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Abstract: As a kind of space robot, the two-arm cascade combination system (TACCS) has been
applied to perform auxiliary operations at different locations outside space cabins. The motion
coupling relation of two arms and complex surrounding obstacles make the collision-free trajectory
planning optimization of TACCS more difficult, which has become an urgent problem to be solved.
For the above problem, this paper proposed collision-free and time—energy—minimum trajectory
planning optimization algorithms, considering the motion coupling of two arms. In this method,
the screw-based inverse kinematics (IK) model of TACCS is established to provide the basis for the
motion planning in joint space by decoupling the whole IK problem into two IK sub-problems of
two arms; the minimum distance calculation model is established based on the hybrid geometric
enveloping way and basic distance functions, which can provide the efficient and accurate data basis
for the obstacle-avoidance constraint condition of the trajectory optimization. Moreover, the single
and bi-layer optimization algorithms are presented by taking motion time and energy consumption as
objectives and considering obstacle-avoidance and kinematics constraints. Finally, through example
cases, the results indicate that the bi-layer optimization has higher convergence efficiency under the
premise of ensuring the optimization effect by separating variables and constraint terms. This work
can provide theoretical and methodological support for the efficient and intelligent applications of
TACCS in the space arena.

Keywords: space robot; trajectory planning; obstacle avoidance; two-arm cascade combination
system; bi-layer optimization

MSC: 49M99; 51K05

1. Introduction
1.1. Background

In the field of modern aerospace, space robots have been used to help people com-
plete certain tasks inside and outside space capsules. With the development of aerospace
technology, different kinds of space robots have been studied and applied for on-orbit
servicing tasks, such as a 6-DOFs manipulator [1], 7-DOFs manipulator [2], 14-DOFs super
redundant manipulator [3], and a dual-arm humanoid robot [4]. The safe and efficient
operation of space robots depends on the motion planning, which has always been the
focus of researchers in recent studies [5,6]. For example, Shrivastava et al. proposed a
jerk-optimized motion planning method for the redundant space robot which used the
gray wolf optimization algorithm to search for the optimal result [7]; Xie et al. presented
the trajectory planning method for dual-arm free-floating space robot to minimize the final
base attitude change and ensure the trajectory smoothness by using an enhanced bidirec-
tional approach [8]. In recent years, the two-arm cascade combination system (TACCS)
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shown in Figure 1 has been developed and applied to handling and maintenance outside
capsules, and it is obtained through the docking combination of two manipulators (which
can largely increase the workable area and the robotic dexterity) and better adapted to the
operational tasks on the outer surface of the cylindrical cabin. Two manipulators in TACCS
can be regarded as the fixed manipulator (first-level arm) and the mobile manipulator
(second-level arm), respectively, and the base coordinate frame (BCF) of the latter can be
changed by the joint movement of the former.

First-level arm

Connector of two arms

Figure 1. Classic structure of TACCS.

1.2. Literature Review of Motion Planning

In existing studies, the motion planning of manipulators has been the focus of research
aimed at finding efficient, accurate and safe modes of application. Actually, the motion
planning of TACCS has the same problem with that of the mobile manipulator (composed
of a mobile car and a manipulator), which is how to consider the influence of the motion
of the first-level arm or the mobile car to the motion performance of the second-level
arm or the manipulator. There exist two solving methods for the motion planning of the
mobile manipulator: one of them is that the motion planning algorithms of two subsystems
are carried separately (called SMP in the following), the other is that the motion of the
high-DOFs system is planned as a whole (called WMP in the following).

For SMP, researchers mainly focused on the improvement of the whole planning
efficiency of the robotic system in previous studies. For example, Li et al. presented a
hierarchical motion planning method for the mobile manipulator, which includes two
planning stages: firstly the path of the two-dimensional mobile base was optimized using a
hybrid sampling strategy that combined a bridge test and uniform sampling, aiming to
improve the planning efficiency; secondly the secure configuration and trajectory of the
manipulator was searched [9]. Chen et al. also proposed a hierarchical motion planning
method which used the optimization-based A* algorithm and the sampling-based heuristic
algorithm for the collision-free motion plannings of the mobile base and the manipulator,
respectively, which can effectively improve the planning efficiency and success rate [10].
Rastegarpanah et al. used an A* algorithm and rapidly exploring random trees (RRTs) to
separately plan the paths for the mobile platform and manipulator and completed the task
of picking up an object from one table to one box [11]. In order to consider the coupling
relation of configurations of two subsystems, criteria like reachability or manipulability of
the manipulator’s end effector has been considered to decouple the planning of the two
subsystems. For example, Colucci et al. developed a motion planning algorithm based on
a manipulability index which considers the mobile base and manipulator separately and
provides the closed inverse kinematics algorithm for the redundant manipulator [12,13].
Actually, the motion planning for only the mobile car or manipulator has been popular
for quite a long time. Some mature technologies have been proposed. For the motion
safety, some distance calculation or collision detection algorithms between the robot and
surrounding obstacles based on different envelope ways were developed by scholars. For
example, basic geometries like spheres and cylinders [14,15], and hierarchical bounding
boxes [16] were used to envelope the robotic arms or obstacles and then applied to solve
the collision-free motion planning problem of the manipulator. For the motion stability or
trajectory-tracking accuracy, a cubic/quintic polynomial curve [17,18], B-spline curve [19,
20] or segmented function curve [21,22] were utilized to interpolate the motion trajectory,
which can eliminate vibrations caused by speed or acceleration mutations when the robot
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starts and stops. Moreover, the motion time [23,24], energy consumption [25], angular
jerk [26,27] or their combination [28] were always taken as the objectives of the motion
planning optimization of the manipulator.

For WMP, the grid-based [29], sampling-based [30] and optimization-based [31] meth-
ods were proposed in previous studies. The grid-based method are generally proposed
based on the free space represented by a swept volume or a graph-creating algorithm, and
since the dimension of space related to the number of robotic joints has a major impact on
the planning efficiency, it is more applicable for the path planning of the mobile car or the
low-DOFs robot. For example, Liu et al. considered the mobile manipulator (composed
of a 2-DOFs manipulator and 3-DOFs mobile device) as a whole system and presented a
path planning method based on representation space [29]. The sampling-based methods
have been developed well to solve the path planning of mobile manipulators with high
DOFs, including RRTs, probabilistic roadmap (PRM) and their modifications. For example,
Dai et al. presented a path planning method based on a novel potential bidirectional
RRT* for redundant manipulators in joint space [32] which can effectively improve the
obstacle-avoidance ability of the robot; Chen et al. proposed an improved PRM based on
a new sampling strategy using the virtual force field and the design of a new connection
strategy to improve the planning efficiency [33]. However, the above methods are mostly
used for the path planning of the robot, which refers to determining a pure geometric
description of a series of positions of the end effector or mobile base; additionally, it does
not consider the system kinematics, including the change in velocities or accelerations over
time, which means the motion stability or motion time cannot be planned or optimized.
The optimization-based methods are mostly presented by the modeling and solving of
the motion planning optimization problem, wherein constraints for the obstacle avoid-
ance, accuracy, kinematics and dynamics can be considered, and multiple optimization
objectives, including the motion time, energy consumption and joint jerks, can be taken
to ensure the working efficiency, energy conservation and motion stability [34-36]. In
existing works, many intelligent optimization algorithms (like the particle swarm opti-
mization (PSO) algorithm [35], genetic algorithm [36], etc.) have been introduced to solve
the above optimization problem. But for the mobile manipulators with high DOFs, the
high optimization performance (including the ability of searching for the global optimal
result, the convergence efficiency) is difficult to obtain. Therefore, many scholars focus
on the modification of the current optimization algorithms or the proposal of the novel
optimization algorithm. For example, Jin et al. used the chaotic PSO to solve the motion
trajectory planning optimization problem, which improved the premature phenomenon of
the traditional PSO algorithm [37]; Li et al. proposed a novel hybrid heuristic algorithm,
which combined PSO and a whale optimization algorithm (PSO-WOA) to solve the multi-
objective optimization problem of the trajectory planning of the space robot, considering
the end-effector pose, base disturbance, motion time and manipulability as objectives [38];
Cao et al. proposed a modified multi-objective PSO algorithm (GMOPSO) by combining a
mutation operator, annealing factor and feedback mechanism for the trajectory planning of
fruit picking manipulator [39].

The comparison of the existing representative works is shown in Table 1. Since only
the path planning was implemented without optimization in many related works, the
robot type, DOFs, planning methods, operational performance (like safety, manipulability,
stability, efficiency, energy consumption) and the consideration of motion coupling of all
works are listed in the comparison table in order to compare them more comprehensively.
From the comparison, we can observe that the optimization-based planning method can
directly obtain an optimal motion trajectory with the minimum of efficiency or energy
consumption as the objective for the robot, not only a collision-free operational path, and
it can better control the motion performance of the robot in terms of obstacle avoidance,
motion stability, tracking accuracy;, efficiency, or energy consumption, etc. However, the
low planning optimization efficiency has always been a problem and the focus of the
current research.
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Table 1. Comparison of some representative works wherein the superscript # means the robot type
is free-floating space robot.

. o1 - Energy Consideration
Works Robot Type DOFs Planning Methods Safety Stability Efficiency Consumption of Motion Coupling
A* algorithm;
Ref. [9] 3+6 U’Tlf"rm Yes No No No No
sampling-based
Mobile flgorlthm
manipulator A* algorithm;
Ref. [10] 3+6 Sampling-based Yes No No No No
heuristic algorithm
Ref. [11] 3+6 A* algorithm; RRT Yes No No No No
Refs. [12,13] 5+6 A* algorithm; RRT Yes No No No Yes
Ref. [29] 3+2 A* algorithm Yes No No No Yes
PSO-based
Ref. [39] 3+6 A Yes Yes Yes Yes No
optimization
Ref. [30] 140r21 Sampling-based Yes No No No /
algorithm
X PSO-based
Ref. [31] nghi)DOFs 5 optimization No Yes Yes No /
Ref. [32] robot Any Bidirectional RRT* Yes No No No /
Ref. [33] Any PRM Yes No No No /
Ref. [37] 6F CPSO-based No Yes Yes No /
optimization
Ref. [38] 7# PSO-WOA-based Yes Yes Yes No /
optimization
The proposed TACCS 6+6 PS.O -.basgd Yes Yes Yes Yes Yes
method optimization

1.3. Problem Formulation

As shown in Figure 1, when one manipulator (DOFs > 6) is mounted as the real end
effector of the other manipulator (DOFs > 6), the whole robot will be a super redundant
system with DOFs of more than 12 which has been applied to perform on-orbit servicing
tasks in the aerospace field, such as assembly, maintenance, the capture of cooperative and
non-cooperative objects, deployment and debris removal [40]. Moreover, there exist many
protruding structures outside the cylindrical cabin surface used for measurement, external
docking, entrance, etc., which means the robotic motion planning needs to consider the
obstacle avoidance. Therefore, the high redundancy, the large cylindrical working surface
and the complex surrounding obstacles make the collision-free motion planning of TACCS
quite difficult. In addition, from the summary of the current motion planning methods,
the optimization-based planning method can better control the motion performance of
the robot. However, since TACCS has the higher DOFs, as well as faces the special and
complex working environment, the motion planning optimization becomes more difficult.
The difficulties are mainly reflected in several aspects: (1) the accurate analytical solution
of the inverse kinematics of the TACCS is the main basis for its motion planning in joint
space, which can better ensure the motion stability of robotic joints, but it has always
been a problem due to the high redundancy; (2) the accurate minimum distance between
manipulator and its workspace is difficult to calculate quickly, which is very important in
obtaining an efficient and reliable motion planning algorithm; (3) the number of variables
and constraints increases over the robotic DOFs, which makes the trajectory optimization
less efficient and more easily trapped into the local optimum.

In this work, a collision-free and time—energy-minimum (CF-TEM) trajectory planning
optimization method is proposed for TACCS considering the dexterity of the second-level
arm under the complex and specific working environment outside the capsule. Three
problems are solved based on the following contributions: (1) the IK problem of TACCS
is decoupled into two IK sub-problems of two arms and then the screw-based IK model
is established, wherein the IK solution of second-level arm is related to the end-effector
pose of the first-level arm; (2) the minimum distance calculation model is established based
on the hybrid geometric enveloping way and basic distance functions, wherein TACCS is
enveloped by a convex polyhedrons, slices-based circular/polygonal edges and planes,
and the the surrounding obstacles are enveloped by convex polygonal planes; (3) the single
and bi-layer optimization algorithms are both proposed by taking motion time and energy
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consumption as objectives and considering constraints of obstacle avoidance and robotic
kinematics, and they are finally compared in terms of efficiency and effect of optimization,
aiming to find an efficient and reliable optimization algorithm for the motion planning
problem of the system.

The remainder of this work is organized as the following three sections: Section 2
presents the screw-based inverse kinematics of TACCS, which gives the explicit mathemati-
cal mapping from the target pose of the end effector in a base coordinate frame (BCF) of
the system to joint angles of two arms. Section 3 gives the minimum distance calculation
model based on the hybrid geometric envelope way, considering the characteristics of
operation task and obstacles outside the capsule; Section 4 gives the single and bi-layer
optimization models and algorithms of the system; Section 5 discusses the results obtained
by two optimization algorithms from the efficiency and effect of optimization through a
simulation case; Section 6 gives the main conclusions and future works.

2. Screw-Based Inverse Kinematics Model of TACCS

For the inverse kinematics (IK) analysis, the kinematics parameters and three coordi-
nate frames of TACCS are shown in Figure 2, wherein the frame 1 (0 — xyz) refers to the BCF
of the whole system and also the BCF of the first-level arm; the frame 2 (01 — Xg1YE12E1)
refers to the end-effector coordinate frame (EECF) of the first-level arm and also the BCF of
the second-level arm; the frame 3 (0py — X2y 2z E2) refers to the EECF of the second-level
arm, which is directly related to the operational task. Then, the IK solution problem can be
described as the solving of joint angles of two arms by taking the end-effector target pose of
the second-level arm in frame 1 as a known condition. Moreover, in Figure 2, g; represents
one point taken from the rotational axis of the ith joint of one arm of TACCS, while g, is
the real end effector of each arm and /; means the kinematics parameters that will be used
in the following IK model. Since the pose gstg; of the end effector of the first-level arm
has a major impact on the operation effect of the second-level arm, it will be optimized in
the motion planning optimization of the system, which means the IK problem of TACCS
can be decoupling into the IK sub-problems of two arms. Through the above decoupling
processing, the IK sub-problem 1 aims to solve the joint angles of the first-level arm with
the given pose gstg; in frame 1; IK sub-problem 2 aims to solve the joint angles of the
second-level arm with the given pose gstg in frame 1. In the traditional IK problem, the
end-effector pose of manipulator is given in its own base coordinate frame, that is, for IK
sub-problem 1, the inverse solution can be modeled directly using the screw-based method,
but for IK sub-problem 2, the pose gstg; in frame 1 must be transferred in frame 2, as then
the solution can be modeled based on the new end-effector pose gstga .

ll l3 . l4_ .ls. l6|

0g1(0g2)
0 (%g1) £ --->Zg1(Zg2)
v q4, 9596 iym(}’gz)
Y(Ve1) q> q3 Frame 2 (Frame 3)

Frame 1 (Frame 2)

Figure 2. Kinematics parameters of each arm of TACCS.

It is noted that, for the whole IK problem of TACCS, the operation task determines
the pose gstpp € R**4, which can be expressed by a homogeneous coordinate matrix
as follows:

Ny Oy Gy X
_|Re 4| _ |my oy ay Y

8ste2 = {0 1] T lny o0y a; z )
0 0 0 1
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wherein R, € R3*3 and q, € R? denote the orientation and the 3D coordinates of the end
effector, respectively.

Moreover, in the following optimization of the pose gstg, three linear displacements
Ax, Ay, Az along three axes and three rotational angles &, 3, v around three axes of frame 1
are taken as optimization variables. Then, the optimal pose gstg1 € R***4 can be expressed
by the following matrix:

CaCp  CaSpSy — SaCy CaSpCy + SaSy Ax
SaCp  SuSpSy + CaCy SuSpCy — CaSy Ay o)
—sg CpSy Cpely Az

0 0 0 1

gstpr =

wherein ¢, = cosa, s, = sinw; g = cosp, sp = sinf; cy = cosy, s, = sin?y.
Since the poses gstgz and gstgs Ny have the transfer relation gstgy = gstg1-gstea N, the
pose gstpa n € R4 can be expressed by

gstean = [gste1] '-gstea 3)

Based on the Chasles principle, the motion screw of the rotational joint is defined by
{=[w 6 T and the exponential form of the screw coordinate can be written as follows,

N _ A T
exp (69) _ [expéw@) (I exp(w())](alj X v) + ww v )
wherein w is the unit vector of the rotational axis; @ is the anti-symmetric matrix of w, while
0 —ws3 wy
setting w = (w1, wy, w3), @ = | ws 0 —w1 | ; 0 represents the rotational angle; v
—wy Wy 0

means the linear velocity of the rotational motion, v = g X w, where g denotes the 3D
coordinate of one point located on the rotational axis; I is a 3 x 3 identity matrix; exp(@6)
can be calculated by exp(@8) = I + @sind + @*(1 — cosb).

Based on the above analysis, two IK sub-problems can be transferred into the general
IK problems. Taking the robotic model shown in Figure 2 as the example case, two arms are
manipulators with the same configuration but different values to the kinematics parameters
listed in Table 2. According to our previous work [41], the IK problem of each arm can
be firstly decomposed into three sub-problems: one is for the rotation about three non-
intersecting axes; the second is for the rotation about two intersecting axes; and the third
is for the rotation about one single axis. For the first two IK sub-problems, the rotational
motions are shown as Figure 3, respectively, wherein ¢y, ¢y, c3 are the three transition points
of two motions, and their 3D coordinates c1 = [x1,¥1,21], €2 = [X2,Y2,22], ¢35 = [x3,VY3, 23]
can be obtained by solving a hexagonal quadratic equation system and a ternary quadratic
equation system. Based on the above calculations, the IK solution of the arm (the angular
displacements of all joints of the arm) can be explicitly modeled and can be expressed as
Equation (5). The detailed solving process can be referred to through reference [41].

61 = atan2(xoy — Yo X, XoX — Y2Y)

0 = atan2[xp(z1 — 1) —x1(zp — I1), x130 — (21 — 1) (z2 — )]

63 = atan2[xll4, 14(21 - ll — 13)] (5)
04 = atan2(X3Ye1 — Y3Xe1, X3Xe1 — Y3Yel)

05 = atanZ[xg,lz, 12(23 - —1l3— 14)]

06 = atan2(y,, Xe2)

. . . -1 )
where, [Xe1, Ye1, Ze1, 1] T= [exp <§1 61) exp (gzez) exp (4:303)} [Xs1, Ys1, Zs1, 1] T Inthis equa-
tion, [xs1, Ys1,2s1] is the initial 3D coordinates of one point located on the sixth joint axis but
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A u -1
not on the fourth and fifth axes; [X., Ye2, Ze2, 1]T = {exp (61 91) ---exp (6595)} [Xs2, Ys2, Zs2, 1]T,
in this equation, [xsp, Y52, zs2] is the initial 3D coordinates of one point located out of the
sixth joint axis.

Table 2. Kinematics parameters of two arms.

Parameters I; (mm) I, (mm) I3 (mm) I4 (mm) Is (mm) lg (mm)
First-level arm 540 540 1494 1260 270 332
Second-level arm 300 300 830 700 150 184.5

(a) Motion of the sub-problem 1 (b) Motion of the sub-problem 2
Figure 3. Motions of two IK sub-problems.

Then, IK models can be written as two functions, 841 = fun_IK_A1(gstg1) and 042 =
fun_IK_A2(gstgz n), which together form an important basis for the motion planning
optimization of the TACCS.

3. Minimum Distance Calculation Based on Hybrid Geometric Envelope

The minimum distance calculation is an important basis for the spatial constraint
determination of the motion planning optimization. In real applications, the TACCS will
be applied to perform works with targets at different places on the capsule body. Moreover,
the outer surface of the capsule may have some raised structures for docking or measuring,
which makes the accurate distance calculation more difficult. In order to solve the above
problem, this work uses the circular slices and convex polygonal planes to envelop the
robotic links and connection structure between two arms, respectively, also using the
convex polygonal planes to envelop the capsule and other obstacle structures located at the
surface of the capsule, respectively. The envelope structures are shown in Figure 4. From
Figure 4, the environmental obstacles include convex obstacles and cylindrical obstacles.
Since the distance calculation between the circular slice and the cylinder is difficult, the
cylinder is also enveloped by convex polygonal planes, which needs to firstly envelope the
end circle using its outer joined regular polygon. For the envelope of a circle, the largest
error between the original and new geometry can be calculated by € = R[1/cos(7t/N,) — 1]
(as shown in Figure 5); therefore; if we hope € < 5 mm, the number of edges must meet
the condition as N, > 7t/acos[R/(5+ R)] (based on this condition, when R = 50 mm,
N, > 7.3).
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Figure 4. Envelope structures of TACCS and capsule.
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Figure 5. Envelop of a circle.

» Cylindrical

obstacles

Convex
obstacles

In our previous study [42], the basic functions of the minimum distance between the cir-
cular edge and the convex polygonal plane and that between two convex polygonal planes
have been established, which can be represented by fun_CP(p,¢c) and fun_PP(c1,62),
wherein p represents one circular edge and is determined by the coordinate of the circular
center and ¢ represents one convex polygonal plane and is determined by the coordinates
of polygonal vertices. Based on the envelope ways shown in Figure 3, the structure of the
TACCS is finally expressed as a set of geometries, including circular edges and convex
polygonal planes in mathematics, and the structure of its workspace obstacles are expressed
as a set of convex polygonal planes. Therefore, the minimum distance between TACCS and

its workspace obstacles can be written as follows:

DI = min{ fun_CP(pr Tox), fun_PP(prj Tox) /1<i<I,1<j<], 1<k<K}

(6)
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wherein pg; and pg ; denote the ith circular edge and the jth polygonal plane; 7p x means
the kth polygonal plane of obstacles; I, | are the numbers of circular edges and polygonal
planes of the TACCS, and K is the number of polygonal planes of obstacles.

As shown in Figure 5, the envelope of circle will lead to the largest error, €. In order
to further analyze the influence of € on the error of the shortest distance calculation, the
distance between the circular plane with different radii (R = 50, 100, 150, 200 mm) and
an circular edge (R, = 150 mm) are taken as objectives. For the analysis, the center
locations of two circles are set by C = (0,0,0), C. = (200,300,400), and their normal
vectors are set by n = (0,0,1), n, = @-(1, 1,1), respectively. During the calculation
process, taking different values for €, and determining the minimum number of edges by
N, = ceil{m/acos[R/ (e + R)]} (ceil{ } represents the function that returns the minimum
integer larger than the given real number), the shortest distance between the circular plane
and the circular edge can be predicted by the distance between the convex polygonal plane
¢ and the circular edge p can be calculated by the function d, = fun_CP(p,¢); the real
shortest distance d, can be calculated by taking N, = 1000, which can make the convex
polygonal plane close enough to the circular outline; then the error of the shortest distance
calculation is determined by E = d, — d.

Based on the above strategy, the errors of the shortest distance under different values
of € are shown in Figure 6, from which the following conclusions can be obtained: (1) The
error basically increases with the increase of the value of €; this is because the increase of €
leads to the lower number of edges of the enveloped polygon (for example, when e <5,
the errors for four circular planes are all less than 5 mm, but when R = 15 mm, € = 17,
the error reaches 11.51 mm). (2) In some cases, even where € takes the large value, the
error may be very small. The reasons for that are as follows: € represents the largest error
between the original circle and its enveloped polygon, which means some points on their
edges coincide or are close together; moreover, the shortest distance between the enveloped
polygonal plane and the edge must be the distance between two point elements located on
two geometries, and so when the point element at the polygonal plane is located just at the
position where the envelope error is small, the predicted shortest distance will be very close
to its real value. (3) In order to both ensure the accuracy and efficiency, the reasonable value
for € should be taken, since, the smaller the value is, the lower the calculation efficiency and
the higher the calculation accuracy. In real applications, the value can be taken according
to the safety threshold value, which is set for the absolute safety of the robotic motion.

’_\12 T T T gl
€ —>»—R =50mm
E10F |——R=100mm 3
- R = 150mm
°© & 8| ——R=200mm
S
o9 6
o »
c o b
= 4r
7
o 2[
£
0
0 5 10 15 20

Figure 6. Errors of the shortest distance under different values of €.

Moreover, the pose of the TACCS determines the locations of feature points of the
envelope geometries, which can be calculated based on screw-based conversion matrices

as follows:
9/ = [T exp () |/ )
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wherein g,/ and g,/ represents the start and final homogeneous coordinates of one point
in frame 1, and they are 4D vectors extended from the corresponding 3D coordinate g, by
adding a unit column, i.e., g,/ = (g, 1)T € R*; N means the number of joints that affects
the pose of this point.

Therefore, since the angular displacement 6; of the ith joint changes over time during
the operational motion, locations of feature points are related to time, which means the
minimum distance during motion can be described as a function over time and expressed by
DI(t). The above function is a major basis for the following motion planning optimization.

4. Single and Bi-Layer Optimization Models and Algorithms

In the motion planning problem of TACCS, the variables of optimization include the
following six motion variables: Ax, Ay, Az, &, B, 7y, Ta1 and Tay. T4y and Ty4p denote the
motion times of the first-level arm and the second-level arm, respectively. In order to ensure
the operational stability, it is supposed that two arms do not move simultaneously in real
applications, which means although the motion dexterity of the second-level arm will be
influenced by the pose of the first-level arm, the coupling influence is not dynamic. For this
problem, considering both the total motion time and the motion energy consumption as the
optimization objective, the objective of the single optimization can be modeled as follows:

Du "Tar D Taz
fs = w1(Ta1 + Taz) + wowr< Y .7 /H) Sari(t) + )4 /HJ Saz,i(t) (8)

wherein w1 and w; are weighting factors for items of the motion and energy consumption,
w1y + wy = 1; w/ denotes the coefficient used to eliminate the influence of the magnitude
difference of items; D47 and D4 mean the numbers of DOFs of two arms; Sa1,(t) and
S 42,i(t) are time functions of the angular displacement of the ith joint of two arms, respec-
tively, which can be obtained through motion trajectory interpolation. In this work, the
quintic polynomial interpolation method is used, and the function of one joint angle can be
expressed by

S(t) = art® + axt* + a3t® + agt® + ast + ag 9)

wherein the coefficients of the function can be calculated by a; = 6(6g —05)/T°, ay =
—15(0g — 05)/T*, a3 = 10(6g — 05)/ T3, ay = as = 0 and ag = 6, respectively, which are
obtained by the boundary conditions according to requirements of movement stability as
S(0) = 65, S(T) = 6 and 5(0) = S(T) = S(0) = S(T) = 0; S(¢) and S(t) are the functions
of angular velocity and acceleration of the joint and can be obtained through one derivative
and two derivatives of S(t), respectively.

Then, considering kinematics and obstacle-avoidance constraints, the single optimiza-
tion problem can be modeled as follows:

minimize : f = fg(Ax, Ay, Az, a, B,7v, Ta1, Taz)
subject to : Ax € [AXyin, AXmax)
A]/ S [Ayminl A]/max]
Az € [Azyin, AZimax]
LS [D‘minr lxmax]
,B € [,Bmin/ ,Bmax]
HAS ['Yminr ')/max] (10)
SaLi(t) € Da1,i;Sa2i(t) € Day,i
max||Sa1i(t)|| < Vatimar; max||Sari(t)|| < Aatimax
max SAZ,i(t) < VAZ,i,max?maX SAZ,i(t) < AAZ,i,max

min[DI(t)] > DIthred
Tar+ Tar < Tinax
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where in the subscripts min and max mean the upper and lower bounds of the parameter,
for example Ax,,;,, and Ax;,qyx, are the upper and lower bounds of the linear displacement
of the end effector of the first-level arm, respectively; D41; and Dy, ; are the allowable
range of the angular displacement of the ith joints of two arms, respectively; the functions
max|[g] and min[g] refer to taking the maximum value and the minimum value of the
function g respectively; Va1 ;max and Aaq j max are the maximum values of the angular
velocity and acceleration allowed by the ith joints of the first-level arm, respectively; DI(t)
is the minimum distance function of TACCS; and D1I,,; denotes the threshold value taken
for the reliable obstacle avoidance.

Therefore, even if the allowable ranges or maximum values of the angular displace-
ments, velocity and acceleration of all joints of each arm are the same, there are 14 constraint
conditions in the above model. In order to increase the optimization efficiency, the upper
and lower values of variables Ax, Ay, Az, «, § and < need to be limited as much as possible.
For this purpose, this work proposed a feasible space analysis method based on the IK
functions of two arms. In this method, the Monte Carlo method is firstly used to randomly
take values for variables Ax, Ay, Az, «, B, v; then the target pose of the end effector of the
first-level arm and the base frame of the second-level arm can be determined, based on
which the IK functions of two arms can be solved; finally, values of variables with valid
solutions in two IK problems can be recorded, based on which the feasible space of frame
2 (as Figure 2) is obtained, and can help to determine the upper and lower bounds of the
corresponding variable. The framework of this method is shown in Figure 7.

End-effector IK solution of .
Random Values of pose gstg; first-level arm \ Recording
sampling based |->| Ax, Ay, Az va'lues when
on Monte Carlo a, B,y End-effector IK solution of / vaI|d:)3LLJtt|ons
pose gstg; y second-level arm

{

Upper and lower limits of Feasible space of
. l<—|
each variable frame 2

Figure 7. Framework of the feasible space analysis based on IK functions of two arms.

Since the number of variables and constraint conditions have a major impact on the
convergence time and effect of the optimization, the bi-layer optimization strategy is also
proposed in this work. In this strategy, the optimization problem is decoupled into two
layers of sub-optimizations: the first layer of sub-optimization is the end-effector pose
optimization of the first-level arm considering the kinematics and obstacle-avoidance
constraints, as well as its influence on the operational dexterity of the second-level arm; the
second layer includes two sub-optimizations, which are the motion trajectory optimizations
of two arms, respectively, based on the optimal result of the first layer. Moreover, the bi-
layer optimization problem also considers the motion time and energy consumption of the
arms. Therefore, the first sub-optimization takes the sum of Euclidean distances of all joints
of two arms as the object, which refers to the equivalent index of the energy consumption;
the other sub-optimizations take the motion time and the length of motion path of the arm
as the object. Then, the objectives of three sub-optimizations can be expressed by

D D
fB-1= \/ Yo Oant Y 00 (11)

Dy [Tar
fp2=wiTay +wawr ) /H) Sai(t) (12)

D Tar
fo-3 = w1 Tap +wowr ) .7 /t*O Sa2,i(t) (13)
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wherein 6 41 ; and 6 45 ; are the inverse solutions of the ith joint at the target pose of the end
effector for two arms, respectively.

The bi-layer optimization framework is shown in Figure 8, wherein there exists a global
judgement for obstacle avoidance of the whole robotic motion before the second-layer sub-
optimizations. From this framework, the optimal values of the first-layer optimization is
the input for sub-optimization of the second-layer optimization, which means two sub-
optimizations can perform parallel computing and output optimal trajectories. In actual
applications, the parallel computing can largely improve the execution efficiency of the
bi-layer optimization algorithm.

The first-layer optimization

) 2

Sub-optimization 1 <
v
Optimal values of Ax, Ay, Az, a, B,y No

¥

Global judgement of obstacle avoidance of
two arms

! Yes

The second-layer optimization

L 2 L 2

Sub-optimization 2 Sub-optimization 3

v v

Optimal trajectory Optimal trajectory
of first-level arm of second-level arm

Figure 8. Bi-layer optimization framework.

Moreover, in the global judgement, the motion times of two arms are firstly taken
reasonably to determine the overall robotic poses at different motion times, since their
values have a minimal influence on the robotic pose at a certain point of the trajectory but
largely affect the motion speed and acceleration of each joint; then, the smallest distance
between the TACCS and its surrounding obstacles during motion can be calculated based on
the model of the minimum distance of Section 3; finally, the smallest distance is compared
with its threshold value (taken to ensure the absolutely safety of the system) to complete
the judgement, which can detect the possible collisions that may happen during motion
accurately and reliably. In the bi-layer optimization framework, if the global judgement
condition is not satisfied, it then returns to the first-layer optimization, or else it continues
the second-layer optimizations. The above strategy can further help improve the efficiency
of the whole optimization, which can be modeled as follows:
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minimize: [ = fg_1(Ax, Ay, Az, a, B,7)
subjectto::  Ax € [AXpin, AXyax]

Ay € [AyminrA]/max]

Az € [Dzyin, AZmax)

LS [“minr (Xmax]

B € [Bumins Bmax]

Y€ [7minl ')/mux}

041, € Da1,i;042i € Dao;

DIg > Dlyrea

I
Judgement : min[DI(t)] > Dlyyeq

U (14)
minimize: [ = fp_2(Ta1)
subjectto:  Ss1,(t) € Day,;
max SAl,i(f) < VAl,i,max
max éAl,i(f) < AALimax
Ta < TAl,max
U
minimize: f = fp_3(Ta2)
subjectto:  Spp;(t) € Dap,
max SAz,j(t) < VAl,i,mux

max éAZ,i(t) S AAZ,i,max

Taz < Ta2max

wherein DIr means the minimum distance when the TACCS is at its target pose.

In this work, the particle swarm optimization algorithm (PSO) is adopted to solve the
optimization models proposed above; the PSO is an intelligent algorithm that searches for
the optimal solution in the solution space by a certain number of particles and has advan-
tages of easy implementation and fewer algorithm parameters. Based on the calculation
functions of IK and the minimum distance of TACCS, pseudo codes of algorithms based
on the single and bi-layer optimizations can be written as Algorithm Al and Algorithm
A2 in Appendix A. For the PSO, parameters include inertia weight w, maximum flying
velocity v,y of particles and the number of particles Np, and they have major impacts
on the convergence speed and optimization effect. Among them, the value of v,y for
each variable can be taken by 10% to 20% of its searching range, and if the ranges for the
variables are different, the ratio ¢ of the value to its corresponding range can be taken as
a uniform parameter for values of the maximum velocities of all variables, 0.1 < ¢ < 0.2.
Therefore, for the motion planning optimization, reasonable values of PSO parameters (w,
¢ and Nj) should be taken to obtain the optimal results according to several trails of each
optimization. Moreover, in order to ensure obtain the global optimal result, the stopping
criterion for iteration is defined by max[|fr_r—1 — fr—z|, 0 < 7 < 14] < ¢, which means
that the change in the objective value during fourteen successive iterations is less than a
threshold value ¢ = 0.001.

5. Verification Based on Simulation Cases

In order to show the performance of two proposed optimization algorithms, this
section designed two example cases. The principle of determining initial conditions (in-
cluding the target pose and locations of obstacles) for the simulations involves ensuring the
solvability of the optimization problem, i.e., there is at least one collision-free path during
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the conversion from the initial pose to the target pose. The operational environment of case
2 is shown in Figure 4 (the target structure is located on one side of capsule), and for that
of case 1, the target structure and its surrounding obstacles are located on the top of the
capsule. The target pose and the initial 3D locations of the feature points of the TACCS and
obstacles in frame 1 (Table A1) are given for the following simulation analysis based on the
above basic principle.

From the proposed method, there also exists one important step before the optimiza-
tion, which is to determine the upper and lower values of variables Ax, Ay, Az, «,  and
according to the framework shown in Figure 8. Figures 9 and 10 show the feasible spaces
of variables in two example cases, wherein valid solutions of variables Ax, Ay and Az and
that of variables &, B and vy are plotted as points in a 3D coordinate system, respectively,
which finally form point clouds to show the feasible spaces.
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Figure 10. Feasible spaces in example case 2.
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In each sub-figure of Figures 9 and 10, the red box is used to show the final space
size chosen to further decrease the allowable ranges of variables that can help improve
the optimization efficiency. The box selection principles include (1) trying to select regions
with dense point clouds, which refers to the point clouds with higher density; (2) ensuring
that the proportion of selected points to all points is greater than a reasonable value; and
(3) taking the limits of the red box based on the above proportion requirement. From
Figures 9 and 10, since the density of the points is uniform, the regions for variables «,
and v are taken as the whole; the distribution of point clouds for variables Ax, Ay and Az
features sparse edges and a dense middle, and so a reasonable value of the proportion can
largely improve the optimization efficiency under the premise of ensuring the optimization
effect. In order to show the influence of the proportion of variables Ax, Ay and Az on the
optimization effect, the iterative curves of the sub-optimization 1 (since the size of the
allowable range of variables Ax, Ay and Az has a major impact on sub-optimization 1 of the
bi-layer optimization) and the single optimization under different values of the proportion
(50%, 70%, 90% and 100%) are shown in Figure 11, respectively, from which, when the
proportion is taken by 90%, the optimization efficiency can be largely improved with only
a small loss of the objective value. From two figures, the allowable ranges of six variables
in two example cases can be finally obtained.

T
Proportion : 50%
" : — = —Proportion : 70%
. Proportion : 90%
| \ | (=-==Proportion : 100%|

= = =Proportion : 70%
Proportion : 90%
=== Proportion : 100%

: :
‘— Proportion : 50%

260 - i

240

Iteration number Iteration number
(a) Iterative curves of sub-optimization 1 in (b) Iterative curves of single optimization

bi-layer optimization

Figure 11. Iterative curves of the sub-optimization 1 in bi-layer optimization and the single optimiza-
tion under different values of the proportion (50%, 70%, 90% and 100%).

Moreover, as presented in Section 4, PSO parameters (including the inertia weight w,
the velocity ratio ¢ and the particle number N;) have a major influence on the optimization
effect, and they are always related to ranges of variables and the complexity of the optimiza-
tion problem. Therefore, different values for these parameters should be taken to perform
the optimizations before cases analysis, aiming to determine the reasonable values for PSO
parameters and ensure the optimization effect. Iterative curves for the single optimization
and three sub-optimizations of the bi-layer optimization with different values of PSO pa-
rameters are shown in Figure 12. From this figure, the reasonable values for the PSO param-
eters can be determined as [w = 0.8, ¢ =0.15, N, =15, [w =12, ¢ =0.15, N, = 10]
and [w = 0.8, ¢ = 0.10, N, = 10] for the first-layer optimization (sub-optimization 1), the
second-layer sub-optimizations of the bi-layer optimization (sub-optimizations 2 and 3)
and the single optimization, respectively, which can ensure the fast convergence speed and
global optimization capability.
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Figure 12. Iterative curves for the single optimization and three sub-optimizations of the bi-layer
optimization with different values of PSO parameters.

Since the randomness of PSO iterations has a major impact on the convergence time of
optimization, in order to analysis the influence degrees of the randomness for two proposed
algorithms, the single and bi-layer optimizations for two example cases are performed
30 times. The comparison of convergence times of two optimization algorithms is shown
in Table 3, wherein y, 0 and ¢, mean the average convergence time, the standard deviation
and the coefficient of variation of 30 optimizations, respectively, while u is used to evaluate
the average optimization efficiency, ¢ and ¢, are used to evaluate the robustness of the

algorithms, o can reflect the dispersion of convergence time, o = 4/ % Y0 (ki — y)z and ¢y
is the dimensionless representation of ¢, c;, = 0 /u x 100%, (and it can be used to compare

the convergence performances of different optimizations). From the result, we can obtain
the following conclusions: (1) The average convergence times of the bi-layer optimization
algorithm in two cases are reduced by 72.43% and 63.64%, respectively, compared with
that of the single optimization algorithm, which are calculated by (us — pp)/ s x 100%,
wherein s and y;, are the average convergence time of the single and bi-layer algorithms.
The reason is that reducing the number of variables can largely increase the optimization
speed; additionally, the collision judgement during the whole motion is placed outside
the optimization iteration process. (2) Values of the dispersion of the bi-layer optimization
algorithm in two cases are reduced by 79.52% and 82.53%, respectively, and values of
the coefficient of variation in two cases are reduced by 25.68% and 51.90%, respectively,
compared with that of the single optimization algorithm. That is, the randomness of
PSO iterations has a greater impact on the convergence time of the single optimization
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algorithm. (3) Although the initial conditions have a major impact on the convergence time
of optimizations, the average convergence times of the single optimization in two cases are
obviously larger than that of the bi-layer optimization, which indicates that the advantage
of bi-layer optimization is confidently certain under different initial conditions.

Table 3. Comparison of convergence times of two optimization algorithms.

Example Case Optimization uls ols col%

Single 145.54 51.67 35.51

Case 1 Bi-layer 40.12 10.58 26.39
Difference 72.43% 79.52% 25.68%

Single 52.48 18.66 35.55

Case 2 Bi-layer 19.08 3.26 17.10
Difference 63.64% 82.53% 51.90%

The constraints and the optimal results of the main parameters based on three al-
gorithms, including the bi-layer optimization, single optimization and traditional opti-
mization, are listed in Table 4, wherein V;;y and A,y mean the maximum values of
angular velocity and acceleration of all robotic joints and the values of difference 1 and
difference 2 are calculated by |ps — py|/ps x 100% and |ps — pp|/ pr x 100%, while ps, pj
and p; represent the parameter values based on single optimization, bi-layer optimization
and traditional optimization, respectively. The results show that values for parameters
Ax, Ay, Az, &, B, ¥, Vinax and Apx, based on three algorithms, are all less than their corre-
sponding limits given in constraints; compared with the bi-layer optimization, the overall
optimization objectives in two cases obtained based on the traditional optimization increase
6.94% and 4.36%, respectively. In particular, the energy consumption increases 11.21%
in case 1, and the motion time increases 22.75% in case 2; the differences of the overall
optimization objectives based on the bi-layer optimization and the single optimization in
two cases are only 3.21% and 1.33%, respectively. The main reasons for the differences
include (1) the hierarchical processing of the optimization problem taking into account the
end-effector pose of the first-level arm on the motion of the second-level arm, which can
rapidly find the optimal result and finally improve the optimization efficiency, but it also
sacrifices a small amount of the valid solution space, which leads to some objectives based
on single optimization being potentially less than that based on bi-layer optimization (for
example, the overall objective based on single optimization is 3.21% smaller than that based
on bi-layer optimization in case 1); (2) in spite of the above reasons, it is very difficult for
single optimization to find the real global optimal solution, so its objectives may be higher
than that of the bi-layer optimization (for example, the overall objective based on single
optimization is 1.33% larger than that based on bi-layer optimization). For the constraints
based on bi-layer optimization, the maximum velocity and acceleration of robotic joints
are 77.71 deg/s and 103.80 deg/s?, and they are obviously less than their allowable values
120 deg/s and 200 deg/s?, respectively. Also, Figure 13 gives the variation in the shortest
distance between the TACCS and its obstacles over motion time based on two algorithms,
which indicates that the optimal trajectories of the TACCS based on two algorithms can
ensure the motion safety of the system; additionally, in order to clearly show the details
of the shortest distance between the TACCS and obstacles, the corresponding structure
no. and obstacle no. are also shown in Figure 10 (for example, R2-O1 means the distance
between the second robotic structure and the first obstacle is the shortest distance, wherein
the no. information can be found in Table A1).
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Table 4. Constraints, optimal results of main parameters based on three algorithms, including the

bi-layer opt. (bi-layer optimization), single opt. (single optimization) and trad. opt. (traditional

optimization).
Example Case Parameter Constraints Bi-Layer Opt. Single Opt. Difference 1 Trad. Opt. Difference 2
Ax/(mm) [1500, 3000] 2016.08 1628.35 - 2500.00 -
Ay/(mm) [—1000, 1000] 604.94 675.01 - 815.81 -
Az/(mm) [820, 2200] 2148.84 1797.81 - 2097.21 -
a/(deg) [—180, 180] 92.66 —24.45 - 104.74 -
B/(deg) [—90, 90] 76.65 64.71 - 5.24 -
Case 1 v/ (deg) [—180, 180] 86.73 2.64 - 90.00 -
Vinax/ (deg/s) <120 77.71 64.51 - 55.59 -
Amax/ (deg/sz) <200 103.80 95.67 - 54.13 -
T (s) <20 4.67 498 6.22% 4.51 3.55%
Path (deg) - 9.82 9.06 8.39% 11.06 11.21%
F - 14.49 14.04 3.21% 15.57 6.94%
Ax/(mm) [1500, 2800] 1871.38 1652.65 - 1653.14 -
Ay/(mm) [—200, 1800] 1102.91 1246.74 - 1214.89 -
Az/(mm) [800, 1880] 1394.95 1521.54 - 1619.18 -
a/(deg) [—180, 180] 22.37 —77.82 - 67.21 -
B/(deg) [—90, 90] 72.61 25.74 - 45.72 -
Case 2 v/ (deg) [—180, 180] 17.02 —72.95 - 59.02 -
Vinax/ (deg/s) <120 95.97 96.94 - 81.29 -
Amax/ (deg/sz) <200 136.82 138.06 - 115.61 -
T (s) <20 4.21 4.37 3.66% 5.45 22.75%
Path (deg) - 11.37 11.42 0.44% 10.84 4.89%
F - 15.58 15.79 1.33% 16.29 4.36%
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Figure 13. Variation in the shortest distance between TACCS and its obstacles over motion time based

on two algorithms.

Moreover, taking example case 1 as the objective, curves of angular parameters of
each joint of TACCS and a series of motion poses relative to capsule based on the bi-layer
optimization algorithm are shown in Figures 14 and 15, and those based on the single
optimization algorithm are shown in Figures Al and A2, which can further intuitively
demonstrate the optimization effect of two algorithms, including the guarantee of the
motion stability and safety. Moreover, taking example case 2 as the objective, a series
of motion poses relative to the capsule based on the bi-layer and single optimization
algorithms are shown in Figures A3 and A4.
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Figure 14. Curves of angular parameters of each joint of TACCS based on bi-layer optimization.
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Figure 15. Series of motion poses relative to capsule based on bi-layer optimization.

From the comprehensive analysis results of convergence speed and optimization effect,
it can be concluded that the bi-layer optimization has a higher execution efficiency under

the premise of ensuring the optimization effect.
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6. Conclusions and Future Works
6.1. Conclusions

This work proposed the single and bi-layer optimization algorithms for the collision-
free motion planning problem of the TACCS, aiming to optimize the operating time and en-
ergy consumption and considering both the kinematics and obstacle-avoidance constraints
under the complex operational environment. For the implementation of optimizations,
the functions for the inverse kinematics of TACCS and the shortest distance between the
TACCS and its obstacles are established based on screw theory and a hybrid geometric
envelope, respectively. During the optimization problem modeling, a single optimization
problem with more than eight variables is converted into three optimization sub-problems
with fewer variables of bi-layer optimization, which aims to improve the convergence
efficiency of optimizations. Finally, two algorithms are applied into two example cases.
Through experimental simulations, three main conclusions are obtained as follows:

(1) The reasonable PSO parameters are selected to perform optimizations of two algo-
rithms, both considering their influences on convergence time and optimization effect.
Moreover, a box selection principle is designed to determine the allowable ranges
of motion variables of the first level arm, which can further improve the execution
speed of algorithms by sacrificing very little workspace. The above strategies can help
ensure and improve the optimization performances of two algorithms.

(2) The performance indexes are taken as the average value and dispersion of conver-
gence times of 30 executions, which are obtained in two example cases and based on
two algorithms. The comparison of performance indexes indicates that the bi-layer
optimization has a higher convergence speed than the single optimization, which can
be increased by more than 60%, and the randomness of the PSO iterations has less of
an impact on the convergence speed of the bi-layer optimization.

(3) The optimal results based on two algorithms are compared to show the significance of
this work. The results indicate that values of motion parameters and shortest distances
during the whole motion are less than their corresponding limits given in constraints;
additionally, the overall optimization objective based on the bi-layer optimization is
smaller than that based on the single optimization. Combining with the comparison
result of convergence speed, it can be concluded that the bi-layer optimization has a
higher execution efficiency under the premise of ensuring the optimization effect.

6.2. Future Works

In this work, the proposed algorithms can be used for the collision-free motion plan-
ning of the TACCS under the complex structured environment, for which the locations
of obstacles and targets are given information, i.e., they are fixed or regularly changed.
Therefore, this work cannot solve the real-time collision-free motion planning of the TACCS
in randomly dynamic scenarios, which will be one focus of future works. Moreover, the real
application of the proposed algorithms will be the other focus of future works, for which
we will actively seek cooperation opportunities with aerospace enterprises and apply our
result in actual scenarios.

Author Contributions: Conceptualization and methodology, J.X.; validation and writing—original
draft preparation, L.T. and Y.P,; writing—review and editing, all authors; supervision, Q.C. and H.C,;
project administration, ].X. and T.Z.; funding acquisition, Q.C., H.C. and T.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (No. 2023YFB3406400),
the Joint Funds of the National Natural Science Foundation of China (No. U23B20104), the 2022
industrial technology basic public service platform (No. 2022-232-223-02), and the R&D Program of
the Beijing Municipal Education Commission (No. KM202210005031).

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.



Mathematics 2024, 12, 2245

21 of 29

Conflicts of Interest: Author Yanhu Pei was employed by the Genertec Machine Tool Engineering
Research Institute Co., Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict of
interest. The Genertec Machine Tool Engineering Research Institute Co., Ltd. had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Nomenclature

TACCS

Two-arm cascade combination system: a system that one manipulator is mounted
at the end effector of the other manipulator.

IK Inverse kinematics: a mapping from the end-effector pose to the angular displacements
of joints for one manipulator.

DOFs Degrees of freedom.

BCF Base coordinate frame of the manipulator.

SMP Motion planning algorithms of two subsystems are carried separately for the mobile
manipulator.

WMP Motion planning of the high-DOFs system is carried in a whole.

A* algorithm  A-star algorithm: a heuristic search algorithm to find the shortest path from the
starting point to the target point in a graph.

RRT Rapidly exploring random trees: build a tree by random sampling and gradually
expand the tree to approach the target point, eventually finding a viable path from
the starting point to the end point.

PRM Probabilistic roadmap: the possible motion path of the robot is constructed by
probabilistically sampling points in the configuration space and establishing edges
between the connectable points.

PSO Particle swarm optimization.

PSO-WOA A novel hybrid heuristic algorithm, which combined PSO and whale optimization
algorithm.

GMOPSO A modified multi-objective PSO algorithm.

CF-TEM A collision-free and time-energy-minimum trajectory planning optimization method.

EECF End-effector coordinate frame of the manipulator.

3D coordinate = Three-dimensional coordinate.

4D vector Four-dimensional vector.

Appendix A. Optimization Algorithms

Based on the calculation functions of IK and minimum distance of TACCS, pseudo
codes of algorithms based on the single and bi-layer optimizations can be written as
Algorithm A1l and Algorithm A2 as follows.

Algorithm A1 Pseudo Codes of the Single Optimization Algorithm

1. Input: gst

2. PSO parameters setting Ny, w, 1, 2, ¢;

3. Initialize: [Ax, Ay, Az, «, B, v, Ta1, Taz]

4. while count <15 do

5. forn = 1to N, do

6. Calculate 041 « fun_IKa1([Ax, Ay, Az, a, B, 7]),

7. Calculate 04, < fun_IKan(gst, [Ax, Ay, Az, a, B, 7]),

8. if 041 # O && 04y # @ then

9. Determine Sa1,i(ta1), Savi(ta1), Savi(tar), DI(ta1);

10. Determine Sz (ta2),Sa2,i(ta2), Saz,i(ta2), DI(taz);

11. Calculate 9A1,i,min = min(SAll,-(tAl)) and 0A1,i,mux = max(SAl,i tA1)>, 0< tAl < TAl
12. Calculate 042 min = min(Saz,i(taz)) and 0z imax = max(Sazi(taz)

13. Calculate 0 41,imin = min(Sani(ta1)) and 01 imax = max(Sari(tar)

14. Calculate 0 42 imin = min(Sazi(taz)) and 04z imax = max(Sazi(taz)

15. Calculate 6 41,i,min = Mmin(Sa,i(ta1)) and 041 imax = max(Sa1i(ta1)), 0 < tar < Tar.
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Algorithm A1 Cont.
16. Calculate 6 42, min = Min(Sa2i(ta2)) and 0 a2 max = Mmax(Sazi(taz)), 0 < tay < Taz
17. Calculate DIa1min = min(Dl(tA1)>, 0<ty <Tm
18. Calculate DI yin = min(DI(ta2)), 0 < tar < Tap
19 if GA]/AZJ,minrGA]/AZ',i,mux € Da1yazi && 041/ 42,imins 0 A1/ A2imax € Da1yazi &&
041/ A2,imins 041/ A2,imaxD a1/ A2,i && DI/ a2 min < DIy,then
20. Calculate fit,
21. if fit, < fp then
22. Sfpmn = fitn; Xpn = Xu.
23. end if
24. end if
25. end if
26. end for
27. if min(f,) < fg then
28. [fo, num] = min(fp) ; x¢ = Xpuum-
29. end if
30. if for 1 — for < 0.001 then
31. count = count + 1
32. else
33. count =1
34. end if
35. Update the current flying velocities and positions of all particles;
36. end while

Algorithm A2 Pseudo Codes of the Bi-Layer Optimization Algorithm

Input: gst
PSO parameters setting Ny, w, c1, ¢2, ¢;
Initialize: [Ax, Ay, Az, «, B, 7]
while condition < 0 do
while countl < 15 do
forn =1to Ny, do
Calculate 641 + fun_IKa1([Ax, Ay, Az, «, B, 7]),
Calculate 84y < fun_IKan(gst, [Ax, Ay, Az, o, B, 7]),
if04 # O && 0,1 # T && 04142 € Da1/a2 then
Calculate DIy, , DI,
if D19A1/9A2 S DIth then
Calculate fit1,
if fitl, < f1, then
flpn = fitly; x1pn = x15.
end if
end if
end if
end for
if min(f1,) < f1, then
[flg, num)| = min(f1y) ; x1g = X1y num-
end if
if flgr1 — flgx < 0.001 then
countl = countl + 1
else
countl =1
end if
Update the current flying velocities and positions of all particles;
end while
Calculate DIy min = min{DI(ta1,c1)), 0 < tarc1 < Tarc
Calculate D12 in = min{DI(taz,c2)), 0 < tazc2 < Tazco
if DIay/a2,min < DIy, then
condition =1
end if
end while
Initialize: T
while count2 < 15 do
forn =1to N, do

Determine Say(fa1), Sari(ta1), Sari(tar), DI(tar);
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Algorithm A2 Cont.
39. Calculate eAlzmm = min<sA1 z(tAl)> and 9A1 imax — max<SA1 ( 1)>' 0<ta <Tar
40. Calculate 0A11mm = min(S1,:(ta1)) and 9A1 jmax = max(Sa1i(tar)), 0 < ta < Tay.
41. Calculate 0A11mm - mln<sA11(tA1)> and GAl imax — max<5A1 ( Al))r 0<ta1 < Ty
42. Calculate D41, pin = mln(DI(tA1)> 0<ty1 < Ty
43 if 9A1 imins GAl i,max S DAl i && 9A1 imins 9A1 imax € DAl i &&
0 41,imins 0a1maxD a1 && DIgpmin < DIy then
44. Calculate fit2,
45. if fit2, < f2, then
46. f2pn = fit2p; X2y = x24.
47. end if
48. end if
49. end for
50. if min(f2,) < f2¢ then
51. [f2g, num| = min(f2,) ; x2¢ = X2p pum-
52. end if
53. if 2,51 — f2¢x < 0.001 then
54. count2 = count2 + 1
55. else
56. count2 =1
57. end if
58. Update the current flying velocities and positions of all particles;
59. end while
60. Initialize: T a2
61. while count3 < 15 do
62. forn =1to N, do
63. Determine Sa2,i(fa2), Sa2i(ta2), Sazi(taz), DI(ta2);
64. Calculate 04z imin = min(Sazi(taz)) and 0az,imax = max(Sazi(taz)), 0 < taz < Taz
65. Calculate 0 43 imin = min(Sazi(taz)) and 9Azz max = max(Sppi(taz)), 0 < tar < Taa
66. Calculate 0 2 i min = min (S az,i(ta2)) and 0 a2 imax = Mmax(Sazi(taz)), 0 < taz < Ta
67. Calculate DIap yin = min{DI(taz)), 0 < tar < Tap
6 £ 0421, mins 0A2imax € Dazi && 0a2,imin 0 A2imax € Dazji &&
9A2,i,mi11/ 9A2,i,maxDA2,i && DIAZ,min < DIth then
69. Calculate fit3,
70. if fit3, < f3, then
71. f3pn = fit3n; X3y = x3y.
72. end if
73. end if
74. end for
75. if min(f3,) < f3¢ then
76. [f3g, num| = min(f3,) ; X3¢ = X3y pum-
77. end if
78. if 351 — f3gx < 0.001 then
79. count3 = count3 + 1
80. else
81. count3 =1
82. end if
83. Update the current flying velocities and positions of all particles;
84. end while

Appendix B. Experimental Settings

For two example cases, the target position of the end effector (the target orientation
is the same as the initial state) and the initial 3D locations of feature points of the TACCS
and obstacles in frame 1 are given for the simulation implementation, and they are listed in

Table A1 as follows.
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Table A1. Target pose and the initial 3D locations of feature points of TACCS and obstacles in frame 1.

Characteristic Points Coordinate i
Structures Radius/mm (Number of Edges)
Structure Type Number X/mm Y/mm Z/mm

1 —200 —200 400 i

2 200 —200 400 -

3 200 200 400 i

Polygon 1 : 2 g 470 -

Y8 5 —200 —200 470 -

6 200 —200 470 /

7 200 200 470 /

8 —200 200 470 /
. 1 0 0 470 180
Cylinder 2 5 0 0 1010 180
' 1 0 0 1010 180
Cylinder 3 5 0 405 1010 180
. 1 0 405 1010 198
Cylinder 4 2 0 740 1010 198
_ 1 0 540 1010 198
Cylinder 5 2 0 540 2504 198
' 1 0 405 2504 198
Cylinder 6 5 0 740 2504 198
. 1 0 405 2504 180
Cylinder 7 2 0 0 2504 180
Cylinder 8 ! 0 0 — B
> 0 0 3764 180
' 1 0 —270 3764 180
Cylinder 9 5 0 270 3764 180

Robot

. 1 0 0 3764 153
Cylinder 10 2 0 0 4034 153
. 1 0 0 4034 153
Cylinder 11 5 0 0 4366 153

1 —200 —200 4366 /

5 200 ~200 4366 /

3 200 200 4366 /

4 —200 200 4366 /

Polygon 12 5 200 ~200 4516 /

6 200 —200 4516 /

7 200 200 4516 /

8 —200 200 4516 /
. 1 0 0 4516 100
Cylinder 13 5 0 0 4816 100
. 1 0 0 4816 100
Cylinder 14 2 0 225 4816 100
' 1 0 415 4816 110
Cylinder 15 5 0 225 4816 110
. 1 0 300 4816 110
Cylinder 16 2 0 300 5646 110
_ 1 0 415 5646 110
Cylinder 17 2 0 225 5646 110
’ 1 0 0 5646 100
Cylinder 18 5 0 225 5646 100
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Table Al. Cont.

Characteristic Points Coordinate .
Structures Radius/mm (Number of Edges)
Structure Type Number X/mm Y/mm Z/mm
. 1 0 0 5646 100
Cylinder 19 2 0 0 6346 100
. 1 0 —150 6346 100
Cylinder 20 2 0 150 6346 100
. 1 0 0 6346 85
Cylinder 21 2 0 0 6496 85
. 1 0 0 6496 85
Cylinder 22 2 0 0 6680 85
1 850 450 500 /
2 1150 450 500 /
3 1150 750 500 /
Polygonal obstacles 1 4 850 750 500 /
(Cases 1,2) 5 850 450 1300 /
6 1150 450 1300 /
7 1150 750 1300 /
8 850 750 1300 /
1 1840 —660 500 /
2 2160 —660 500 /
3 2160 —340 500 /
Polygonal obstacles 2 4 1840 —340 500 /
(Cases 1,2) 5 1840 —660 1500 /
6 2160 —660 1500 /
7 2160 —340 1500 /
8 1840 —340 1500 /
Cylindrical obstacles 3 1 800 —500 550 200 (N, =12)
(Cases 1,2) 2 800 —500 1300 200 (N, = 12)
Cylindrical obstacles 4 1 1800 500 550 200 (N, =12)
Obstacles (Cases 1,2) 2 1800 500 1500 200 (N, = 12)
1 2850 —150 700 /
2 3150 —150 700 /
3 3150 150 700 /
Polygonal obstacles 5 4 2850 150 700 /
(Case 1) 5 2850 —150 850 /
6 3150 —150 850 /
7 3150 150 850 /
8 2850 150 850 /
1 3580 —120 700 /
2 3820 —120 700 /
3 3820 120 700 /
Polygonal obstacles 6 4 3580 120 700 /
(Case 1) 5 3580 —120 1100 /
6 3820 —120 1100 /
7 3820 120 1100 /
8 3580 120 1100 /
Cylindrical obstacles 7 1 3000 —550 550 150 (N, = 12)
(Case 1) 2 3000 —550 1000 150 (N, = 12)
Cylindrical obstacles 8 1 3000 550 550 150 (N, = 12)
(Case 1) 2 3000 550 1000 150 (N, = 12)
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Table Al. Cont.

Characteristic Points Coordinate
Structures Radius/mm (Number of Edges)
Structure Type Number X/mm Y/mm Z/mm
1 2850 388.91 601.04 /
2 3150 388.91 601.04 /
3 3150 601.04 388.91 /
Polygonal obstacles 9 4 2850 601.04 388.91 /
(Case 2) 5 2850 494.97 707.11 /
6 3150 494.97 707.11 /
7 3150 707.11 494.97 /
8 2850 707.11 494.97 /
1 3580 410.12 579.83 /
2 3820 410.12 579.83 /
3 3820 579.83 410.12 /
Polygonal obstacles 10 4 3580 579.83 410.12 /
(Case 2) 5 3580 692.97 862.67 /
6 3820 692.97 862.67 /
7 3580 862.67 692.97 /
8 3580 862.67 692.97 /
Cylindrical obstacles 11 1 3000 0 777.82 150 (N, = 12)
(Case 2) 2 3000 318.2 1096.02 150 (N, = 12)
Cylindrical obstacles 12 1 3000 777.82 0 150 (N, = 12)
(Case 2) 2 3000 1096.02 318.2 150 (N, = 12)
. 1 3000 0 950 /
Case Target point 2 3000 6364 676.4 /
Appendix C. Experimental Results
Taking example case 1 as the objective, curves of angular parameters of each joint of
TACCS and a series of motion poses relative to capsule based on the single optimization
algorithm are shown in Figures Al and A2 as follows.
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Figure A1. Curves of angular parameters of each joint of TACCS based on single optimization in
example case 1.
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Figure A2. Series of motion poses relative to capsule based on single optimization in example case 1.

Moreover, taking example case 2 as the objective, a series of motion poses relative to
capsule based on the bi-layer and single optimization algorithms are shown in Figures A3
and A4 as follows.

i)
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(c) Spatial pose 3

o)

t . g 88

(d) Spatial pose 4 (e) Spatial pose 5 (f) Spatial pose 6

Figure A3. Series of motion poses relative to capsule based on bi-layer optimization in example
case 2.
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Figure A4. Series of motion poses relative to capsule based on single optimization in example case 2.
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