ(2)2v(2)2 − φ(1)2v(1)2 )]− k1αe3 − k2e5 − 6e2
1,

U2 = −abe1 + e1,

U3 = −0.04(v(2)2 + v(1)2 )e3 + k1αe3 + 3k1β[(φ(2)2v(2)2 − φ(1)2v(1)2 )

−(φ(2)2v(2)1 − φ(1)2v(1)1 )] + k1αe3 + k2e5 − 6e2
3,

U4 = −abe3 + e3.

Here, a > 0, k3 > 0, and the zero solution of the error system (5) satisfies the following
inequality: e2

1(t) + e2
2(t) + e2

3(t) + e2
4(t) + e2

5(t) ≤ k(∥e(t0)∥)e−α(t−t0); here, k(∥e(t0)∥) is a
constant which depends on ∥e(t0)∥, and then, the zero solution of the error system (5) is
globally exponentially stable, and the drive system (3) and the response system (4) can be
realized as the global exponential synchronization.

Proof. According to the description of the controllers Ui(i = 1, 2, 3, 4), Equation (5) can be
rewritten in the following format:

de1
dt = −e1 − e2 − k2e5,

de2
dt = e1 − ae2,

de3
dt = −e3 − e4 + k2e5,

de4
dt = e3 − ae4,

de5
dt = k2e1 − k2e3 − k3e5.

(6)

We construct the Lyapunov function as follows:

V =
1
2
(e2

1 + e2
2 + e2

3 + e2
4 + e2

5) = (e1, e2, e3, e4, e5)P(e1, e2, e3, e4, e5)
T
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Suppose that λmin(P) is the smallest eigenvalue of the matrix P, λmax(P) is the largest
eigenvalue of the matrix P, and P = diag( 1

2 , 1
2 , 1

2 , 1
2 , 1

2 ); thus,

dV
dt =

.
e1e1 +

.
e2e2 +

.
e3e3 +

.
e4e4 +

.
e5e5,

= (−e1 − e2 − k2e5)e1 + (e1 − ae2)e2 + (−e3 − e4 + k2e5)e3 + (e3 − ae4)e4

+(k2e1 − k2e3 − k3e5)e5,

= −e2
1 − ae2

2 − e2
3 − ae2

4 − k3e2
5,

≤ −|e1|2 − a|e2|2 − |e3|2 − a|e4|2 − k3|e5|2,

≤ (|e1|, |e2|, |e3|, |e4|, |e5|)A(|e1|, |e2|, |e3|, |e4|, |e5|)T .

(7)

where

A =


−1 0 0 0 0
0 −a 0 0 0
0 0 −1 0 0
0 0 0 −a 0
0 0 0 0 −k3

.

Assume that λmax(A) is the largest eigenvalue of matrix A, since A < 0; then,
λmax(A) < 0.

dV
dt ≤ λmax(A)(e2

1 + e2
2 + e2

3 + e2
4 + e2

5)

≤ λmax(A) λmax(P)
λmax(P) (e

2
1 + e2

2 + e2
3 + e2

4 + e2
5)

≤ λmax(A)
λmax(P) [λmax(P)(e2

1 + e2
2 + e2

3 + e2
4 + e2

5)]

≤ λmax(A)
λmax(P) V.

(8)

V(x(t)) ≤ V(x(t0))e
λmax(A)
λmax(P) (t−t0). (9)

Hence,
λmin(P)(e2

1 + e2
2 + e2

3 + e2
4 + e2

5) ≤ V(x(t)), (10)

e2
1 + e2

2 + e2
3 + e2

4 + e2
5 ≤

V(x(t))
λmin(P)

≤ V(x(t0))

λmin(P)
e

λmax(A)
λmax(P) (t−t0), (11)

Here, x(t) = (e1(t), e2(t), e3(t), e4(t), e5(t)), x(t0) = (e1(t0), e2(t0), e3(t0), e4(t0), e5(t0)).
Therefore, the zero solution of the error system (5) is globally exponentially stable, and

the drive system (3) and the response system (4) achieve global exponential synchronization.
□

3. Hamilton Energy of the Izhikevich Model

A neuron under an electromagnetic environment is accompanied by the conversion
and migration of energy. And the support of energy in the brain is essential for the
discharge activity of a neuron. Here, the Hamilton energy functions are determined, which
are associated with the coupled Izhikevich neuron model and the corresponding error
system. Based on Helmholtz’s theorem [33], the Hamilton energy function of the neuron
model could be calculated. Helmholtz’s theorem decomposes an arbitrary electromagnetic
field F(x) into the superposition of a gradient field fd(x) and a vortex field fc(x), and its
dynamical equation can be expressed by Equation (12).

F(x) = fc(x) + fd(x) = [J(x) + R(x)]∇H, (12)

where fc(x) represents the conservative component and fd(x) represents the dissipative
component, and J(x) is a skew-symmetric matrix and R(x) is a symmetric matrix. ∇H
indicates the gradient matrix of the Hamilton energy function H(x).
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The Hamilton energy function must be satisfied as{ .
H = dH

dt = ∇HT fd(x),

∇HT fc(x) = 0.
(13)

Therefore, system (2) is rewritten as

dv1
dt

du1
dt

dv2
dt

du2
dt

dφ
dt


= fc(v1, u1, v2, u2, φ) + fd(v1, u1, v2, u2, φ), (14)

with

fc(v1, u1, v2, u2, φ) = J · ∇H =



140− u1 + I + k1ρ(φ)v2 − φ

abv1

140− u2 + I + k1ρ(φ)v1 + φ

abv2

k2(v1 − v2)


.

fd(v1, u1, v2, u2, φ) = R · ∇H =



0.04v2
1 + 5v1 − k1ρ(φ)v1 + φ

−au1

0.04v2
2 + 5v2 − k1ρ(φ)v2 − φ

−au2

−k3 φ


.

By combining Equation (13) with Equation (14), one can obtain

(140− u1 + I + k1ρ(φ)v2 − φ) ∂H
∂v1

+ (abv1)
∂H
∂u1

+(140− u2 + I + k1ρ(φ)v1 − φ) ∂H
∂v2

+ (abv2)
∂H
∂u2

+ k2(v1 − v2)
∂H
∂φ = 0.

(15)

The general solution of Equation (15) is expressed as

H = (140− u1 + I + k1ρ(φ)v2 − φ)2 + abv2
1

+(140− u2 + I + k1ρ(φ)v1 + φ)2 + abv2
2 + k2(v1 − v2)

2.
(16)

The derivative of the Hamilton energy function versus time is denoted by

dH
dt = 2(140− u1 + I + k1ρ(φ)v2 − φ)(− .

u1 + k1ρ(φ)
.
v2 −

.
φ) + 2abv1

.
v1

+2(140− u2 + I + k1ρ(φ)v1 + φ)(− .
u2 + k1ρ(φ)

.
v1 +

.
φ) + 2abv2

.
v2

+2ab(v1 − v2)(
.
v1 −

.
v2).

(17)

Substituting the values of system (2), we find that

dH
dt = [0.04v2

1 + 5v1 − k1ρ(φ)v1 + φ][(140− u2 + I + k1ρ(φ)v1 + φ)]

+2abv1 + 2k1ρ(φ)[2k2(v1 − v2)] + (−au1)[−2(140− u1 + I + k1ρ(φ)v2 − φ)]

+[0.04v2
2 + 5v2 − k1ρ(φ)v2 − φ][2abv2 + 2k1ρ(φ)(140− u1 + I + k1ρ(φ)v2 − φ)]

+[2abv2 + 2k1ρ(φ)][2k2(v1 − v2)](−au2)[−2(140− u2 + I + k1ρ(φ)v1 − φ)]

+(−k3 φ)[−2(140− u1 + I + k1ρ(φ)v2 − φ) + 2(140− u2 + I + k1ρ(φ)v1 + φ)].

(18)
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In addition,

dH
dt

= ∇HT fd(x) = [α1 α2 α3 α4 α5]



0.04v2
1 + 5v1 − k1ρ(φ)v1 + φ

−au1

0.04v2
2 + 5v2 − k1ρ(φ)v2 − φ

−au2

−k3 φ


, (19)

with

α1 = 2abv1 + 2k1ρ(φ)(140− u2 + I + k1ρ(φ)v1 + φ) + 2k2(v1 − v2),

α2 = −2(140− u1 + I + k1ρ(φ)v2 − φ),

α3 = 2abv2 + 2k1ρ(φ)(140− u1 + I + k1ρ(φ)v2 − φ) + 2k2(v1 − v2),

α4 = −2(140− u2 + I + k1ρ(φ)v1 − φ),

α5 = −2(140− u1 + I + k1ρ(φ)v2 − φ) + 2(140− u2 + I + k1ρ(φ)v1 + φ).

According to the above derivation, H satisfies the existence condition of the Hamilton
energy function in Equation (13), and Equation (16) is the Hamilton energy function requested.

Next, we derive the Hamilton energy function H′ of the error system (6) to study the
flow of energy in the maintenance of synchronization. According to the above theorem, we
rewrite system (6) as follows:

de1
dt

de2
dt

de3
dt

de4
dt

de5
dt


= f ′c(e1, e2, e3, e4, e5) + f ′d(e1, e2, e3, e4, e5), (20)

with

f ′c(e1, e2, e3, e4, e5) = J · ∇H′ =


−e2 − k2e5

e1
−e4 + k2e5

e3
k2e1 − k2e3

, f ′d(e1, e2, e3, e4, e5) = R · ∇H′ =


−e1
−ae2
−e3
−ae4
−k3e5

.

Then, we obtain

(−e2 − k2e5)
∂H′

∂e1
+ (e1)

∂H′

∂e2
+ (−e4 + k2e5)

∂H′

∂e3
+ (e3)

∂H′

∂e4
+ (k2e1 − k2e3)

∂H′

∂e5
= 0, (21)

the general solution of Equation (21) is expressed as

H′ = (−e2 − k2e5)
2 + e2

1 + (−e4 + k2e5)
2 + e2

3 + (k2e1 − k2e3)
2, (22)

the derivative of the Hamilton energy function versus time is denoted by

dH′
dt = 2(−e2 − k2e5)(−

.
e2 − k2

.
e5) + 2e1

.
e1

+2(−e4 + k2e5)(−
.
e4 + k2

.
e5) + 2e3

.
e3 + 2(k2e1 − k2e3)(k2

.
e1 − k2

.
e3).

(23)
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Substituting the values of system (6), we can obtain

dH′
dt = [2e1 + 2k2(k2e1 − k2e3)](−e1)− 2(−e2 − k2e5)(−ae2)

+[2e3 − 2k2(k2e1 − k2e3)](−e3)− 2(−e34 + k2e5)(−ae4)

+[−2k2(e2 − k2e5) + 2k2(−e4 + k2e5)](−k3e5).

(24)

Therefore, Equation (22) is the Hamilton energy function of the error system.

4. Numerical Simulations

In this section, to better understand the dynamical behavior of the improved Izhike-
vich neuron system, numerical simulations are performed under different values of the
parameters. Here, we use MATLAB software to plot all the figures. The integration is
performed using the fourth-order Runge–Kutta algorithm with a time step of h = 10−3.

The parameters are taken as I = 2, k1 = 0.2, k2 = 0.53, k3 = 0.32, α = 0.4, and β = 0.02.
In addition, the values of the parameters related to the excitatory neuron and the inhibitory
neuron are selected as a = 0.02, b = 0.2, c = −50, and d = 2 and a = 0.1, b = 0.2, c = −65,
and d = 2, respectively. Figure 1 shows the phase portrait of the improved Izhikevich
neuron system (2); system (2) exhibits dynamics from stability to chaos. Chaos occurs
when the value of membrane potential is larger than 30 mV, which is due to the auxiliary
after-spike resetting of the Izhikevich neuron model.
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Figure 1. Phase portrait of the improved Izhikevich neuron system (2).

The variations in discharge patterns in the excitatory and inhibitory neurons are
explored by setting three groups’ initial values in the improved Izhikevich neuron system
(2). The time series of membrane potential with different initial conditions are plotted in
Figure 2. It is shown that the discharge patterns exhibit chattering peaks if the coupled
neurons are all excited, and the internal chattering frequency and the time interval of
chattering are different within the three groups of initial values in Figure 2a. And the
discharge patterns of the neuron appear as inhibition spiking if the coupled neurons are all
inhibited. It is shown that the frequencies of spiking peaks become higher in comparison
with the excitatory neuron in Figure 2b. As a consequence, changing the initial conditions
can produce different discharge modes in the different types of neurons in system (2).

As shown in Figure 3, the time series of the membrane potential are plotted by applying
an external stimulus current at amplitude fixation or frequency fixation within the coupled
neurons in system (2). At amplitude fixation, the neurons exist in a refractory period which
is affected by the frequency of the stimulation current. The coupled excitatory neuronal
system presents the chattering pattern, and the chattering frequency is the inequality
in Figure 3a. When the frequency is fixed, the refractory period of neurons disappears
gradually. The time series of the membrane potential transform from an inhibition bursting
to a tonic bursting action sequence, the time interval between chattering peaks decreases,



Mathematics 2024, 12, 2244 10 of 15

and the discharge mode becomes more regular, as shown in Figure 3b. It is found that
the frequency of the external stimulation current has little effect on inhibitory neurons, as
shown in Figure 3c. As depicted in Figure 3d, the discharge mode transforms from spiking
to inhibition bursting, and the frequency of the discharge spike increases. Thereby, it is
concluded that the discharge mode of the neuron system changes with the amplitude and
frequency of the external stimulus current.
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Figure 2. Time series of the membrane potential under different initial conditions in system (2);
system parameters are taken as I = 2, k1 = 0.2, k2 = 0.53, k3 = 0.32. (a) The excited neurons when
the initial values are selected as (0.25, 0.3, 0.35, 0.13, 0.2). (b) The inhibited neurons when the initial
values are taken as (0.25, 0, 0.25, 0, 0.2). When the external current is applied to the neuronal system,
the discharge modes of the system could be accompanied by the variation in energy. The performance
of discharge activities and Hamilton energy are investigated by applying external stimulus current
I = A cos(Bt) under the coupled excitatory or inhibitory neurons in system (2).
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Figure 3. Time series of the membrane potential by applying external stimulus current I = A cos(Bt)
in system (2). (a) Time series of excitatory neurons with A = 0.2 and B = 0.5, 5, 15, 25. (b) Time
series of excitatory neurons with B = 0.45 and A = 0.7, 7, 17, 27. (c) Time series of inhibitory
neurons with A = 0.2 and B = 0.5, 5, 15, 25. (d) Time series of inhibitory neurons with B = 0.45 and
A = 0.7, 7, 17, 27.
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In order to further investigate the overall influence of amplitude A and frequency B
on the discharge activity and energy of the excitatory neuron in system (2), the bifurcation
diagram (ISI) and the largest Lyapunov exponent diagram (LLE) are plotted in Figure 4.
The effect of the frequency and amplitude of the external stimulus current on the dynamics
behavior of neurons is consistent in terms of excitability and inhibitability. From Figure 4a,b,
it can be observed that the neuron model shifts from chaos to stability, and its corresponding
largest Lyapunov exponent turns from greater than zero to equal to zero. That is, the
coupled neuron system transforms from chaotic to periodic as the amplitude increases.
And as can be seen from Figure 4b,d, chaotic and periodic behaviors coexist in the coupled
neuron system as the frequency increases. Therefore, the amplitude of external current
stimulation can promote periodic discharge activity of the neuron model.
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Figure 4. Dynamical behaviors of system (2) with different values for the amplitude A and frequency
B of the external stimulus current. (a) Bifurcation diagram of the related parameters with amplitude
A for B = 0.45. (b) The largest Lyapunov exponent-related parameters with the amplitude A for
B = 0.45. (c) Bifurcation diagram of the related parameters with frequency B for A = 0.2. (d) The
largest Lyapunov exponent related parameters with frequency B for A = 0.2.

In Figure 5, the amplitude A and frequency B are chosen as variables to characterize
the transformation of the energy in system (2). The evolution of energy is consistent with
the dynamical behavior of system (2). It is shown that the Hamilton energy with respect to
the dynamical behavior decreases as the amplitude A increases, which corresponds exactly
to the amplitude control of the system in Figure 5a. And the energy shows a smooth change
as frequency B increases in Figure 5b. The two-parameter figures of the Hamilton energy
of system (2) are plotted in Figure 5c,d; the energy varies with a periodic state when the
amplitude A and frequency B are varied simultaneously. These results demonstrate that
the energy of system (2) depends on the transformation of amplitude A or frequency B,
and the energy requirement for the chaotic discharge activities is more than the other one
for the periodic discharge activities in the neuronal system.
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Figure 5. Evolutions of the Hamilton energy function related with different values of external
stimulus current within the coupled neurons in system (2). (a) The evolution of Hamilton energy
with respect to the amplitude A. (b) The evolution of Hamilton energy with respect to the frequency
B. (c) The evolution of Hamilton energy with the amplitude A and frequency B. (d) Planar graphics
based on the three-dimensional figure (c).

On the other hand, it is noticed that the modulation intensity of the induced current
k1 and the gain in the electromagnetic induction k2 play important roles in the expression
of Hamilton energy function. The following Figure 6a–d show the complex dynamical
behavior of the coupled neurons with the changing parameters k1 and k2. When the coupled
neurons are all excited, the coupled neurons present a mixture of periodic and chaotic
states. Nevertheless, when the coupled neurons are all inhibited, system (2) transforms
from periodic to chaotic as k1 increases, and it maintains multi-periodicity all the time as
k2 increases, as shown in Figure 6c,d. Moreover, the evolutions of the Hamilton energy
function related to k1 and k2 are depicted in Figure 7. We find that the Hamilton energy
of system (2) increases as k1 changes, whereas parameter k2 does not cause the energy to
change. Compared to Figures 6 and 7, the results imply that the gain in the electromagnetic
induction can modulate the energy released by the neuron model.
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Figure 6. Bifurcation diagrams related to k1 and k2 in system (2); the initial values and parameters
are selected as (0.25, 0.3, 0.35, 0.13, 0.2), I = 5, k3 = 0.32. (a) Bifurcation diagram of the excitatory
neurons for k2 = 0.53. (b) Bifurcation diagram of the inhibitory neurons for k1 = 0.2. (c) Bifurcation
diagram of the inhibitory neurons for k2 = 0.53. (d) Bifurcation diagram of the excitatory neurons for
k1 = 0.2.
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5. Conclusions

In summary, the dynamical behavior of the coupled Izhikevich neuron model using
the memristor synapse has been investigated. Based on the Lyapunov stability theorem,
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the condition of the global exponential synchronization of the improved Izhikevich neu-
ron model has been derived. Meanwhile, we analyzed the Hamilton energy functions
associated with the improved Izhikevich neuron model and its error system according to
Helmholtz’s theorem.

Furthermore, the influence of the parameters of the external stimulus currents and
the electromagnetic induction has been investigated. Numerical computations indicated
that the amplitude of external current stimulation can promote periodic discharge activity
of the neuron model. In addition, the amount of energy for the chaotic state could be
more than that for the periodic state during the discharge activity in the neuronal system.
The dynamical behavior of the neuron model transforms from periodic to chaotic as the
modulation intensity of the induced current increases, while the gain in the electromagnetic
induction can maintain the periodic discharge pattern and modulate the energy released
by the neuron model.

Our approach can be extended to investigate the energy aspects of different oscillatory
regimes of nonidentical oscillators. The theorem results will be useful to study the energy
aspects of other coupled complex systems. Possible extensions to neural networks can
provide finer insight into the energy modulation mechanisms of various biological systems.
Moreover, these results may help us better understand the relationship between electrical
activity and energy and further understand the energy characteristics of complex systems
under different dynamical behaviors.
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