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Abstract: The identification (and control) of nonlinear systems is one of the most important and
actual research directions. Moreover, many systems are multivariable. Different from linear system
identification (where only a few classes of models are available), in the case of nonlinear systems,
the class set of models is quite diverse. One of the most appealing nonlinear models belongs to the
nonlinear ARMAX (NARMAX) class. This article focusses on the identification of such a model,
which can be compared with other models (such as nonlinear ARX (NARX) and linear ARMAX)
in an application based on the didactical installation ASTANK2. The mathematical foundation of
NARMAX models and their identification method are described at length within this article. One
of the most interesting parts is concerned with the identification of optimal models not only in
terms of numerical parameters but also as structure. A metaheuristic (namely, the Cuckoo Search
Algorithm) is employed with the aim of finding the optimal structural indices based on a special cost
function, referred to as fitness. In the end, the performances of all three models (NARMAX, NARX,
and ARMAX) are compared after the identification of the ASTANK2 installation.

Keywords: linear/nonlinear system identification; multivariable systems; identification for control;
simulation of identification models; nonconvex optimization using biology inspired metaheuristics

MSC: 93B30; 37M05; 90C26; 92-10

1. Introduction

The complexity and diversity of real-life systems approached in many branches of en-
gineering and science require developing accurate mathematical models as a fundamental
step in supporting a large panoply of applications, such as automatic control, optimization,
prediction, fault diagnosis, analysis, and simulation.

One approach to obtain accurate models of a system with observable outputs is by
employing system identification techniques. System Identification (SI) [1,2], also nowa-
days referred to as data-driven modeling, is an interdisciplinary domain that aims to build
mathematical models of artificial systems and natural phenomena from inputoutput ob-
servations [3]. Because most practical systems have an intrinsic nonlinear behavior [4],
with different degrees of nonlinearity, and linear models cannot always capture their rich
dynamics [5], increased attention has been paid, in the last two decades, to Nonlinear System
Identification (NSI) [6–8]. Therefore, NSI is a challenging topic in modern research, with
applications in many fields, such as chemical engineering [9–13], power systems [14,15],
robotics [16–18], mechanics [19–24], fluid flows [25], agriculture [26], aeronautics [3], genet-
ics [27], neuroscience [28,29], meteorology [30], signal processing [7], and so many others.

Assuming that the data acquisition has already been performed, NSI involves three
stages [7]: first, one has to select the class (type) of the nonlinear models; second, and the
most critical, an adequate structure of the nonlinear model has to be determined, followed
by the parameter estimation; finally, the previously identified model will be tested on the

Mathematics 2024, 12, 2252. https://doi.org/10.3390/math12142252 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12142252
https://doi.org/10.3390/math12142252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8175-6659
https://orcid.org/0000-0002-9358-4337
https://orcid.org/0009-0008-1477-9277
https://doi.org/10.3390/math12142252
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12142252?type=check_update&version=2


Mathematics 2024, 12, 2252 2 of 50

validation dataset, and, if valid (unbiased and correct) [25], it is returned as being reliable
for further applications. There are some popular classes of nonlinear models that have been
addressed in the SI literature over the years, most of them for the discrete-time domain, such
as Volterra series [31,32], block-structured systems (like Hammerstein) [4,10,33], Wiener
class [32], and WienerHammerstein class [21].

One model that has captured the interest of many scientists is the Nonlinear Auto-
Regressive Moving Average with eXogenous input (NARMAX) one [6,8,20,34,35], with its
simpler versions, NARX and NARMA [3,13,21,25,28,36]. In fact, the NARMAX models are
naturally built by using the well-known ARMAX linear models [1].

The NARMAX model has proven to be versatile and to perform very well in many ap-
plications. It is based on a comprehensive mathematical description accommodating a wide
range of nonlinear stochastic and deterministic systems [20,25,34,37]. Although the output
is expressed by a nonlinear relationship of the lagged variable signals (inputs, outputs, and
noise), the model is often linear in parameters, which makes it identifiable [8]. Although
introduced a long time ago by Billings and Leontaritis [6], this model has been extensively
documented and developed in the last two decades in different configurations, such as
power-form polynomial models [22], rational models [38], neural networks [14,16,19,22],
radial basis functions [39], wavelet networks [12,40], adaptive neuro-fuzzy inference sys-
tems [24], and models based on fuzzy logic [41]. Among these, polynomial models are
one of the most systematically studied [16], having some advantages over non-polynomial
ones (like, for example, machine learning models [26]): they are easy to interpret, describe
an explicit relationship between the system variables (signals), and their identification
methods are efficient and applicable on a relatively reduced dataset. On the other hand,
non-polynomial models have the advantage of overlooking the problem of the model
structure detection [37], which is the most critical task.

In polynomial representation, the model structure generally refers to the number
and degrees of the polynomials associated to the model terms (or regressors) or, more
specifically, to the degree of nonlinearity and the lags of the variables in the model terms. If
at least some preliminary information about the system structure is available, the parameter
estimation can simply be carried out afterwards. Otherwise, different selection criteria
should be employed to search for the optimal structure that has to accomplish a trade-off
between the accuracy and parsimony of the model. Consequently, the most critical step
in NSI is to find the most appropriate model (structure) that fits the underlying system,
including the noise dynamics [5]. In practical systems, noise handling is not a trivial task,
especially for complex nonlinear systems. Depending on the complexity of the system
generating the measured data, one can choose linear or nonlinear noise representations.
For example, in [8], a nonlinear model of the noise has been proposed to better identify a
satellite behavior by using real-life data.

Various efficient identification methods, mainly based on regressor orthogonalization,
have been widely adopted to estimate the parameters of the NARMAX polynomial models,
such as Orthogonal Least Squares (OLS) [25,38], Forward Regression OLS [9,22,25,26,42] or
Orthogonal Forward Regression [20], Multiple Forward Regression OLS [43], Extended Least
Squares (ELS) [1,15], and Recursive ELS [17,34,38]. These methods need to be performed
within an optimization framework to find the optimal model structure of the nonlinear
system. Therefore, the selection of the regressor set (or model terms) interleaves with the
parameter estimation [44].

To obtain the most contributing model terms, two types of optimization methods have
been widely applied: classical and nonconventional. The methods of the first type rely
on an exhaustive search of the most significant model terms, usually chosen from a very
large dictionary of identification models. The model terms are evaluated, ranked, and
selected at each iteration by specific indicators, such as Error Reduction Ratio (ERR) [25,42],
Sum of ERR applied separately or in combination with the Bayesian information crite-
rion [13,25,40], Akaike information criteria [10,25,42], final prediction error [25], NashSut-
cliffe Efficiency [10], Mean Square Error [4,13], Root Mean Square Error [10], and R2 [22].
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Finally, the model is generated with the selected model terms whose metric is greater
than a predefined threshold [20]. This approach proves to be practical, although it leads to
time-consuming procedures as soon as the searching space increases. A detailed description
of these methods can be found in [8].

Nonconventional optimization methods have captured considerable attention in mod-
ern research by introducing stochastic population-based Evolutionary Algorithms [4]. They
are meant to solve complex optimization problems from real-life engineering [36] and
are seen as an alternative to classical (exact) optimization methods. These optimization
methods, also known as metaheuristics, have the potential to return a suitable solution from
extended searching domains with reasonable computational effort. Various metaheuristics
have been successfully utilized to select the structure of NARX/NARMAX models, such
as Particle Swarm Optimization (PSO) [23,40], Genetic Algorithms [13,37], Multi-objective
Optimization Differential Evolution [36], and Multi-Population Parallel Genetic Program-
ming [45]. In [23], the authors proved that the application of PSO for NARX identification
led to comparable results with OLS. In [45], the authors demonstrated that genetic pro-
gramming can effectively handle complex stochastic NSI problems.

This paper focuses on the identification of a real-life laboratory fluidic system named
ASTANK2 [46], by using a multivariable NARMAX model. We assumed that despite the
nonlinear plant dynamics, the noise corrupting the data can be modeled by a linear ARMA
model, without loss of generality. One of the main challenges in multivariable system
identification is to obtain a precise model for each output channel, despite their correlation.
Few papers tackle multivariable practical applications. One can mention here [11,20,21],
although in [20], one operates with subsystems with single inputs and decoupled outputs.
In this paper, a NARMAX model with two inputs and two outputs has been identified
for the ASTANK2 installation, by using the Multi-Step Extended Orthogonal Least Squares
(MS-EOLS) method (with GramSchmidt orthogonalization). At each iteration, the regres-
sors and outputs are filtered by an autoregressive filter, to refine the auxiliary model and,
consequently, to enhance the global model accuracy. The model structure consists of both
the number of polynomials associated to the signal products (the major indices) and their
corresponding degrees (the minor indices). An optimization criterion referred to as fitness is
defined such that the optimal NARMAX model matches the identification as well as the
validation datasets, on both output channels, simultaneously. Due to the lack of information
about the structural indices and the fractal nature of the fitness (induced by stochastic
disturbances), a metaheuristic has been employed to obtain the optimal structure of the
model, namely, the Cuckoo Search Algorithm (CSA) [47]. The CSA was used in hierarchical
manner, such that for each combination of major indices, the optimal combination of minor
indices is found. The optimal model is, thus, determined to have the best major and minor
indices all at once.

As already known, the accuracy of the noise model should lead to unbiased estimates
of the system parameters and good precision of one-step prediction (osp) and/or multi-step
prediction (msp) of the system output [42]. This proves the reliability of the system model
over a long-range prediction horizon [44]. Nevertheless, such a goal is difficult to reach
for, because, in msp (where predicted instead of measured output values are employed to
forecast the current output), the errors progressively accumulate [22] and can lead to biased
output. In [22], the authors preferred to use the osp while assessing the model quality, since
msp did not provide good results. In [28], the osp performances surpassed those of the msp
with three lags for multiple datasets. In this paper, the proposed optimal NARMAX model
was determined by using msp. A simpler model, of NARX type, was considered as well.
Such models are more reliable in an automatic control application, when no input/output
(i/o) data are available in advance for measuring, compared to optimal models that provide
accurate osps. To be fair, a comparative analysis between optimal NARMAX, NARX, and
ARMAX models was made. The obtained results revealed that the NARMAX model is
superior to NARX model, which, in turn, has better performance than ARMAX model, in
terms of accuracy.
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The novelty of the approach within this article consists of a practical (and quite general)
methodology for the identification of multivariable nonlinear systems (represented here by
NARMAX model class), in view of automatic control, by employing multi-step prediction.
It is well known that for control applications, the measured input/output data are not
known a priori. The design of the optimal controller is only based on the previously
identified model and, consequently, on the simulated output data. Therefore, the long-term
simulation of the identification model by multi-step prediction becomes crucial, especially
when the noise component must be simulated (as a part of the model). To the best of our
knowledge, most of the results reported in the literature devoted to SI employ one-step
prediction as the simulation technique of the identified models. Or, such models are less
appropriate to be integrated into a closed loop application than the ones identified through
multi-step prediction.

This article focusses on the following topics. Section 2 describes, in the first subsection,
the proposed identification model of NARMAX type, with 2 input and 2 output channels.
Within the next subsection, the parameter identification method, i.e., the MS-EOLS, is
explained. The third and fourth subsections are devoted to the determination of the optimal
structural indices that characterize the NARMAX model. Here, after defining the fitness as
cost function, the optimization problem is formulated, and the CSA is briefly described.
Section 3 gives some implementation details of numerical algorithms designed based on
the previous section. Section 4 reveals the simulation results and a comparative study
on the performances of the optimal NARMAX, NARX, and ARMAX models. Section 5
concludes the paper and proposes some future research directions.

2. Theoretical Background
2.1. A NARMAX Model with 2 Inputs and 2 Outputs

Before describing the NARMAX models, recall the equations of linear ARMAX model
(well known to the SI community) in case of a Single-Input-Single-Output (SISO) system:{

A
(
q−1)y[n] = B

(
q−1)u[n] + C

(
q−1)e[n]

E{e[n]e[m]} = λ2δ0[n−m], ∀ n, m ∈ N,
(1)

where u and y are the i/o signals, e is the stochastic (exogenous) white noise of variance
λ2 > 0, E is the statistical mean (the mathematical expectation) operator, q−1 is the one-step
delay operator, δ0 is the origin-centered unit-impulse (the Kronecker symbol), while A, B,
and C are the following polynomials:

A
(
q−1) = 1 + a1q−1 + a2q−2 + · · ·+ anaq−na

B
(
q−1) = b1q−1 + b2q−2 + · · ·+ bnbq−nb

C
(
q−1) = 1 + c1q−1 + c2q−2 + · · ·+ cncq−nc

. (2)

The polynomial coefficients in Definition (2), their degrees (na, nb, and nc), as well as
the variance λ2 are unknown and can be identified from i/o data.

Interestingly, the first equation in (1) can equivalently be written in filtering form:

y[n] =
B
(
q−1)

A(q−1)
u[n] +

C
(
q−1)

A(q−1)
e[n] = yu[n] + v[n], ∀ n ∈ N, (3)

which outlines that the output y is obtained by adding the colored noise v (resulted after
filtering the white noise) to the useful (util) output yu of the system filter. Both filters are
rational and have the same poles, given by the roots of polynomial A. Equation (3) reveals
that the ARMAX model is composed of two simpler models: ARX for the useful part and
ARMA for the noisy part.

The NARMAX model can be defined starting from the ARMAX model, as follows (for
now, in the case of SISO systems):
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A
(
q−1)y[n] + P−1

∑
p=0

Ap
(
q−1)y[n]y[n− p] =

= B
(
q−1)u[n] + M−1

∑
m=0

Bm
(
q−1)u[n]u[n−m] +

K−1
∑

k=0
Dk
(
q−1)y[n]u[n− k] + C

(
q−1)e[n]

E{e[n]e[m]} = λ2δ[n−m] , ∀ n, m ∈ N .

(4)

One can easily notice that the ARMAX model is included in Definition (4). The
supplementary terms describe the nonlinearity of product type. Thus, products between
i/o signals are inserted and processed by polynomials:

Ap
(
q−1) = ap,1q−1 + ap,2q−2 + · · ·+ ap,nap q−nap , ∀ p ∈ 0, P− 1

Bm
(
q−1) = bm,1q−1 + bm,2q−2 + · · ·+ bm,nbm q−nbm , ∀ m ∈ 0, M− 1

Dk
(
q−1) = dk,1q−1 + dk,2q−2 + · · ·+ dk,ndk

q−ndk , ∀ k ∈ 0, K− 1

. (5)

Depending on the delays employed in signal products, several polynomials are needed.
Thus, the model has two types of structural indices: major, which determine the number
of polynomials for the nonlinear part (namely, P, M, and K) and minor, which determine
the degrees of all the polynomials (namely, na, nb, nc, na0, . . ., naP−1, nb0, . . ., nbM−1, nd0,
. . ., ndK−1). Note that the polynomials in Definition (5) have no free term, just like the B
polynomial in Definition (2). This restriction is set by considering that all the useful filters
of the model need at least one step delay to process their inputs. On the contrary, the
noisy part corrupts the useful part without any delay, which enforces a free term in the
C polynomial. The free term of polynomial A is necessary to separate the current output
(y[n]) from all the other samples of signals (but e[n]), which are delayed by at least one step.
In this way, Equations (2), (4) and (5) can be implemented for simulation without algebraic
loops. Obviously, all the structural indices, as well as all the polynomial coefficients and
the variance λ2, are unknown.

The NARMAX model of Equations (2), (4) and (5) is not the most general one. One can
increase the generality and accentuate the nonlinear behavior by considering products of
more than two signals and/or involving the white noise in the products with itself and/or
with the other i/o signals (see, for example, [8]). Such models become closer and closer
to Volterra models [7], which are among the most general nonlinear identification models.
However, in real life, one can hardly find systems that need general models like these ones.

Although the signals of NARMAX model are nonlinear, the output continues to
linearly depend on polynomial coefficients, i.e., on parameters. This allows for expressing
the model by grouping all the parameters in a (large) vector as follows:

θ =
[
aT aT

0 · · · aT
P−1 bT bT

0 · · · bT
M−1 dT

0 · · · dT
K−1 cT

]T
, (6)

with natural notations. More specifically, a is the column vector of polynomial A coefficients,
b encompasses all the coefficients of polynomial B, and so on. Consequently, the first
equation of Definition (4) becomes:

y[n] = φT [n]θ+ e[n], ∀ n ∈ N, (7)

where
φ[n] =

[
φT

y [n] φT
y,0[n] · · · φT

y,P−1[n] |

φT
u [n] φT

u,0[n] · · · φT
u,M−1[n] |

φT
yu,0[n] · · · φT

yu,K−1[n] | φT
e [n]

]T
, ∀ n ∈ N ,

(8)

with
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φT

y [n] =
[
−y[n− 1] · · · −y[n− na]

]
φT

y,p[n] =
[
−y[n− 1]y[n− p− 1] · · · −y

[
n− nap

]
y
[
n− p− nap

] ]
, ∀ p ∈ 0, P− 1

φT
u [n] =

[
u[n− 1] · · · u[n− nb]

]

φT

u,m[n] =
[

u[n− 1]u[n−m− 1] · · · u[n− nbm]u[n−m− nbm]
]

, ∀ m ∈ 0, M− 1

φT
yu,k[n] =

[
y[n− 1]u[n− k− 1] · · · y[n− ndk]u[n− k− ndk]

]
, ∀ k ∈ 0, K− 1

φT
e [n] =

[
e[n− 1] · · · e[n− nc]

]
,

(9)

for any normalized instant n ∈ N. Conventionally, any signal is null for non-positive
normalized instants (n < 1).

The regression form (7) yields employing an identification method from the Least
Squares class to obtain the optimal models.

The NARMAX model can also be expressed by means of filters. Thus:

y[n] = yu[n] + v[n], ∀ n ∈ N, (10)

where the useful signal is obtained by a bank of filters having the same poles as follows:

yu[n] = −
P−1
∑

p=0

Ap
(
q−1)

A(q−1)
y[n]y[n− p] +

B
(
q−1)

A(q−1)
u[n] +

M−1
∑

m=0

Bm
(
q−1)

A(q−1)
u[n]u[n−m]+

+
K−1
∑

k=0

Dk
(
q−1)

A(q−1)
y[n]u[n− k] , ∀ n ∈ N ,

(11)

while the colored noise is obtained by means of an ARMA model as follows:

v[n] =
C
(
q−1)

A(q−1)
e[n], ∀ n ∈ N. (12)

Expressions (10)–(12) are extremely useful when simulating the model after identifi-
cation by means of filtering blocks. The simulation scheme is illustrated in Figure 1. Two
blocks are emphasized in the scheme: NARMAX-IN to the left and NARMAX-OUT to
the right.

Another method to simulate the NARMAX model is to split the regression form (7)
into two terms: one exclusively dealing with the white noise and the other one working
with i/o signals only. More specifically, Equation (7) becomes:

y[n] = φT
u,y[n] θu,y +φ

T
e [n] θe + e[n], ∀ n ∈ N, (13)

where

θu,y =
[

aT aT
0 · · · aT

P−1 bT bT
0 · · · bT

M−1 dT
0 · · · dT

K−1

]T
, θe = c (14)

and φu,y is the remaining vector of φ after removing the φe component (see Equations (8)
and (9) again). This time, the NARMAX model can be obtained by means of two simpler
models: NARX and MA.

So, practically, the colored noise is obtained by simply filtering the white noise with
the help of C polynomial. In this case, Equation (13) works with the following couple of
useful and noisy signals:{

yu[n] = φT
u,y[n] θu,y

v[n] = φT
e [n] θe =

[
C
(
q−1)− 1

]
e[n]

, ∀ n ∈ N. (15)

Alternatively, the simulation of NARMAX model can be performed by using Equations (13)
and (15). The blocks NARMAX-IN and NARMAX-OUT exist as well. Different from the
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filtering scheme in Figure 1, here, NARMAX-IN returns the useful signal yu of Equation (15),
while NARMAX-OUT takes yu and e as inputs and returns the overall output y.
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From SISO systems, the NARMAX model can be extended to match multivariable
systems. To keep the model complexity at an acceptable level, assume that such a system
has two inputs and two outputs. Moreover, it is very likely that the system exhibits
uncorrelated outputs. Consequently, the system includes two subsystems of Multiple-
Inputs-Single-Output (MISO) type. In this case, the NARMAX model is described by the
following equations:

A1
(
q−1)y1[n] +

P1−1
∑

p=0
A1,p

(
q−1)y1[n]y1[n− p] =

= B1,1
(
q−1)u1[n] +

M1,1−1
∑

m=0
B1,1,m

(
q−1)u1[n]u1[n−m] +

K1,1−1
∑

k=0
D1,1,k

(
q−1)y1[n]u1[n− k]+

+B1,2
(
q−1)u2[n] +

M1,2−1
∑

m=0
B1,2,m

(
q−1)u2[n]u2[n−m]+

+
K1,2−1

∑
k=0

D1,2,k
(
q−1)y1[n]u2[n− k] + C1

(
q−1)e1[n]

E{e1[n]e1[m]} = λ2
1δ[n−m] , ∀ n, m ∈ N ;

(16)



A2
(
q−1)y2[n] +

P2−1
∑

p=0
A2,p

(
q−1)y2[n]y2[n− p] =

= B2,1
(
q−1)u1[n] +

M2,1−1
∑

m=0
B2,1,m

(
q−1)u1[n]u1[n−m] +

K2,1−1
∑

k=0
D2,1,k

(
q−1)y2[n]u1[n− k]+

+B2,2
(
q−1)u2[n] +

M2,2−1
∑

m=0
B2,2,m

(
q−1)u2[n]u2[n−m]+

+
K2,2−1

∑
k=0

D2,2,k
(
q−1)y2[n]u2[n− k] + C2

(
q−1)e2[n]

E{e2[n]e2[m]} = λ2
2δ[n−m] , ∀ n, m ∈ N ;

(17)
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E{e1[n]e2[m]} = 0, [M1] ∀ n, m ∈ N. (18)

In Equations (16) and (17), polynomials are denoted like in Equations (2) and (5),
with indexing accordingly adapted to the multivariable case. For example, the ma-
jor indices P, M, and K are replaced by the sets {P1, P2}, {M1,1, M1,2, M2,1, M2,2}, and
{K1,1, K1,2, K2,1, K2,2}, respectively. One can notice that the number of structural indices, as
well as the number of parameters, can rapidly increase to very large values. Equation (18)
expresses the natural hypothesis that the two white noises are uncorrelated. If they were
correlated, their cross-correlation matrix would add to the list of unknown parameters,
which can complicate the identification.

The model (16) and (17) can be expressed either in regression form, like (13), or in
filtering form, like (10). The filtering simulation scheme associated to NARMAX model in
this case is depicted in Figure 2.
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Figure 2. Simulation scheme of a 2-MISO-NARMAX model, using filtering blocks, to be included in a
closed loop configuration.

The blocks of NARMAX-IN and NARMAX-OUT type are similar to those in Figure 1.
A similar figure can be drawn for models expressed in regression form. The only difference
from Figure 2 is that the ARMA filters vanish, and the NARMAX-OUT blocks only receive
white noises as secondary inputs.

2.2. Identification of NARMAX Parameters through Multi-Step Orthogonal Least Squares

To easier understand how the parameters of a NARMAX model can be identified,
come back, for now, to the SISO case. The model equation of interest is (7), with notations
(6), (8) and (9). Assume that an i/o dataset is available, namely: DN = {u[n], y[n]}n∈1,N ,
where the acquisition horizon length, N ∈ N∗, is sufficiently large (few tens, at least). Also,
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consider that all the structural indices are set to some known values. Then, the optimal
parameters can be determined by solving the following quadratic optimization problem:

min
θ∈Rnθ

V(θ) = min
θ∈Rnθ

N

∑
n=1

(
y[n]−φT [n]θ

)2
, (19)

where nθ is the length of vector θ, and V is the quadratic optimization criterion. It can
easily be proven that the least squares solution of problem (19) is

θ̂N = argmin
θ∈Rnθ

N

∑
n=1

(
y[n]−φT [n]θ

)2
=

[
N

∑
n=1
φ[n]φT [n]

]−1

︸ ︷︷ ︸
R−1

N

N

∑
n=1
φ[n]y[n]︸ ︷︷ ︸

rN

, (20)

provided that the matrix RN is invertible. Moreover, the variance of the white noise can
also be estimated by means of the quadratic criterion as follows:

λ̂2
N =

1
N − nθ

V
(
θ̂N
)
=

1
N − nθ

N

∑
n=1

(
y[n]−φT [n]θ̂N

)2
, (21)

which shows that, in fact, the optimal identification model minimizes the variance of
the estimated white noise. In Definition (21), the denominator could be replaced by N.
Nevertheless, it has been proven that, under some hypotheses, Definition (21) leads to
better statistical properties of the variance estimation than by using N as the denominator
(for example, N introduces a bias, whereas N − nθ provides unbiased estimations) [1].

Beside the critical condition of RN invertibility, two more requirements need to be
fulfilled. Firstly, the matrix RN should be numerically balanced to allow inversion without
critical errors. Usually, this matrix is unbalanced. Therefore, a balancing technique is
necessary. Orthogonalization is one of the most popular techniques. Secondly, the vector
φmust be numerically available at each normalized instant. In case of NARMAX model,
Definitions (8) and (9) show that the componentφe is unavailable, as the white noise cannot
be measured separately from the output data. Consequently, the white noise needs to be
estimated. One popular approach is to employ an auxiliary identification model, different
from NARMAX, by using the same i/o dataset. For the NARMAX model, NARX is the
most natural auxiliary model. How these two requirements are met is explained at length
in the seque.

Approach, first, the matrix-balancing requirement. Assume that all the transposed
vectors

{
φT [n]

}
n∈1,N are stacked on rows into the matrix ΦN ∈ RN×nθ . Then, obviously,

RN = ΦT
NΦN . To make invertible the matrix RN , it suffices that the matrix ΦN becomes

monic. Moreover, it results from Equation (20) that rN = ΦT
NYN , where YN ∈ RN is the

vector of all acquired output data. Consequently,

θ̂N = R−1
N rN =

(
ΦT

NΦN

)−1
ΦT

NYN . (22)

The problem is how to invert the product ΦT
NΦN through a numerically stable proce-

dure. The solution can rely on the linear independence of the nθ columns in matrix ΦN
(which is supposed to be monic). Normally, nθ < N, as the number of model parameters
usually is smaller than the acquisition horizon length. Denote by {ϕN,m}m∈1,nθ the columns
of matrix ΦN . Geometrically, they span an nθ-sized subspace of RN , on which the vector
YN is projected. The projection coefficients on each column of ΦN are, in fact, the elements
of the optimal parameter vector (22). Moreover, the projected vector is ŶN = ΦNθ̂N . Note
that although the columns {ϕN,m}m∈1,nθ are linearly independent, they are not necessarily
orthogonal to each other. What if the same subspace would be spanned by an orthogonal
set of vectors built from the columns of matrix ΦN?
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The new orthogonal set can easily be obtained by using the well-known GramSchmidt
method. Thus, the orthogonal set is recursively built, as follows:

ϕ⊥N,m = ϕ N,m −
m−1

∑
k=1

〈
ϕN,m,ϕ⊥N,k

〉
∥∥∥ϕ⊥N,k

∥∥∥2 ϕ⊥N,k, ∀ m ∈ 2, nθ, (23)

after taking ϕ⊥N,1 = ϕN,1 as initialization. Denote by Φ⊥N the matrix with columns{
ϕ⊥N,m

}
m∈1,nθ

. Then, the output data vector YN can also be projected on the orthogonal set,

and the resulting coefficients are gathered into the vector:

θ̂
⊥
N =

[(
Φ⊥N

)T
Φ⊥N

]−1(
Φ⊥N

)T
YN = ∆−1

N

(
Φ⊥N

)T
YN , (24)

where ∆N =
(
Φ⊥N
)T

Φ⊥N is a diagonal matrix including the quadratic norms of the orthogo-

nal vectors. Thus, from Equation (24), it results that each parameter of θ̂⊥N can easier be
expressed by:

θ̂⊥N,m =

〈
Y,ϕ⊥m

〉
∥∥∥ϕ⊥m∥∥∥2 , ∀ m ∈ 1, nθ. (25)

Evidently, the parameter vector θ̂⊥N is different, in general, from the vector θ̂N and
constitutes a suboptimal solution of problem (19). However, there is a link between these
two vectors. Observe that the projection of vector YN on the orthogonal set is identical to
the projection of vector ŶN on the same set since the difference YN − ŶN (the modeling
error) is orthogonal on the spanned subspace. This property can mathematically be written
as follows: (

Φ⊥N

)T
YN =

(
Φ⊥N

)T
ΦNθ̂N . (26)

According to Equation (24), the vector θ̂⊥N can be obtained from Equation (26) through
a simple multiplication by ∆−1

N , as follows:

θ̂
⊥
N = ∆−1

N

(
Φ⊥N

)T
ΦNθ̂N . (27)

Focus now on the product
(
Φ⊥N
)T

ΦN in Equation (27). The elements of this ma-

trix are computed by projecting orthogonal vectors
{

ϕ⊥N,m

}
m∈1,nθ

on the initial vectors

{ϕN,m}m∈1,nθ . Before computing the scalar products, notice that the columns of matrix ΦN
can be expanded into the orthogonal set by means of Equation (23), like below:

ϕN,1 = ϕ⊥N,1, ϕN,m = ϕ⊥N,m +
m−1

∑
k=1

〈
ϕN,m,ϕ⊥N,k

〉
∥∥∥ϕ⊥N,k

∥∥∥2 ϕ⊥N,k, ∀ m ∈ 2, nθ, (28)

Hence, for each m, p ∈ 1, nθ:

〈
ϕ⊥N,m, ϕN,p

〉
=



0 , m > p∥∥∥ϕ⊥N,m

∥∥∥2
, m = p

p−1
∑

k=m

〈
ϕN,p,ϕ⊥N,k

〉
∥∥∥ϕ⊥N,k

∥∥∥2

〈
ϕ⊥N,m,ϕ⊥N,k

〉
, m < p

. (29)
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From Equation (29), it results that the matrix
(
Φ⊥N
)T

ΦN is upper triangular. Conse-
quently, the optimal parameters vector θ̂N can be obtained by solving the upper triangular
system (27) through the back substitution procedure, as follows:

θ̂N,nθ =

〈
YN ,ϕ⊥N,nθ

〉
∥∥∥ϕ⊥N,nθ

∥∥∥2 , θ̂N,nθ−1 =

〈
YN ,ϕ⊥N,nθ−1

〉
−
〈
ϕN,nθ ,ϕ⊥N,nθ−1

〉
θ̂N,nθ∥∥∥ϕ⊥N,nθ−1

∥∥∥2 , . . . ,

θ̂N,m =

〈
YN ,ϕ⊥N,m

〉
−

nθ

∑
k=m+1

〈
ϕN,k,ϕ⊥N,m

〉
θ̂N,k∥∥∥ϕ⊥N,m

∥∥∥2 , . . . , θ̂N,1 =

〈
YN ,ϕN,1

〉
−

nθ

∑
k=2

〈
ϕN,k,ϕN,1

〉
θ̂N,k∥∥ϕN,1

∥∥2 .

(30)

Note that Equation (30) can be implemented without prior computation of the suboptimal
solution (27).

The drawback of this technique results from the size of the vectors, which is equal to
N. If N is too large for the employed computing system, then another balancing technique
can be adopted. For example, one can use the QR decomposition of matrix ΦN . This
technique performs orthogonalization by means of rotation matrices and, unfortunately,
may be time consuming. Regardless the orthogonalization technique, the Least Squares
methods implemented through such balancing procedures are referred to as Orthogonal
Least Squares (OLS).

To fulfil the second requirement, two major approaches are proposed. The first one
relies on GaussNewton optimization method and is quite accurate but time consuming.
The second one is based on the ELS method and leads to faster numerical procedures,
although lessaccurate results are provided. The MS-EOLS method described next shows
how the accuracy of the ELS method can be improved by means of filtering.

Basically, the ELS consists of two steps: first, identify an auxiliary model devoted to
the estimation of the white noise; second, apply the OLS to identify the main model, after
replacing the true (but unknown) values of the white noise by the estimated values. Usually,
the auxiliary model is related to the main model and can be defined after replacing the
colored noise by the white noise into the general equation. For example, ARX are natural
auxiliary models of ARMAX models, for which the OLS method can be applied directly.
The first step of the ELS method is the critical one because the noise estimation errors are
amplified in the second step. Some filters can be employed several times to increase the
accuracy of the estimation, as explained next. This repeated filtering operation involves
applying the ELS more than once, which led to the name of Multi-Step ELS. If the OLS
method is employed in all the steps, then the overall method is referred to as Multi-Step
EOLS (MS-EOLS).

As already mentioned, in case of the SISO-NARMAX model, the regression Equa-
tion (7) can equivalently be written by isolating the noisy part, like in Equation (13). This
suggests selecting the NARX model below as the auxiliary estimator of the white noise:

y[n] = ψT
u,y[n] θ

aux
u,y + e[n], ∀ n ∈ N, (31)

where θaux
u,y has the same structure as θu,y from Definition (14), and ψu,y is similar to

φu,y. Nevertheless, since the NARX model is simpler than the NARMAX model, vectors
θaux

u,y and ψu,y should be longer than nθ. The NARX model adds to the set of unknown
parameters new major indices of P and M type, as well as corresponding minor indices
and polynomial coefficients.

After the identification of NARX model (by directly applying the OLS method since
no white noise is included into the vector ψu,y), Equation (31) serves as estimator of the
white noise:

êN [n] = y[n]−ψT
u,y[n] θ̂

aux
N,u,y, ∀ n ∈ N, (32)
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where θ̂aux
N,u,y is the optimal parameter vector, obtained for some structural indices (already

set). The estimated white noise can replace the true values inφe, which becomes φ̂N,e. Now,
the OLS can be applied to identify the NARMAX optimal vector of the parameters by means
of Equation (20). Thus, the vector θ̂N is obtained. How accurate is such an estimation? To
answer this question, one can compute the quadratic criterion from Equation (19) for the
optimal vector θ̂N , with the estimated noise (32), as follows:

V
(
θ̂N
)
=

N

∑
n=1

(
y[n]−φT

u,y[n] θ̂N,u,y − φ̂T
N,e[n]ĉN

)2
. (33)

In subsidiary, the quadratic criterion uses the following output simulated signal:

ŷ[n] = φT
u,y[n] θ̂N,u,y − φ̂T

N,e[n]ĉN , ∀ n ∈ N (34)

and performs a comparison between the acquired output data y and simulated output data
ŷ. The difference between them is another estimation of the white noise, alternatively seen
as model error.

If V
(
θ̂N
)

is less than some threshold, η > 0, then the NARMAX model is accurate
enough. Otherwise, the accuracy of the white noise estimation has to be increased. One
way to reach for this goal is to change the auxiliary model, or, at least, to change the
structural indices of NARX model. Another way is to employ the estimated polynomial Ĉ
of NARMAX model for designing an all-poles filter that can refine the i/o data for the NARX
model. More specifically, to identify the NARX model, the dataset DN = {u[n], y[n]}n∈1,N
is replaced by the following filtered dataset:

DĈ
N =

{
1

Ĉ(q−1)
u[n],

1
Ĉ(q−1)

y[n]
}

n∈1,N
. (35)

Moreover, all the signal products of vector ψu,y have to be filtered as they are. It
is important not to compute such products from filtered i/o data. After the new NARX
model is identified, the NARMAX model is upgraded. Note that to identify the NARMAX
model, the original dataset DN is still employed (no filtering is applied here). With the
newly identified NARX and NARMAX models, one can evaluate the criterion (33) again
and compare the result with the threshold. Normally, after few iterations, the accuracy
requirement is verified. If the threshold is set too low, then a maximum number of filtering
steps can be set (e.g., 10 steps), and the model with the minimum value of criterion (33) can
be selected.

The explanation for this filtering technique is straightforward. Come back to NARMAX
Equation (4). The first equation can equivalently be expressed like below:

A
(
q−1)( 1

C(q−1)
y
)
[n] = −

P−1
∑

p=0
Ap
(
q−1)( 1

C(q−1)
{y · (q−py)}

)
[n]+

+B
(
q−1)( 1

C(q−1)
u
)
[n] +

M−1
∑

m=0
Bm
(
q−1)( 1

C(q−1)
{u · (q−mu)}

)
[n]+

+
K−1
∑

k=0
Dk
(
q−1)( 1

C(q−1)

{
y ·
(

q−ku
)})

[n] + e[n] , ∀ n ∈ N .

(36)

Equation (36) describes a NARX model working with filtered signals, such as

1
C(q−1)

y,
1

C(q−1)

{
y ·
(
q−py

)}
,

1
C(q−1)

u,
1

C(q−1)

{
u ·
(
q−mu

)}
,

1
C(q−1)

{
y ·
(

q−ku
)}

. (37)

Note that the filter is applied not only to i/o signals but also to products of signals,
like y · (q−py), u · (q−mu), and y ·

(
q−ku

)
, as if they were separate signals. Notice that no

products between filtered i/o signals exist into the Equation (36). For example, if yp ≡
y · (q−py), then the values of this signal are: yp[1] = y[1] · y[1− p], yp[2] = y[2] · y[2− p],
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. . ., yp[p] = y[p] · y[0], yp[p + 1] = y[p + 1] · y[1], . . ., yp[N] = y[N] · y[N − p]. (Recall that
by convention, y[n] = 0, ∀ n < 1.) Hence, the signal 1

C(q−1)
{y · (q−py)} from Equation (37)

can be evaluated by simply filtering the signal yp, i.e., by 1
C(q−1)

yp.

In case of 2-MISO-NARMAX model (16)–(17), the balancing technique, as well as the
MS-EOLS method, can be applied for each output channel.

Using the MS-EOLS in the identification of the 2-MISO-NARMAX model parameters
involves a large number of structural indices to be set. As Equations (16) and (17) reveal,
there are 10 major indices for NARMAX models and another 10 major indices for auxiliary
NARX models (20 major indices in total). The number of minor indices is even larger (the
sum of all the major indices, plus 10 more, coming from the included ARMAX and ARX
models on both channels). It is suitable to find optimal structural indices, such that the
final identification model performs well on both channels simultaneously. Moreover, the
model needs to be validated. An exhaustive search of optimal indices into such a large
space is computationally inefficient, even in the case of low upper limits set for all the
indices. Therefore, a metaheuristic can help solving this granular optimization problem
with reasonable costs in terms of resources and time.

Nowadays, the world of metaheuristics is quite large and in expansion [48]. Within
this world, there are some metaheuristics that can be employed to solve this problem. Since
comparing results from various metaheuristics is not among the goals of this article, the
Cuckoo Search Algorithm (CSA) was selected, mainly because several implementations are
available, including the one from MATLABTM programming environment. Compared with
other already implemented metaheuristics (such as the Genetic Algorithms), the CSA is
easy to configure and run.

2.3. Defining an Optimization Criterion to Find the Best Structural Indices

Before shortly describe the CSA, a new optimization criterion is necessary to be
defined. The criterion employed in Equations (19) and (33) could be extended to work on
two output channels by summing the quadratic errors. Unfortunately, the new criterion
has the following caveat: although small overall values are obtained and one channel
exhibits small quadratic errors, the other channel has unacceptably large quadratic errors.
Therefore, the criterion to select the optimal structural indices needs to be defined carefully.

The milestone of such a criterion is the Signal-to-Noise Ratio (SNR), which can be
defined as follows. Consider the signal y, which includes a zero-mean corrupting stochastic
noise of variance λ2, not necessarily white. Then, the SNR is evaluated by computing the
ratio between the standard deviations of the signal and the noise. More specifically, if y
is the mean of signal y, then the standard deviation σy is the square root of the variance
computed for the stationary (null mean) signal ỹ = y− y. Thus:

SNR =
σy

λ
=

√
E{ỹ2}

λ
=

√
E
{
(y− y)2

}
λ

. (38)

If the signal has N samples and the variance λ2 was estimated by means of some
identification model, then the Ergodic Hypothesis can be employed to estimate the SNR
as follows:

ˆSNR =

√
1
N

N
∑

n=1
ỹ2[n]

λ̂N
, (39)

where λ̂2
N is the estimation of λ2, and:

ỹ[n] = y[n]− 1
N

N

∑
n=1

y[n], ∀ n ∈ 1, N. (40)
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Usually, after being evaluated, the SNR value is converted to decibels (dB).
Two types of SNRs can be evaluated for each output channel: one dealing with the

colored noise estimation and another one considering the white noise estimation. For the
first SNR, the colored noise is estimated by subtracting the simulated useful signal from
the acquired output signal. The second SNR is evaluated by means of the estimated white
noise, as obtained after subtracting the simulated output from the acquired output signal
as well. In case of SISO-NARMAX model identified by using the i/o dataset DN and a
NARX auxiliary model, the two SNRs are evaluated as follows (according to Equations (14)
and (21)):

ˆSNRv =

√√√√√√√√
N
∑

n=1
ỹ2[n]

N
∑

n=1
(y[n]− ŷu[n])

2
=

√√√√√√√√
N
∑

n=1
ỹ2[n]

N
∑

n=1

(
y[n]−φT

u,y[n] θ̂N,u,y

)2
;

ˆSNRe =

√√√√√√ (N − nθ)
N
∑

n=1
ỹ2[n]

NV
(
θ̂N
) =

√
1
N

N
∑

n=1
ỹ2[n]

λ̂N
. (41)

Note that in Equation (41), the colored noise was estimated by means of the simulated
useful output ŷu, with the estimated parameters of NARX part from NARMAX model (not
with the NARX auxiliary model). The first SNR is very useful in testing the quality of the
extracted useful data from the acquired data. Without considering the ˆSNRv, it is possible
to obtain high values of ˆSNRe not from the simulated useful output, ŷu ≡ φT

u,y θ̂N,u,y, but
from the MA-filtered estimated white noise (with the auxiliary model), v̂N ≡ φ̂T

N,eĉN (see
again Equation (33)).

Good SISO-NARMAX models should have high values of both SNR. Since no upper
limit of such a SNR is known, one can normalize its value by means of the following
bijective (but nonlinear) function:

f (x) =
1

1 + x
, ∀ x ∈ R+. (42)

Equation (42) describes a hyperbola that compresses the R+ set into the interval
(0, 1]. Moreover, in the vicinity of unit, the function is almost linear. Hence, the following
corecriterion can be defined, referred to as elementary fitness:

F(SNR) =
100 η

1 + µ
SNR

[%], ∀ SNR ∈ R∗+, (43)

where η ∈ (0, 1] and µ ∈ R∗+ are two parameters to be set by the user. The η parameter
has the role of a weight in case several SNR types need to be employed. For a single
SNR, η = 1, which allows the elementary fitness to take any value between 0% and
100%. The µ parameter is a freedom degree that can be set to control the sensitivity of the
elementary fitness. For example, a good identification model should have SNR values of
at least 15 dB, which means absolute values of more than 5.6234. This should correspond
to a fitness value of at least 80% (for η = 1), meaning that the sensitivity can be set to
µ = 5.6234× (100/80− 1) ∼= 1.4059.

Of course, in case of 2-MISO-NARMAX model, a couple of SNR like those in (41), can
be evaluated for each output channel.

To complete the framework, assume that the acquired i/o dataset is large enough to
be split in two subsets: one for identification purposes, Did

Nid
, and another one of validation

purposes, Dva
Nva

(with natural notations). The lengths of the acquisition horizons, Nid and
Nva, can be identical or not. Then, the identification model obtained from the first subset
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is stimulated by the inputs of the second subset, and its responses are compared to the
acquired outputs of the second subset as well. The optimal model has to prove good
performances on both subsets simultaneously.

Now, the optimization criterion can be defined. Set, first, the following 4-length vectors
(with the help of elementary fitness (43)):

fv =
1√

2
(
η2

id + η2
va
)
 ηid

1 +
1

SNRid
v,1

ηid

1 +
1

SNRid
v,2

ηva

1 +
1

SNRva
v,1

ηva

1 +
1

SNRva
v,2

;

fe =
1√

2
(
η2

id + η2
va
)
 ηid

1 +
1

SNRid
e,1

ηid

1 +
1

SNRid
e,2

ηva

1 +
1

SNRva
e,1

ηva

1 +
1

SNRva
e,2

. (44)

In Definitions (44), all the SNR values are computed according to Equation (41) for
each output channel. Two weights are employed: one for the identification dataset (ηid)
and another one for the validation dataset (ηva). They are proportional to the lengths
Nid and Nva, respectively. Also, their sum over the 4-length vectors (44) is equal to unity.
More specifically:

ηid =
Nid

2(Nid + Nva)
; ηva =

Nva

2(Nid + Nva)
. (45)

Due to the normalizing factor in front of both vectors, their norms are, at most, equal
to unity. If Nid = Nva then ηid = ηva = 0.25, and the normalizing factor becomes equal to 2.

Next, two partial fitnesses are defined (one for each type of SNR) as follows:

Fv =
1
2

 1
1 + σv

+
1

1 + 1
∥ fv∥

 ∈ (0, 1], Fe =
1
2

 1
1 + σe

+
1

1 + 1
∥ fe∥

 ∈ (0, 1], (46)

where

σ{v,e} =
1
2

√√√√ 4

∑
i=1

(
f{v,e}[i]− f {v,e}

)2
, f {v,e} =

1
4

4

∑
i=1

f{v,e}[i]. (47)

Definitions (46) take into account that any partial fitness should decrease when the
standard deviation of the corresponding vector increases, while it should increase when the
norm of the corresponding vector increases. This would keep the fitness balanced on both
channels and on both datasets. Thus, it is very unlikely that high partial fitness values will
be obtained with very high elementary fitnesses on one output channel and/or one dataset
and very small elementary fitnesses on the other output channel and/or the other dataset.

Finally, the (overall) fitness is as follows:

F =
100

1 + 2µF
|Fv−Fe |
Fv+Fe

[%]. (48)

The sensitivity parameter µF is set as previously explained. Definition (48) was given
by considering that the fitness should increase when the mean of the partial fitnesses
increases, and it should decrease when the difference between the two partial fitnesses in-
creases. Thus, it is suitable to keep balanced the performance for both types of fitness, which
should ensure a good estimation of both colored and white noises on both output channels.

Following Definition (43), four more partial fitness values can be computed for each
channel and dataset as follows:

Fid
1 =

100

1 +
µ

SNRid
e,1

[%]; Fid
2 =

100

1 +
µ

SNRid
e,2

[%]; Fva
1 =

100

1 +
µ

SNRva
e,1

[%]; Fva
2 =

100

1 +
µ

SNRva
e,2

[%], (49)
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where a unique sensitivity parameter µ is set and can be different from µF. The partial
fitness values allow analyzing in depth the model performance. Moreover, the weighted
average of all four fitness values in (49) can be computed like below and compared to the
value of the global fitness (48):

F = ηid

(
Fid

1 + Fid
2

)
+ ηva(Fva

1 + Fva
2 ) [%]. (50)

The main caveat of fitness (50) is that high values of F can be obtained even though
one or more partial fitnesses (49) have small values. This type of model should be avoided,
as it is suitable to obtain high values for all the partial fitnesses as well. Fitness (48) can
help to reach for this goal. Moreover, if fitness (48) is high enough then not only the fitness
(50) will be sufficiently high but also all four channel fitnesses will be grouped around their
average. High average (50) with dispersed channel fitnesses correspond to smaller values
of fitness (48), as Fv and Fe are not close to each other.

Nevertheless, it must be outlined that fitness (48) should not be employed to find
models, like NARX or ARX, for which the regressor vector has no noise components. In
case of NARX model, φe is missing from vector φ (see Equations (8) and (9) again), and,
thus, no auxiliary model is needed. The simulated output signal of any such models, ŷ,
is identical to the simulated useful signal, ŷu, which automatically involves Fv = Fe and
F = 100 [%], regardless the model structure. Nevertheless, it would be unwise to remove
NARX models from the possible optimal nonlinear candidates. To surpass this limitation,
one can consider that the output generated by the NARX model after the simulation is
still a useful one, while the difference from the acquired output is not an estimation of the
white noise anymore but rather an estimation of a colored noise. Consequently, this noise
can be obtained by means of an ARMA model. Hence, the NARX model can be enhanced
by a linear component of ARMA type as an auxiliary component. Now, the enhanced
NARX-ARMA model requires a white noise estimator for the linear part. Naturally, the
estimator can be of AR type and belongs to the auxiliary part as well. Therefore, the hybrid
nonlinear and linear NARX-ARMA-AR model (abbreviated by NARXA) can be considered
as well.

The equations that allow identification and simulation of NARXA model in case of
SISO systems are as follows:

y[n] = φT
u,y[n] θu,y︸ ︷︷ ︸

ŷu [n]

+v[n]

v[n] = φT
v,e[n] θv,e

e[n] = φT
v [n] θv

, ∀ n ∈ N, (51)

where φu,y and θu,y have configurations corresponding to a pure NARX model, while[
φT

v,e[n] =
[
−v[n− 1] · · · −v[n− nα] e[n− 1] · · · e[n− nβ]

]
θT

v,e =
[

α1 · · · αnα| β1 · · · βnβ

] , ∀ n ∈ N, (52)

[
φT

v [n] =
[
−v[n− 1] · · · −v[n− nγ]

]
θT

e =
[

γ1 · · · γnα

] , ∀ n ∈ N. (53)

Definitions (52) correspond to the ARMA model of structural indices nα and nβ, and
Definitions (53) describe the AR model of structural index nγ. The ARMA models can be
identified through the Minimum Prediction Error method. The OLS and, even better, the
LevinsonDurbin method can be employed to identify the AR model. (See, for example, [1]
or [2]). For the pure NARX model, the OLS method works, too.

The extension to the multivariable model is straightforward. Thus, the 2-MISO-
NARXA model employs 10 major structural indices, their corresponding minor indices,
plus 6 auxiliary minor indices: nα1, nα2, nβ1, nβ2, nγ1, and nγ2.
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As Equation (51) suggest, the 2-MISO-NARXA model can provide two different types
of simulation signals: useful and final. Thus, it is unlikely that Fv = Fe, which adds NARXA
to the set of models to optimize (of NARMAX and ARMAX type), by means of the unique
fitness (48). In the very improbable case when Fv is identical or very close to Fe, the linear
component is inexistent or negligible, v̂ is very close to a white noise, and the NARXA
model (in fact, the pure NARX model), indeed, has great performance. This could occur in
case that the NARX structure better matches the structure of the system to identify than
the other tested models. A test would be the one in which the data are generated by a
malicious user who employed some NARX model and a pseudo-random number generator
to obtain the “acquired” data. In this case, evidently, the pure NARX model should be the
best candidate to simulate such data.

2.4. On the Stability of Identification Models

Normally, since the black box to identify comes from real life, its dynamics is stable
or, at most, at the stability limit (oscillating). Therefore, the fittest identification models
are expected to be as close as possible to the black box, i.e., to exhibit intrinsic stability or,
at most, oscillating behavior. Unstable models should lead to small values of the fitness.
In case of 2-MISO-{NARMAX, NARXA, ARMAX} models, the stability can be tested by
means of polynomials A1 and A2, which give the poles of all the filters (see Equations (16)
and (17) and Figure 1 again). If their roots are inside or, at most, on the unit circle, then the
model is considered to be stable.

Even the resulted fittest model is unstable, recall that such a model is devoted to
automatic control. Thus, in a closed loop configuration, the controller will stabilize the
overall dynamics. Moreover, if the controller is optimal, too, better behavior can be obtained
in a closed loop than in an open loop.

Although analyzing the models stability from theoretical point of view is an inter-
esting challenge, this approach rather constitutes the goal of a different article. Usually,
theoretical results regarding stability are proven under some hypotheses that cannot always
be verified in practice. In this paper, the stability of the identification models is only tested
as mentioned above.

2.5. Optimization of Structural Indices through Cuckoo Search Algorithm

The fitness (48) only depends on the structural indices since, once such indices being
set, the model parameters are determined through the MS-EOLS method. Assume that
the indices are gathered in two vectors (with non-negative integer values): γM and γm.
More specifically, γM includes all the 20 major indices, while γm encompasses all the
minor indices, from both models NARMAX (main) and NARX (auxiliary). By analogy
with Genetic Algorithms, γM and γm can be seen as two genes of a large chromosome
γ =

[
γM γm

]T . Thus, the granular optimization problem can be formulated as follows:

max
γM∈N20, γm∈NNm

F[γM,γm], (54)

where Nm is the number of minor indices (variable, depending on the values of the major
indices). For the full nonlinear model, all the major indices are at least equal to unity
(see again Equations (16) and (17)). However, partial nonlinear models, or even the
linear models, should be tested as well. Therefore, by convention, if a major index is
null, the corresponding term is missing from the general equation of the model. For
example, if all the major indices are null, the linear models of ARMAX or ARX type are
considered. Another example is concerned with NARXA model type. Here, the null minor
index nc should be replaced by the triplet {nα, nβ, nγ}, as explained at the end of the
previous subsection.

To solve the problem (54), the search space needs to be delimited. This means setting
some upper bounds for all the structural indices. Such bounds are naturally imposed, on
one hand, by the true internal structure of the black box to identify, and, on the other hand,
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by the length of the acquisition horizon for the identification dataset, Nid. In many practical
cases, the major indices cannot overpass the value of 5, whereas the minor indices cannot
take values beyond Nid/2 (or even Nid/3).

The CSA can help solving the problem (54). This metaheuristic belongs to the
population-based class and was inspired from cuckoo’s breeding and survival strategy.
The corresponding numerical procedure was originally developed in [47]. As well known,
cuckoo is a species of migratory bird that stands out especially for brood parasitism. This
means it lays its eggs in the nests of other host birds (usually of other species) to transfer
them the responsibility of hatching and raising the chicks. If the host bird discovers the
intruded egg, then one of the following three natural phenomena can occur: it throws the
alien egg out of the nest; it abandons the nest and builds another one in a different location;
it accepts the alien egg among its own eggs. To increase the chances of acceptance for
its own eggs by other host birds and, consequently, to enhance the breeding probability,
some species of cuckoo have developed the ability to find host nests with similar natural
characteristics of the eggs (in terms of pattern and/or color). At the same time, the parasitic
cuckoo can carefully choose the egg-laying moment to be perfectly synchronized with that
of the host bird. As the cuckoo chick hatches earlier than the host birds, it instinctively
removes the host bird’s chicks from the nest, thus ensuring it a larger share of the food
from the host bird.

The behavior of a cuckoo can be simulated by a numerical algorithm, which aims
to find the best host nest for the cuckoo to lay its eggs so that these eggs survive as
long as possible to reach maturity (i.e., to maximize its eggs survival rate). A simplified
implementation of the algorithm is based on the following assumptions:

(a) Each cuckoo can only lay one egg at a time and put it in a randomly chosen host nest.
This means the number of cuckoos, host nests, and eggs is the same. The host nest
represents a candidate solution to the optimization problem. Several host nests can
simultaneously be searched for by a flock of cuckoos. This means a population of
virtual cuckoos can be employed in the algorithm.

(b) The best host nests, with the highest egg quality (i.e., accepted by the host bird), will
be carried on to the next stage of the development (the next generation or iteration)
based on an elitist survival mechanism. The cost function (such as F) measures the
host nest quality, depending on its position in the search space. In this phase, the host
nest is abandoned only if a host nest with a better quality was found. This strengthens
the exploitation of the search space and contributes to the algorithm convergence
towards an optimal point (host nest).

(c) Cuckoo is a suspicious mind bird. Therefore, strangely enough, a second phase occurs.
Normally, the worst host nest (in terms of cost function) should be replaced by other
newly generated host nest. But this does not always happen. Sometimes, good host
nests are abandoned. A probability Pa ∈ [0, 1] of a nest to be agreed by the cuckoo
and to become the host of its egg can be set. Thus, there is a probability of 1− Pa that
the cuckoo chooses not to leave its egg in that nest, regardless the nest quality, in the
hope of finding a better nest. The opposite number 1− Pa is referred to as renewal
rate of the nests population. Usually, Pa < 1− Pa, which means the cuckoo is very
selective with the future host nests of its eggs. Statistically, the majority of the nests
playing the role of possible hosts are under question whether they will be preserved
in the population or not. This means the exploitation of the search space is allowed,
which increases the chances to find a global, or nearly global, solution.

Assume that the population of P ∈ N∗ host nests evolves by changing its position
during a fixed number of generations. Each host nest p ∈ 1, P takes a position xk

p at
generation k ∈ N, in the search space S ⊆ Rnx, where nx ∈ N∗ is the length of the position
vector (seen as the decision variable of the optimization problem). Each component i of xk

p
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varies within [xmin,i, xmax,i], so that the search space can be specified as a cartesian product
of compact intervals as follows:

S =
nx

∏
i=1

[xmin,i, xmax,i]. (55)

In CSA, as in many nature-inspired optimization algorithms, the cuckoo’s behavior in
its search for a suitable host nest (i.e., the strategy of laying eggs) can be approximated by
the so-called Lévy flight, where the flight direction is generated by a uniform distribution,
and the step size is generated by means of Lévy distribution. One of the most efficient
manners to implement a Lévy distribution is by applying Mantegna’s algorithm [49], which
introduces the following expression of the step size s:

s = u|v|−1/λ. (56)

where λ = 1.5 is the Lévy characteristic parameter, v is a Gaussian (normally distributed)
random variable of null mean and unit variance, while u is also a Gaussian random variable
of null mean but with variance:

σ2
u =

(
Γ(1 + λ) · sin(πλ/2)

Γ((1 + λ)/2) · λ · 2(λ−1)/2

)1/λ

(57)

In Definition (57), the well-known Gamma function is employed.
Following Lévy’s description of cuckoos’ flight, the possible next position of the

host nest, xk+1
p , is generated by updating the current position with an additive correction,

as follows:
xk+1

p = xk
p + α · sk

p ·
(

xk
p − xk

best

)
, ∀ p ∈ 1, P, ∀ k ∈ N (58)

where sk
p is the flight step size generated for each host nest at each generation by using

Equation (56), α is a scaling factor that allows the user to correctly scale sk
p, while xk

best
is the best host nest position found up to the current generation k. Usually, a small step
α ∈ [0.01, 0.1] can be chosen to avoid jumping out of the variation domain. Moreover, in
this way, xk+1

p is searched around xk
best, which enforces the exploitation. Although this is

performed to the detriment of exploration, it could prevent oscillations and speed up the
search. Nevertheless, if the new position xk+1

p goes beyond the variation limits of the search
space, it can be made viable (i.e., brought back into the search space) through various
techniques. The simplest manner of making new positions viable consists of replacing
xk+1

p,i /∈ [xmin,i, xmax,i] (i ∈ 1, nx) by xmin,i, if xk+1
p,i < xmin,i or with xmax,i, if xk+1

p,i > xmax,i.
However, this saturation technique can lead to many lost iterations, where the new position
is glued to the search space frontier. Another more suitable technique is described in [50]
and relies on the idea of computing a reminder from an outsider component xk+1

p,i to the
length of the corresponding admissible interval [xmin,i, xmax,i], i.e., xmax,i − xmin,i. Thus, the
new viable component belongs now to [xmin,i, xmax,i] and is not necessarily saturated to one
of the interval limits. After this necessary operation, the possible new position is evaluated
through the cost function. It really becomes the new position if the cost function returns a
better value than that for the current position. Otherwise, the current position is preserved
and becomes the new position as well.

According to assumption (c), after the new generation was set (by means of Equation (58)),
the renewal phase should occur. Assume that all the nests

{
xk+1

p

}
p∈1,P

are stored in a

matrix, on columns: Xk+1 =
[
xk+1

1 · · · xk+1
P

]
. The current element of the matrix is xk+1

i,p ,

where i ∈ 1, nx is the row index, while p ∈ 1, P is the column index. Then, xk+1
i.p has

Pa chances to survive and 1− Pa bad luck to be abandoned, being replaced by another
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component. If replacement must occur (recall that, usually, 1− Pa > Pa), then the new
component is computed like below:

xk+1
i,p ← xk+1

i,p + rk+1
(

xk+1
i,np
− xk+1

i,mp

)
(59)

where rk+1 is a uniformly generated random number in the interval [0, 1], while xk+1
np and

xk+1
mp are two randomly selected host nests. Note that rk+1 is the same for all the nests in

the population, whereas the couple
{

xk+1
np , xk+1

mp

}
is selected for each nest of index p ∈ 1, P.

Equation (59) suggests that for a nest xk+1
p , only some of its components can change, while

the other ones can remain untouched. However, nothing is for sure. Overall, on the long
run, since 1− Pa > Pa, most components change.

After or during the renewal phase, all new nests are tested for viability. All the outliers
are made viable by the chosen technique. Then, the quality of each nest is evaluated again
by means of the cost function. The former nest xk

p is really replaced only if the new nest
xk+1

p has a better quality.
This mechanism allows exploration of the search space beyond the vicinity of the

best found host nest, without losing the fittest nests and, at the same time, preventing the
numerical procedure to be trapped into a local optimum vicinity.

By suitably setting the probability Pa, the user can reach a trade-off between the
exploitation and exploration mechanisms. According to some scientists, the CSA is one of
the simplest and most efficient metaheuristics, easy to implement and use.

3. Design and Implementation Details of Numerical Procedures

The methods described within the previous section allow for designing numerical
procedures to be implemented by using a programming environment. This section gives
some details regarding the design and implementation of these procedures. Although
the explanation is oriented toward using the MATLABTM programming language, other
high-level languages can be employed as well (such as Python or C++).

The following algorithms are addressed in the sequel:

• identification through MS-EOLS;
• simulation of identification model by multi-step prediction (msp);
• CSA.

The Gram–Schmidt method is easy to implement (it only consists of Equation (23)
and the corresponding initialization). Also, the basic OLS method can be implemented by
directly using Equation (30). For both methods, no further explanations are necessary.

3.1. MS-EOLS Numerical Procedure

The main steps of the MS-EOLS procedure are listed in Algorithm 1.
Note that if at least one filtering step was performed, the returned polynomials Copt

f,1

and Copt
f,2 come from the previous 2-MISO-NARMAX model and not from the optimal model.

(Evidently, if the optimal models are directly found, without filtering, both polynomials are
equal to unity—see the third step of initialization.) This is the reason the two polynomials
are returned separately. Although not explicitly specified, the variances of the two white
noises are estimated (and returned) as well by means of Equation (21).

Algorithm 1 is devoted to 2-MISO-NARMAX model. However, the numerical pro-
cedure can easily be adapted to identify linear 2-MISO-ARMAX models. This time, the
auxiliary model is of ARX type.

In case of 2-MISO-NARX models, no auxiliary model is necessary. Therefore, the
identification of such models can simply be realized by means of the OLS method.
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Algorithm 1 MS-EOLS Procedure to Identify a 2-MISO-NARMAX Model

➢ Inputs:

• the identification i/o data set: D id
Nid

= {u1[n], u2[n], y1[n], y2[n]}n∈1,Nid
;

• the 10 major indices of 2-MISO-NARMAX model to identify: P1, P2, M1,1, M1,2, M2,1,
M2,2, K1,1, K1,2, K2,1, K2,2;

• the 10 major indices of auxiliary 2-MISO-NARX model to identify: P aux
1 , P aux

2 , M aux
1,1 ,

M aux
1,2 , M aux

2,1 , M aux
2,2 , K aux

1,1 , K aux
1,2 , K aux

2,1 , K aux
2,2 ;

• the minor indices of 2-MISO-NARMAX model to identify: na1, na2,
{

na1,p
}

p∈0,P1−1,{
na2,p

}
p∈0,P2−1, nb1,1, nb1,2, nb2,1, nb2,2, {nb1,1,m}m∈0,M1,1−1, {nb1,2,m}m∈0,M1,2−1,

{nb2,1,m}m∈0,M2,1−1, {nb2,2,m}m∈0,M2,2−1, {nd1,1,k}k∈0,K1,1−1, {nd1,2,k}k∈0,K1,2−1,

{nd2,1,k}k∈0,K2,1−1, {nd2,2,k}k∈0,K2,2−1, nc1, nc2;

• the minor indices of auxiliary 2-MISO-NARX model to identify: naaux
1 , naaux

2 ,
{

naaux
1,p

}
p∈0,Paux

1 −1
,{

naaux
2,p

}
p∈0,Paux

2 −1
, nbaux

1,1 , nbaux
1,2 , nbaux

2,1 , nbaux
2,2 ,

{
nbaux

1,1,m

}
m∈0,Maux

1,1 −1
,{

nbaux
1,2,m

}
m∈0,Maux

1,2 −1
,
{

nbaux
2,1,m

}
m∈0,Maux

2,1 −1
,
{

nbaux
2,2,m

}
m∈0,Maux

2,2 −1
,
{

nd aux
1,1,k

}
k∈0,Kaux

1,1 −1
,{

nd aux
1,2,k

}
k∈0,Kaux

1,2 −1
,
{

nd aux
2,1,k

}
k∈0,Kaux

2,1 −1
,
{

nd aux
2,2,k

}
k∈0,Kaux

2,2 −1
;

• the accuracy threshold: η > 0;
• the maximum number of filtering steps: L ∈ N∗ (by default, L = 10 ).
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∈ −
,  { }

2,2
2,2, 0, 1k k K

nd
∈ −

,  1nc , 2nc ; 

• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Initialization:

for j = 1 : 2

1. Call the OLS numerical procedure to identify the MISO-NARX model on output channel j.

• Notes

1. According to Equation (31), the generic equation of model is

yj[n] = ψT
u,y,j[n]θ

aux
u,y,j + ε j

[
n,θaux

u,y,j

]
, ∀ n ∈ N,

where ε j stands for model error and will approximate the white noise, after
identification. The vector ψu,y,j has to be evaluated for each normalized instant
∀ n ∈ 1, Nid, by using the i/o data set Did

Nid
. By convention, signals take null values

for ∀ n ≤ 0. It is suitable to stack all regressor vectors into the matrix Ψu,y,j and all
acquired output values into the vector Yj, if possible.

2. According to Equation (20), the OLS procedure returns the optimal parameters vector:

θ̂
aux
u,y,j =

(
ΨT

u,y,jΨu,y,j

)−1
ΨT

u,y,jYj =

[
N

∑
n=1
ψu,y,j[n]ψ

T
u,y,j[n]

]−1 N

∑
n=1
ψu,y,j[n]yj[n].

The noise variance is not needed for this model. The matrix is inverted through
Gram-Schmidt orthogonalization procedure.

3. Since the filtering operation might occur, one can change the notations into the model
equation above, to outline the number of filtering steps:

yl
j[n] =

(
ψl

u,y,j

)T
[n]θaux,l

u,y,j + εl
j

[
n,θaux,l

u,y,j

]
, ∀ n ∈ N,

where l ∈ 0, L. At this initial step, l = 0 (no filtering was applied).

2. Set to infinity the initial minimum value of quadratic criterion: Vmin,j = ∞.
3. Set the initial characteristic polynomial of filter to unit: C0

f,j
(
q−1) = 1.

end for j = 1 : 2
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2P  , aux
1,1M  , 

aux
1,2M , aux

2,1M , aux
2,2M , aux

1,1K , aux
1,2K , aux

2,1K , aux
2,2K ; 

• the minor indices of 2-MISO-NARMAX model to identify: 1na ,  2na ,{ }
1

1, 0, 1p p P
na

∈ −
,  

{ }
2

2, 0, 1p p P
na

∈ −
,   1,1nb ,   1,2nb ,   2,1nb ,   2,2nb ,   { }

1,1
1,1, 0, 1m m M

nb
∈ −

,   { }
1,2

1,2, 0, 1m m M
nb

∈ −
,  

{ }
2,1

2,1, 0, 1m m M
nb

∈ −
,   { }

2,2
2,2, 0, 1m m M

nb
∈ −

,   { }
1,1

1,1, 0, 1k k K
nd

∈ −
,   { }

1,2
1,2, 0, 1k k K

nd
∈ −

,  

{ }
2,1

2,1, 0, 1k k K
nd

∈ −
,  { }

2,2
2,2, 0, 1k k K

nd
∈ −

,  1nc , 2nc ; 

• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Main loop:

for j = 1 : 2

for l = 0 : L

1.1. Use the current auxiliary model to estimate the white noise, according to Equation (32):

εl
j

[
n,θaux,l

u,y,j

]
= yl

j[n]−
(
ψl

u,y,j

)T
[n]θaux,l

u,y,j , ∀ n ∈ 1, Nid.

1.2. Build the noise component of vector (8), following Definition (9):

φl
e,j[n] =

[
εl

j

[
n− 1,θaux,l

u,y,j

]
· · · εl

j

[
n− nc,θaux,l

u,y,j

]]T
, ∀ n ∈ 1, Nid.

1.3. Call the OLS numerical procedure to identify the MISO-NARMAX model. According to
Equation (20), the optimal parameters are:

[
θ̂

l
u,y,j

ĉl
j

]
=

 N

∑
n=1

φu,y,j[n]φT
u,y,j[n] φu,y,j[n]

(
φl

e,j[n]
)T

φl
e,j[n]φ

T
u,y[n] φl

e,j[n]
(
φl

e,j[n]
)T



−1(

N

∑
n=1

[
φu,y,j[n]
φl

e,j[n]

]
yj[n]

)
.

1.4. Estimate again the white noise, this time by means of identified MISO-NARMAX model:

e l
j [n] = yj[n]−φT

u,y,j[n] θ̂
l
u,y,j −

(
φl

e,j[n]
)T

ĉl
j, ∀ n ∈ 1, Nid.

1.5. Evaluate the quadratic criterion according to Equation (33):

V
(
θ̂

l
u,y,j, ĉl

j

)
=

N

∑
n=1

(
e l

j [n]
)2

.

1.6. If V
(
θ̂

l
u,y,j, ĉl

j

)
< η, then:

1.6.1. Update Vmin,j = V
(
θ̂

l
u,y,j, ĉl

j

)
and store in memory the optimal NARMAX and NARX

models, together with the current characteristic polynomial of all-poles filter (for
simulation purpose):

θ̂
opt
u,y,j = θ̂

l
u,y,j, ĉopt

j = ĉl
j, λ̂2

min =
Vmin,j

Nid−nθj
;

θ
aux,opt
u,y,j = θaux,l

u,y,j , Copt
f,j

(
q−1) = C l

f,j
(
q−1).

1.6.2. Break the inner for cycle, as the identification of optimal model was accomplished.

1.7. Otherwise:

1.7.1. If V
(
θ̂

l
u,y,j, ĉl

j

)
< Vmin,j, proceed like in step 1.6.1.

1.7.2. Update the characteristic polynomial of all-poles filter:

C l+1
f,j

(
q−1

)
= 1 +

[
q−1 q−2 · · · q−ncj

]
ĉl

j.

1.7.3. Filter the i/o data set : ul+1
j ≡ 1

C l+1
f,j (q−1)

uj, yl+1
j ≡ 1

C l+1
f,j (q−1)

yj.

1.7.4. Filter the initial regressors vector of auxiliary model: ψl+1
u,y,j ≡

1
C l+1

f,j (q−1)
ψ0

u,y,j.

* Note
In fact, the vector ψl+1

u,y,j includes filtered data from signals ul+1
j and yl+1

j (as
obtained in step 1.7.3). Moreover, filtering the products between such signals also
is necessary. They cannot be obtained by performing products between filtered
i/o data (see again Equations (35) and (36)).

1.7.5. Call the OLS numerical procedure to identify the auxiliary MISO-NARX model.
One obtains:

θ̂
aux,l+1
u,y,j =

[
N

∑
n=1
ψl+1

u,y,j[n]
(
ψl+1

u,y,j[n]
)T
]−1 N

∑
n=1
ψl+1

u,y,j[n]y
l+1
j [n].

end for l = 0 : L

end for j = 1 : 2
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( )
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n n
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end for 0 :l L=  
end for 1: 2j =  

 Outputs: 
• the optimal 2-MISO-NARMAX model; 
• the optimal auxiliary 2-MISO-NARX model; 
• the characteristic polynomials of all-poles filters to employ in simulations: opt

f ,1C , opt
f ,2C . 

 

Note that if at least one filtering step was performed, the returned polynomials opt
f ,1C  

and opt
f ,2C  come from the previous 2-MISO-NARMAX model and not from the optimal 

model. (Evidently, if the optimal models are directly found, without filtering, both poly-
nomials are equal to unity—see the third step of initialization.) This is the reason the two 

Outputs:

• the optimal 2-MISO-NARMAX model;
• the optimal auxiliary 2-MISO-NARX model;
• the characteristic polynomials of all-poles filters to employ in simulations: Copt

f,1 , Copt
f,2 .

3.2. Numerical Procedure to Simulate MISO-NARMAX Models

Generally speaking, there are two approaches when simulating an identification model,
depending on the type of output data employed to build the regression vectors, like φ or
ψ. For example, the ARMAX model (1) can be expressed by the regression Equation (7) as
well. This time, the regression vector φ is:

φ[n] =
[
φT

y [n] | φT
u [n] | φT

e [n]
]T

=

=
[
−y[n− 1] −y[n− 2] · · · −y[n− na] |
u[n− 1] u[n− 2] · · · u[n− nb] |
e[n− 1] e[n− 2] · · · e[n− nc]

]T , ∀ n ∈ N .

(60)

When carefully looking at Equation (60), one can notice that in spite of notation “φ[n]”, the
most recent sample of any signal inside φ is the one taken for the normalized instant n− 1
and not n. This involves that, after the identification of ARMAX model, from Equation (7),
a predicted output value can be obtained by simply ignoring the current sample of the
white noise. More specifically:

ŷ[n] = φ[n]θ̂N , ∀ n ∈ 1, N, (61)

provided that an estimation of the white noise is available for the previous normalized
instants n− 1, n− 2, etc. (e.g., by means of an auxiliary ARX model). This operation is
possible thanks to the fact that, in Equation (61), the only sample at current normalized
instant n is the predicted output, while all the other samples are regressed. (The prediction
can be realized not only on the acquisition horizon 1, N, but also beyond the upper limit N,
if acquired input samples are available.)

Focus now on the first component of vector φ from Equation (60), namely, φy, which
includes regressed output values. In many scientific articles, this component is evaluated
by using acquired output data. This means that, although the predicted value ŷ[n] is
available, when computing the next predicted value ŷ[n + 1], since the acquired sample
y[n] is available as well, the first component of φ is still updated to

φy[n + 1] = −
[
y[n] y[n− 1] · · · y[n− na + 1]

]
. (62)

The insertion of ŷ[n] into φy is enforced only in the case of prediction beyond the
instant N + 1 because no acquired output data are available. For example, to predict
ŷ[N + 2], the component below is needed:

φy[N + 2] = −
[
ŷ[N + 1] y[N] · · · y[N − na + 2]

]
. (63)

This technique is referred to as one-step prediction (osp). If the identification model is
optimal and valid, then the simulation on the acquisition horizon by employing the osp
technique can lead to predicted outputs extremely close to the acquired outputs, as no
prediction errors accumulate.

The other technique is based on the possibility to mainly employ predicted values
when updating the component φy. Thus, the general structure of component φy is:

φy[n] = −
[
ŷ[n− 1] ŷ[n− 2] · · · ŷ[n− na]

]
. (64)
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The acquired output data are not useless, though. First, they have been employed
to identify the optimal model. Second, for the first predicted values, an initialization is
needed. As full initialization, one can extract the first na output data and start prediction
from instant na + 1. In this case, acquired samples are mixed with predicted values in
construction of φy, like in Equation (63), until the prediction instant moves beyond 2na,
whenφy only includes predicted output values, like in Equation (64). Another initialization
manner, the hardest one, is to compute the average of output data, y, as the first predicted
value. Moreover, the first component φy can be set like below, for the next prediction:

φy[2] =
[
−y 0 · · · 0

]
. (65)

With Equations (61) and (65), the second predicted value is:

ŷ[2] = −a1y + b1u[1] + c1 ê[1], (66)

where ê[1] is the first estimated value of the white noise. As the prediction instant increases,
the zeros of φy are gradually replaced by predicted values, until they completely vanish.
Of course, one expects that in the beginning, the predicted values will not be so accurate.
However, if the identification model has a good quality, the accuracy of the prediction may
improve along the simulation horizon. Partial initializations can be adopted as well (i.e.,
with more than one sample but fewer than na samples). In any case, the null initialization
should be avoided because the acquired output signals usually start with non-null samples.

This technique is referred to as multi-step prediction (msp). Its main caveat is this: the
more reduced the initialization size, the larger the prediction errors, which, by difference
from the osp technique, accumulate along the simulation horizon.

Nevertheless, if the identification model is devoted to integration into an application
of automatic control, then the msp technique is more suitable for simulations than the
osp technique. The main argument is that, in the absence of any internal controller, the
identified black box (which often is a process to be controlled) receives no direct feedback
from its output(s). Hence, no output data determine its dynamics. Since the associated
model was identified in open loop, naturally, the model also should not make use of the
measured output(s) in simulation to follow the black box dynamics as close as possible.
Another argument relies on the filtering operation. When computing the output of a
rational filter described, for example, by the system function:

H
(

q−1
)
=

B
(
q−1)

A(q−1)
, (67)

one solves, in fact, a difference equation:

y[n] = −a1y[n− 1]− · · · − anay[n− na] + b1u[n− 1] + · · ·+ bnbu[n− nb], ∀ n ∈ N. (68)

By Equation (68), the output y is computed at every instant (starting from some
initialization) without using previously acquired output samples. In this aim, only input
samples are necessary to be specified. As Figure 1 illustrates, filtering is essential when
simulating an identification model, especially if integrated into a scheme of automatic
control. Moreover, if the msp technique would be employed to compute the fitness (47),
the optimal 2-MISO-NARMAX model could be more reliable in the automatic control
application than by using the osp technique.

Consequently, the scheme in Figure 3 can be employed to simulate the 2-MISO-
NARMAX model, together with its auxiliary 2-MISO-NARX model, for each output
channel.
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Figure 3. Simulation scheme of a 2-MISO-NARMAX model to be employed in the evaluation of fitness. 
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 Main loop: 
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Figure 3. Simulation scheme of a 2-MISO-NARMAX model to be employed in the evaluation of
fitness.

To implement this scheme, only one MISO-NARX routine and one filtering routine
are necessary. The first routine is invoked for any of the blocks NARXuseful and NARXaux.
It returns the output by computing products, like φT

u,y[n] θu,y or ψT
u,y[n] θ

aux
u,y . The second

one is based on Equation (64), where either the AR or the MA part is missing. Note that
the AR filters are using Copt

f,{1,2} polynomials, while the MA filter is designed by means of C
polynomials extracted from the optimal 2-MISO-NARMAX model. Also, the notations ê
and v̂ stand here for the estimated white and colored noises, respectively.

The numerical procedure based on the scheme in Figure 3 and the msp technique is
summarized in Algorithm 2.

The procedure of Algorithm 2 can be employed for any output channel of 2-MISO-
NARMAX model and for any of the two datasets D id

Nid
, D va

Nva
. Also, the 2-MISO-ARMAX

linear model can be simulated with the same procedure. This time, the structure of the
regressor vectors is simpler, as the major indices are missing.

Algorithm 2 Simulation Procedure of a MISO-NARMAX Model, Based on msp Technique

➢ Inputs:

• the identification model of MISO-NARMAX type (one output channel);
• the auxiliary model of MISO-NARX type (one output channel);
• the characteristic polynomial of filter, Copt

f ;
• initialization of model equations (as previously explained; for example, the average of output

data, y, padded with null values, can be used);
• the input data, D u

N = {u1[n], u2[n]}n∈1,N .
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2P  , aux
1,1M  , 

aux
1,2M , aux

2,1M , aux
2,2M , aux

1,1K , aux
1,2K , aux

2,1K , aux
2,2K ; 

• the minor indices of 2-MISO-NARMAX model to identify: 1na ,  2na ,{ }
1

1, 0, 1p p P
na

∈ −
,  

{ }
2

2, 0, 1p p P
na

∈ −
,   1,1nb ,   1,2nb ,   2,1nb ,   2,2nb ,   { }

1,1
1,1, 0, 1m m M

nb
∈ −

,   { }
1,2

1,2, 0, 1m m M
nb

∈ −
,  

{ }
2,1

2,1, 0, 1m m M
nb

∈ −
,   { }

2,2
2,2, 0, 1m m M

nb
∈ −

,   { }
1,1

1,1, 0, 1k k K
nd

∈ −
,   { }

1,2
1,2, 0, 1k k K

nd
∈ −

,  

{ }
2,1

2,1, 0, 1k k K
nd

∈ −
,  { }

2,2
2,2, 0, 1k k K

nd
∈ −

,  1nc , 2nc ; 

• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Initialization:

1. Set the first filtered inputs (for example, uf,{1,2}[1] = u{1,2}[1]).
2. Set the first predicted output (for example, ŷ[1] = y).
3. Set the first filtered output (for example, ŷf[1] = y).
4. Set the first auxiliary output (for example, ŷaux

f [1] = y).
5. Set the first estimated value of white noise (for example, ê[1] = 0).
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1,1
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∈ −
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∈ −
,  { }
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• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Main loop:

for n = 2 : N

1. Update the vector φu,ŷ[n] coming from the MISO-NARMAX model. The vector includes the
latest input data (u{1,2}[n], u{1,2}[n− 1], . . .), the latest predicted output data (ŷ[n− 1], ŷ[n− 2],
. . .) and corresponding products between such data, according to the model structure.

2. Call the NARX routine to compute the current useful output, ŷu[n] (see the NARXuseful block in
Figure 3). The routine needs the vector θu,y (coming from the MISO-NARMAX model) and the
corresponding vector φu,ŷ[n], as updated into the previous step.

3. Add noise to the useful output, such that the current predicted output, ŷ[n], be obtained. More
specifically, call the filtering routine to return the current estimated value of colored noise to add,
v̂[n]. The filter is of MA type and employs the C polynomial extracted from the MISO-NARMAX
model. Filtering is applied to the latest estimated values of white noise (ê[n− 1], ê[n− 2], . . .).

4. Update the vector ψu,ŷ[n] coming from the auxiliary MISO-NARX model. The vector includes the
latest input data (u{1,2}[n], u{1,2}[n− 1], . . .), the latest predicted output data (ŷ[n− 1], ŷ[n− 2],
. . .) and corresponding products between such data, according to the model structure.

5. If Copt
f is not unit:

5.1. Filter the inputs. The current values uf,{1,2}[n] are obtained by calling again the filtering

routine. Unlike in step 2, the filter is of AR type, with Copt
f as characteristic polynomial.

Obviously, the most recent filtered input values are employed (uf,{1,2}[n], uf,{1,2}[n− 1],
. . .), together with the current inputs (u{1,2}[n]).

5.2. Filter the predicted output. The same filter as in step 5.1 can be used, with the most
recent filtered predicted output values (ŷf[n− 1], ŷf[n− 2], . . .), together with the current
predicted (unfiltered) output (ŷ[n]).

5.3. Filter the product signals into the vector ψu,ŷ[n], like in steps 5.1 and 5.2. (Recall the
example given after Equation (36).)

5.4. Update the vector ψu,ŷ[n]. The vector includes the latest filtered input data (uf,{1,2}[n],
uf,{1,2}[n− 1], . . .), the latest filtered predicted output data (ŷf[n− 1], ŷf[n− 2], . . .) and
the latest filtered corresponding products between such data, according to the model
structure (as computed in steps 5.1–5.3).

6. Call the NARX routine again, to return the current value ŷaux
f [n] (see the NARXaux block in

Figure 3). This time, its input arguments are the vector θaux
u,y (coming from the auxiliary

MISO-NARX model) and the corresponding vector ψu,ŷ[n] from steps 4 or 5.
7. Estimate the current value of white noise: ê[n] = ŷf[n]− ŷaux

f [n].

end for n = 2 : N
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end for 1: 2j =  

 Outputs: 
• the optimal 2-MISO-NARMAX model; 
• the optimal auxiliary 2-MISO-NARX model; 
• the characteristic polynomials of all-poles filters to employ in simulations: opt

f ,1C , opt
f ,2C . 

 

Note that if at least one filtering step was performed, the returned polynomials opt
f ,1C  

and opt
f ,2C  come from the previous 2-MISO-NARMAX model and not from the optimal 

model. (Evidently, if the optimal models are directly found, without filtering, both poly-
nomials are equal to unity—see the third step of initialization.) This is the reason the two 

Outputs:

• the simulated (predicted) output data, {ŷ[n]}n∈1,N ;
• optionally, the simulated useful data, {ŷu[n]}n∈1,N .

3.3. Numerical Procedure to Simulate MISO-NARXA Models

Another model of interest is 2-MISO-NARXA, for which the simulation procedure is
simpler than in case of 2-MISO-NARMAX or 2-MISO-ARMAX models. For this model,
Algorithm 3 can be implemented, following Equations (51)–(53).

Both simulation procedures above are solely devoted to serve in the evaluation of
the fitness (48), by using the msp technique. Normally, such procedures are not suitable
to be included in a closed loop. Schemes based on filters (like the one in Figure 1) are
better candidates for this aim since an approximation of the white noise can be generated
artificially with the same variance as the estimated one.
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Algorithm 3 Simulation Procedure of a MISO-NARXA Model, Based on msp Technique

➢ Inputs:

• the identification model of (pure) MISO-NARX type (one output channel);
• the auxiliary models of SISO-AR and SISO-ARMA type;
• initialization of model equations (as previously explained; for example, the average of output data,

y, padded with null values, can be used; the first value of output data, y[1], is necessary as well);
• the input data, D u

N = {u1[n], u2[n]}n∈1,N .
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1,1, 0, 1m m M

nb
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∈ −
,  
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2,1, 0, 1m m M
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∈ −
,   { }
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∈ −
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∈ −
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1,2
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• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux
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{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Initialization:

1. Set the first predicted output (for example, ŷ[1] = y).
2. Set the first estimated value of white noise (for example, ê[1] = y− y[1]).

•Note. It is very important that ê[1] ̸= 0, otherwise all simulated data concerning the white and
colored noises will be null. For example, if y[1] = y, another output data value must be
selected, say y[m] (with m > 1), such that y[m] ̸= y.

3. Set the first estimated value of colored noise (for example, v̂[1] = ê[1]).
4. Compute the first useful output (for example, ŷu[1] = ŷ[1]− v̂[1] = y[1]).

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 54 
 

 

This mechanism allows exploration of the search space beyond the vicinity of the best 
found host nest, without losing the fittest nests and, at the same time, preventing the nu-
merical procedure to be trapped into a local optimum vicinity. 

By suitably setting the probability aP , the user can reach a trade-off between the ex-
ploitation and exploration mechanisms. According to some scientists, the CSA is one of 
the simplest and most efficient metaheuristics, easy to implement and use. 

3. Design and Implementation Details of Numerical Procedures 
The methods described within the previous section allow for designing numerical 

procedures to be implemented by using a programming environment. This section gives 
some details regarding the design and implementation of these procedures. Although the 
explanation is oriented toward using the MATLABTM programming language, other 
high-level languages can be employed as well (such as Python or C++). 

The following algorithms are addressed in the sequel: 
• identification through MS-EOLS; 
• simulation of identification model by multi-step prediction (msp); 
• CSA. 

The Gram–Schmidt method is easy to implement (it only consists of Equation (23) 
and the corresponding initialization). Also, the basic OLS method can be implemented by 
directly using Equation (30). For both methods, no further explanations are necessary. 

3.1. MS-EOLS Numerical Procedure 
The main steps of the MS-EOLS procedure are listed in Algorithm 1. 

Algorithm 1 MS-EOLS Procedure to Identify a 2-MISO-NARMAX Model 
 Inputs: 

• the identification i/o data set: { }
id id

id
1 2 1 2 1,
[ ], [ ], [ ], [ ]N n N
u n u n y n y n

∈
=D ; 

• the 10 major indices of 2-MISO-NARMAX model to identify: 1P , 2P , 1,1M , 1,2M , 2,1M , 

2,2M , 1,1K , 1,2K , 2,1K , 2,2K ; 

• the 10 major indices of auxiliary 2-MISO-NARX model to identify: aux
1P  , aux

2P  , aux
1,1M  , 

aux
1,2M , aux

2,1M , aux
2,2M , aux

1,1K , aux
1,2K , aux

2,1K , aux
2,2K ; 

• the minor indices of 2-MISO-NARMAX model to identify: 1na ,  2na ,{ }
1

1, 0, 1p p P
na

∈ −
,  

{ }
2

2, 0, 1p p P
na

∈ −
,   1,1nb ,   1,2nb ,   2,1nb ,   2,2nb ,   { }

1,1
1,1, 0, 1m m M

nb
∈ −

,   { }
1,2

1,2, 0, 1m m M
nb

∈ −
,  

{ }
2,1

2,1, 0, 1m m M
nb

∈ −
,   { }

2,2
2,2, 0, 1m m M

nb
∈ −

,   { }
1,1

1,1, 0, 1k k K
nd

∈ −
,   { }

1,2
1,2, 0, 1k k K

nd
∈ −

,  

{ }
2,1

2,1, 0, 1k k K
nd

∈ −
,  { }

2,2
2,2, 0, 1k k K

nd
∈ −

,  1nc , 2nc ; 

• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Main loop:

for n = 2 : N

1. Update the vector φu,ŷ[n] coming from the MISO-NARX model. The vector includes the latest
input data (u{1,2}[n], u{1,2}[n− 1], . . .), the latest predicted output data (ŷ[n− 1], ŷ[n− 2], . . .) and
corresponding products between such data, according to the model structure.

2. Call the NARX routine to compute the current useful output, ŷu[n]. The routine needs the vector
θu,y and the corresponding vector φu,ŷ[n], as updated into the previous step.

3. Call the filtering routine to return the current estimated value of white noise, ê[n]. The filter is of
MA type and employs the characteristic polynomial of auxiliary AR model. See the last Equation
in (51) and Equation (53). Filtering is applied to the latest estimated values of colored noise
(v̂[n− 1], v̂[n− 2], . . .).

4. Call the filtering routine again to return the current estimated value of colored noise, v̂[n]. The
filter is of ARMA type and employs the characteristic polynomial of auxiliary ARMA model. See
the second Equation in (51) and Equation (52). Now, the filtering is applied to the latest estimated
values of colored noise (v̂[n− 1], v̂[n− 2], . . .), as well as to the latest estimated values of white
noise (ê[n− 1], ê[n− 2], . . .).

5. Add the colored noise with the useful output, to obtain the current predicted output, ŷ[n],
according to the first Equation in (51).

end for n = 2 : N
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forming products between filtered i/o data (see again Equations (35) and 
(36)). 

1.7.5. Call the OLS numerical procedure to identify the auxiliary MISO-NARX 
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end for 1: 2j =  

 Outputs: 
• the optimal 2-MISO-NARMAX model; 
• the optimal auxiliary 2-MISO-NARX model; 
• the characteristic polynomials of all-poles filters to employ in simulations: opt

f ,1C , opt
f ,2C . 

 

Note that if at least one filtering step was performed, the returned polynomials opt
f ,1C  

and opt
f ,2C  come from the previous 2-MISO-NARMAX model and not from the optimal 

model. (Evidently, if the optimal models are directly found, without filtering, both poly-
nomials are equal to unity—see the third step of initialization.) This is the reason the two 

Outputs:

• the simulated (predicted) output data, {ŷ[n]}n∈1,N ;
• optionally, the simulated useful data, {ŷu[n]}n∈1,N .

3.4. CSA Numerical Procedure

Like in the case of all metaheuristics, CSA requires a routine to generate pseudo-
random numbers. Such a routine should generate either uniformly distributed sequences
of numbers or discrete signals with some prescribed probability distribution. The most
employed distribution in applications is the Gaussian one. Several algorithms are available
to implement pseudo-random generators (prgs). For example, Baker’s algorithm can easily be
implemented for this purpose [48].

For the numerical procedure in Algorithm 4, two types of prg are necessary: one with
a uniform probability distribution (upd-prg) and another one with a prescribed probability
distribution (ppd-prg), different from the uniform one. For example, to generate pseudo-
random Gaussian signals, the ppd-prg can be used.

Although improvements of Algorithm 4 are possible, this is not one of this article
goals. Basically, in MATLABTM programming environment, the CSA was implemented
following the steps in Algorithm 4.
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Algorithm 4 Basic Numerical Procedure of CSA Metaheuristic

➢ Inputs:

• the cost function to optimize, F (associated with the quality of host nests);
• the boundaries of search space S (see Equation (55));
• configuring parameters:

- population size of the host nests, P (by default, P = 15);
- Lévy’s constant, λ (by default, λ = 1.5);
- scaling factor, α (by default, α = 0.01);
- probability of keeping the host nests into the population Pa (by default, Pa = 25%; recall that

1− Pa is the population renewal rate);
- maximum number of iterations K (by default, K = 15).
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aux
1,2M , aux

2,1M , aux
2,2M , aux

1,1K , aux
1,2K , aux

2,1K , aux
2,2K ; 

• the minor indices of 2-MISO-NARMAX model to identify: 1na ,  2na ,{ }
1

1, 0, 1p p P
na

∈ −
,  

{ }
2

2, 0, 1p p P
na

∈ −
,   1,1nb ,   1,2nb ,   2,1nb ,   2,2nb ,   { }

1,1
1,1, 0, 1m m M

nb
∈ −

,   { }
1,2

1,2, 0, 1m m M
nb

∈ −
,  

{ }
2,1

2,1, 0, 1m m M
nb

∈ −
,   { }

2,2
2,2, 0, 1m m M

nb
∈ −

,   { }
1,1

1,1, 0, 1k k K
nd

∈ −
,   { }

1,2
1,2, 0, 1k k K

nd
∈ −

,  

{ }
2,1

2,1, 0, 1k k K
nd

∈ −
,  { }

2,2
2,2, 0, 1k k K

nd
∈ −

,  1nc , 2nc ; 

• the minor indices of auxiliary 2-MISO-NARX model to identify: aux
1na ,   aux

2na ,  

{ } aux
1

aux
1, 0, 1p p P

na
∈ −

,   { } aux
2

aux
2, 0, 1p p P

na
∈ −

,   aux
1,1nb ,   aux

1,2nb ,   aux
2,1nb ,   aux

2,2nb ,  

{ } aux
1,1

aux
1,1, 0, 1m m M

nb
∈ −

,   { } aux
1,2

aux
1,2, 0, 1m m M

nb
∈ −

,   { } aux
2,1

aux
2,1, 0, 1m m M

nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K

nd
∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K

nd
∈ −

; 

• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Initialization:

1. Use the upd-prg to uniformly spread the first population of host nests over the search space. This

would be the generation zero of population:
{

x0
p

}
p∈1,P

.

2. Evaluate the fitness of each nest in the initial generation:
{

F
(

x0
p

)}
p∈1,P

.

3. Determine the best host nest and its performance: x0
best = argopt

p∈1,P

{
F
(

x0
p

)}
, F0

best = opt
p∈1,P

{
F
(

x0
p

)}
.

4. Compute the variance of variable u, namely σ2
u , according to Equation (57).
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Algorithm 4 Cont.
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2

aux
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{ } aux
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nb
∈ −
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aux
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nb
∈ −

,   { } aux
2,2

aux
2,2, 0, 1m m M

nb
∈ −

,  

{ } aux
1,1

aux
1,1, 0, 1k k K

nd
∈ −

,  { } aux
1,2

aux
1,2, 0, 1k k K

nd
∈ −

,  { } aux
2,1

aux
2,1, 0, 1k k K
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∈ −

,  { } aux
2,2

aux
2,2, 0, 1k k K
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• the accuracy threshold: 0η > ; 

• the maximum number of filtering steps: L ∗∈  (by default, 10L = ). 
 Initialization: 

for 1: 2j =  
Main loop:

for k = 0 : (K− 1)

1. for p = 1 : P

1.1. Use the ppd-prg to generate current values for variables u and v, namely uk
p and vk

p,
respectively. As already mentioned, although both are Gaussian with null mean, the
variance of v is equal to unity, while the variance of u is σ2

u .
1.2. Compute the step size s, according to Equation (56), where u = uk

p and v = vk
p. Thus, s

becomes sk
p.

1.3. Relocate the current host nest according to Equation (58). Since xk+1
best would be equal to

xk
best, one can skip this host nest.

1.4. Make viable xk+1
p (excepting for xk

best, which is already viable).
1.5. Evaluate the performance of xk+1

p , i.e., compute F(xk+1
p ).

1.6. If F(xk+1
p ) has a better value than F(xk

p), replace the current host nest xk
p by the next host

nest xk+1
p .

1.7. Otherwise, keep unchanged the current host nest and its performance for next
generation: xk+1

p = xk
p and F(xk+1

p ) = F(xk
p).

1.8. If F
(

xk+1
p

)
has a better value than Fk

best, update the best host nest: xk+1
best = xk+1

p ,

Fk+1
best = F

(
xk+1

p

)
.

1.9. Otherwise, keep unchanged the current best solution
{

xk
best, Fk

best

}
.

end for p = 1 : P
2. If xk

best and Fk
best did not change, set xk+1

best = xk
best and Fk+1

best = Fk
best.

3. Use the upd-prg to generate the current value rk+1 between 0 and 1.
4. Use the ppd-prg to generate a matrix of binary values, B =

[
bi,p
]

i∈1,nx,p∈1,P, where 0 occurs with
probability Pa, while 1 occurs with probability of 1− Pa. The matrix has nx rows (the length of
decision variable) and P columns (the size of host nests population). The matrix B matches the
matrix Xk+1 obtained by gathering all host nests of next population in columns.

5. for p = 1 : P

5.1. If the column p of binary matrix B is null, keep the host nest xk+1
p and its performance

F(xk+1
p ) unchanged.

5.2. Otherwise:

5.2.1. Use the upd-prg to select two integers np and mp in range 1 : P, in order to employ
the host nests xk+1

np and xk+1
mp into the next step.

5.2.2. for i = 1 : nx

5.2.2.1. If bi,p = 0, leave unchanged the component xk+1
i,p into the matrix Xk+1.

5.2.2.2. Otherwise:
5.2.2.2.1. Modify the component xk+1

i,p according to Equation (59). The

corresponding components of nests xk+1
np and xk+1

mp are involved in this
evaluation.

5.2.2.2.2. Make viable the new component xk+1
i,p . end for i = 1 : nx

5.3. If the host nest xk+1
p was modified, resulting

~
x

k+1
p :

5.3.1. Compute F
(

~
x

k+1
p

)
.

5.3.2. If F
(

~
x

k+1
p

)
is better than F

(
xk+1

p

)
:

5.3.2.1. Renew the host nest: xk+1
p ← ~

x
k+1
p ; F

(
xk+1

p

)
← F

(
~
x

k+1
p

)
.

5.3.2.2. If F
(

xk+1
p

)
is even better than Fk

best, update the best host nest:

xk+1
best = xk+1

p , Fk+1
best = F

(
xk+1

p

)
.

5.3.2.3. Otherwise, keep unchanged the best solution
{

xk+1
best , Fk+1

best

}
.

5.3.3 Otherwise, keep
{

xk+1
p , F

(
xk+1

p

)}
and discard

{
~
x

k+1
p , F

(
~
x

k+1
p

)}
.

end for p = 1 : P

Mathematics 2024, 12, x FOR PEER REVIEW 24 of 54 
 

 

1.5. Evaluate the quadratic criterion according to Equation (33): 

( ) ( )2, ,
1

ˆ ˆ, [ ]
N

l l l
u y j j j

n

e n
=

=θ cV . 

1.6. If ( ), ,
ˆ ˆ,l l
u y j j < ηθ cV , then: 

1.6.1. Update ( )min, , ,
ˆ ˆ,l l

j u y j j= θ cV V   and store in memory the optimal 

NARMAX and NARX models, together with the current characteristic 
polynomial of all-poles filter (for simulation purpose): 

opt
, , , ,

ˆ ˆ l
u y j u y j=θ θ , optˆ ˆ lj j=c c , 

min,2
min

id

ˆ j

jN n
λ =

− θ
V

; 

aux,opt aux,
, , , ,

l
u y j u y j=θ θ , ( ) ( )opt 1 1

f , f ,C q C ql
j j

− −= . 

1.6.2. Break the inner for cycle, as the identification of optimal model was ac-
complished. 

1.7. Otherwise: 

1.7.1. If ( ), , min,
ˆ ˆ,l l
u y j j j<θ cV V , proceed like in step 1.6.1. 

1.7.2. Update the characteristic polynomial of all-poles filter: 

( )1 1 1 2
f , ˆC q 1 q q q jl nc l
j j

+ − −− −= +   c . 

1.7.3. Filter the i/o data set: ( )
1

1 1
f ,

1
C q

l
j jl

j

u u+
+ −

≡ , ( )
1

1 1
f ,

1
C q

l
j jl

j

y y+
+ −

≡ . 

1.7.4. Filter the initial regressors vector of auxiliary model: 

( )
1 0
, , , ,1 1

f ,

1
C q

l
u y j u y jl

j

+
+ −

≡ψ ψ . 

• Note 
In fact, the vector 1

, ,
l
u y j
+ψ  includes filtered data from signals 1l

ju
+  and 

1l
jy
+   (as obtained in step 1.7.3). Moreover, filtering the products be-

tween such signals also is necessary. They cannot be obtained by per-
forming products between filtered i/o data (see again Equations (35) and 
(36)). 

1.7.5. Call the OLS numerical procedure to identify the auxiliary MISO-NARX 
model. One obtains: 

( )
1

aux , 1 1 1 1 1
, , , , , , , ,

1 1

ˆ [ ] [ ] [ ] [ ]
N NTl l l l l

u y j u y j u y j u y j j
n n

n n n y n
−

+ + + + +

= =

 =   
 θ ψ ψ ψ . 

end for 0 :l L=  
end for 1: 2j =  

 Outputs: 
• the optimal 2-MISO-NARMAX model; 
• the optimal auxiliary 2-MISO-NARX model; 
• the characteristic polynomials of all-poles filters to employ in simulations: opt

f ,1C , opt
f ,2C . 

 

Note that if at least one filtering step was performed, the returned polynomials opt
f ,1C  

and opt
f ,2C  come from the previous 2-MISO-NARMAX model and not from the optimal 

model. (Evidently, if the optimal models are directly found, without filtering, both poly-
nomials are equal to unity—see the third step of initialization.) This is the reason the two 

Output:

• optimal solution:
{

xK
best, FK

best
}

.
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4. Simulation Results and Discussion
4.1. Simulation Settings

The programming environment selected to perform the simulations is MATLABTM.
The implemented numerical procedures were designed according to the identification and
simulation models described within the previous sections. To test the models, a didactical
installation was employed, namely, ASTANK2. An in-depth description of this plant can be
found in [46,50]. Therefore, only a succinct presentation of its constructive characteristics
is given next. The installation photo is illustrated in Figure 4. As the name suggests and
the figure above shows, ASTANK2 consists of two water tanks of approximately 50 cm
high, which can be filled with liquid from a lower basin by means of a central pump. The
liquid flows back to the basin by a nozzle placed at the bottom of each tank. The leaking
flows can be manually controlled by the user through mechanical valves placed on nozzles.
The tank on the right side is rectangular, while the tank on the left side has a slanted face,
which gives a longitudinal section profile of a trapezoidal form. The slanted face was
designed to increase the nonlinearity of the plant dynamics. The tanks can communicate
with each other by means of a pipe placed beneath them. A manual valve allows the
user to control (and even to completely stop) the communication flow. Two commanded
electrovalves are placed on top of the installation and allow automatically controlling
the liquid flow. The installation is endowed with liquid flow and level sensors. The two
inputs are commanding the electrovalves on top, while the two outputs are given by the
liquid levels in the tanks. The installation has an interface panel that can be connected to a
computer and communicates with MATLABTM environment. Thus, i/o data can directly
be acquired and stored in MATLABTM workspace.
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The ultimate goal with this installation is to design controllers for keeping constant
liquid levels in the tanks (not necessarily of equal heights), regardless the leaking flows
and perturbations (such as the measuring noise or the liquid turbulences).

To reach for this goal, an identification model of ASTANK2 may be needed. Although
a controller that does not necessarily need an identification model to be designed (such as
PID) can satisfactorily work (see, for example, [50]), it is suitable to aim for more effective
controllers and even to optimal, perhaps, nonlinear ones. An identification model is
mandatory to be involved in the design of such controllers. Since the installation dynamics
is nonlinear, the identification of a multivariable NARMAX model could be suitable.
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After few experiments, the static characteristics of ASTANK2 plant were determined.
They look like in Figure 5. The horizontal axes correspond to voltages applied to the two
electrovalves that determine the filling flows. They are the two inputs of the black box
to identify. The electrovalves start to work for voltages of at least 2 V and cannot accept
more than 10 V as the maximum operating command without being exposed to failure.
The vertical axes correspond to the liquid levels in the tanks and stand for the black box
outputs. For each constant couple of voltages, a couple of constant levels was measured.
Figure 5 reveals the nonlinear static characteristics, although they are composed of several
linear segments, from which the one in the middle is the longest. As one can see, although
the voltage u1 covers the whole operating range (2–10 V), the second voltage is restricted to
the range from 6.5 V to 9.5 V. This selection enforced the liquid levels to vary between 8 cm
and 15 cm. It has been noticed that this range provides the most accurate i/o data. If the
level is too low (below 8 cm), turbulences caused by the leaking of a small amount of liquid
strongly affect the measurements. If the level is too high (above 15 cm), the sensors start to
introduce systematic errors, and the saturation of voltages at the upper limit of 10 V would
be necessary to protect the electrovalves.
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Figure 5. Static characteristics of ASTANK2 plant: for the trapezoidal tank to the left and for the
rectangular tank to the right.

Nominal operating points can be selected from the characteristics in Figure 5. For
example, one can set the level in the trapezoidal tank to 10.5 cm and the level in the
rectangular tank to 9.5 cm. Both levels are placed in the nonlinear zones of the static
characteristics.

An important constructive limitation is that the successive voltages applied to elec-
trovalves should not jump with more than 3 V from one value to another. This prevents the
electrovalves from overcharging.

Moreover, each voltage should be constant for a duration between 15 s and 60 s such
that the flows of liquid passing through the electrovalves have enough time to stabilize
and the turbulences to vanish. Consequently, the input signals were generated as batches
of steps with pseudo-randomly chosen voltages, as well as durations, with respect to the
constructive limitations above. They look like in Figure 6.
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Figure 6. Pseudo-random signals employed to stimulate the ASTANK2 installation, aiming at
identification.

The signals above were employed to stimulate the black box to acquire i/o signals for
identification, i.e., to build the dataset D id

Nid
. The sampling period was set to 1 s, and the

acquisition horizon size is Nid = 798. Thus, the data acquisition took 13.3 min.
Similar input signals were generated to build the dataset for validation, D va

Nva
, as

displayed in Figure 7. The size of the validation horizon is Nva = 798 (the same as that for
the identification horizon). The output acquired data vary around the operating points
y id

1 = 10.24 cm and y id
2 = 9.37 cm (for the identification phase) and y va

1 = 10.19 cm and
yva

2 = 9.29 cm (for the validation phase). Since the averages of input signals are u id
1 = 7.67 V

and u id
2 = 7.8 V (for the identification phase) and u va

1 = 7.79 V and u va
2 = 7.66 V (for the

validation phase), one can conclude that both operation points lie into the nonlinear zones
of the static characteristics (see Figure 5 again).
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validation.

After few experiments, one has concluded that the liquid level in one tank does not
significantly affect the liquid level in the other tank. Then, one realistically assumed that
ASTANK2 consists of two subsystems, each of which having a MISO structure (with two
inputs and one output). Thus, the 2-MISO-NARMAX model fits well to the plant. In the
same manner, one can consider the 2-MISO-NARXA model and the 2-MISO-ARMAX linear
model as two important competitors.

The CSA was set to run hierarchically: one procedure, CSAsup, operates at a superior
level, with the 20 major structural indices of vector γM, and another procedure, CSAinf, is
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invoked at an inferior level for any combination of major indices to find the optimal minor
indices of vector γm (with variable length). Note that for the 2-MISO-NARXA model, the
number of major indices decreases to 10 since no auxiliary model is necessary. Also, in the
case of 2-MISO-ARMAX model, only CSAinf suffices, as no major structural indices exist.

The overall search space is delimited by setting the upper bound of the major indices
to 3. This choice is motivated by the empirical observation that correlations between
signals with delays greater than 2 s have little influence on ASTANK2 dynamics. The
polynomials composing the models can have degrees limited to 250 (i.e., approximately
Nid/3). However, since the polynomials A1 and A2 give the poles of all the filters in
the models, their degrees were restricted to vary in the set 0, 10. In automatic control
applications, the models with as small number of poles as possible are preferred; otherwise,
the designed controller could become too complex.

The defined search space is huge. For example, only the major indices subspace in-
cludes approximately 420 points (close to 1012). Therefore, the search was performed
on 10 regular up-to-date computers running in parallel by splitting the domain into
10 disjointed zones. This operation was performed with the help of numbers represented
in base 4. More specifically, any combination of major indices can be represented as follows:

γM,20419 + γM,19418 + · · ·+ γM,24 + γM,1, (69)

where γM =
[

γM,1 γM,2 · · · γM,19 γM,20
]T , γM,i ∈ 0, 3, and ∀ i ∈ 1, 20. (Recall

that when some major index γM,i is null, the corresponding component is missing from
NARMAX model. If all the major indices are null, the linear ARMAX model is identified.)
The interval

(
0, 420 − 1

]
was split into 10 disjointed sub-intervals, each of which having a

length of approximatively 1011. Then, the search on a computer was performed in a unique
sub-interval. The representation (69) together with the sub-interval limits were employed
to make viable the positions of the host nests during the search. In the end, the best of the
10 optimal solutions was selected.

The configuration parameters of CSA are set like in Table 1.

Table 1. Configuration parameters for CSAsup and CSAinf.

Parameter Psup Ksup Pa,sup αsup Pinf Kinf Pa,inf αinf

Value 15 15 0.25 0.01 20 20 0.25 0.01

The population size as well as the maximum number of iterations are greater for
CSAinf than for CSAsup because the upper limits of the minor indices are sensibly higher
than 3 (the upper limit of the major indices).

When computing the fitness, either Algorithm 2 or Algorithm 3 is employed (based
on msp technique), depending on identification model to determine. The fitness values are
computed with µF = µ = 3.5.

4.2. Performance Results

Three optimal identification models are compared next, namely, 2-MISO-NARMAX,
2-MISO-NARXA, and 2-MISO-ARMAX. As already mentioned, the tandem CSAsup-CSAinf
was run for the nonlinear models, while the optimal linear model was found by running
CSAinf only. The runtime shown in Table 2 decreased for each model type, depending on
its complexity, as expected. Because the search space is very large, finding the optimal
structural indices took several days.

Table 2. Runtime values to find optimal identification models by means of CSA.

Model 2-MISO-NARMAX 2-MISO-NARXA 2-MISO-ARMAX

Runtime h 355 208 97
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The optimal models found have the structural indices in Tables 3 and 4 and the fitness
values in Table 5. In the case of NARXA model, the minor indices corresponding to auxiliary
AR models are denoted by naaux

1,1 and naaux
2,1 , respectively. Also, the auxiliary ARMA models

operate with minor indices
{

naaux
1 , ncaux

1
}

and {naaux
2 , ncaux

2 }, respectively.

Table 3. Major structural indices of optimal identification models.

Major Main P1 M1,1 M1,2 K1,1 K1,2 P2 M2,1 M2,2 K2,1 K2,2

2-MISO-NARMAX 1 2 1 1 3 – 2 3 3 3
2-MISO-NARXA 1 2 – – – 1 2 1 – –

Major auxiliary P aux
1 M aux

1,1 M aux
1,2 K aux

1,1 K aux
1,2 P aux

2 M aux
2,1 M aux

2,2 K aux
2,1 K aux

2,2

2-MISO-NARX 1 3 2 – – – 1 – – –

Table 4. Minor structural indices of optimal identification models.

Minor Main na1 na1,1 nb1,1 nb1,2 nb1,1,1 nb1,1,2 nb1,1,3 nb1,2,1 nb1,2,2 nb1,2,3 nd1,1,1 nd1,1,2 nd1,1,3 nd1,2,1 nd1,2,2 nd1,2,3 nc1

MISO-NARMAX1 5 26 30 30 30 26 – 26 – – 10 – – 4 30 8 8
MISO-NARXA1 10 15 9 24 10 8 – – – – – – – – – – –
MISO-ARMAX1 10 – 4 28 – – – – – – – – – – – – 29

Minor auxiliary naaux
1 naaux

1,1 nbaux
1,1 nbaux

1,2 nbaux
1,1,1 nbaux

1,1,2 nbaux
1,1,3 nbaux

1,2,1 nbaux
1,2,2 nbaux

1,2,3 ndaux
1,1,1 ndaux

1,1,2 ndaux
1,1,3 ndaux

1,2,1 ndaux
1,2,2 ndaux

1,2,3 ncaux
1

MISO-NARX1 2 23 8 20 13 5 4 12 10 – – – – – – – –
SISO-AR-ARMA1 100 41 – – – – – – – – – – – – – – 5

MISO-ARX1 10 – 20 2 – – – – – – – – – – – – –

Minor main na2 na2,1 nb2,1 nb2,2 nb2,1,1 nb2,1,2 nb2,1,3 nb2,2,1 nb2,2,2 nb2,2,3 nd2,1,1 nd2,1,2 nd2,1,3 nd2,1,1 nd2,1,2 nd2,1,3 nc2

MISO-NARMAX2 4 – 27 9 18 1 – 30 1 14 1 30 30 1 1 24 30
MISO-NARXA2 1 1 11 19 18 28 – 4 – – – – – – – – –
MISO-ARMAX2 1 – 17 30 – – – – – – – – – – – – 30

Minor auxiliary naaux
2 naaux

2,1 nbaux
2,1 nbaux

2,2 nbaux
2,1,1 nbaux

2,1,2 nbaux
2,1,3 nbaux

2,2,1 nbaux
2,2,2 nbaux

2,2,3 ndaux
2,1,1 ndaux

2,1,2 ndaux
2,1,3 ndaux

2,2,1 ndaux
2,2,2 ndaux

2,2,3 ncaux
2

MISO-NARX2 7 – 27 15 22 – – – – – – – – – – – –
SISO-AR-ARMA2 5 32 – – – – – – – – – – – – – – 64

MISO-ARX2 1 – 1 29 – – – – – – – – – – – – –

Table 5. Fitness values of optimal identification models.

Model 2-MISO-NARMAX 2-MISO-NARXA 2-MISO-ARMAX

Average fitness F [%] 84.07 85.71 81.38

Fitness F [%] 91.21 84.68 75.37

One can notice that no optimal structural index is greater than 30, except for those
of the AR and ARMA linear models. Normally, both linear models operate with a higher
number of coefficients to achieve the required level of accuracy. Also, the major indices
P1 and P2 are, at most, unit for both nonlinear models and even for the auxiliary models.
This means that for ASTANK2 plant, the autocorrelation of each output can be neglected
beyond the unit lag.

Surprisingly, the highest average fitness in Table 5 is provided by the 2-MISO-NARXA
model, although its value is close to that of 2-MISO-NARMAX model. Nevertheless,
the overall fitness is smaller. Thus, despite the higher average of the four partial fitness
values, their variance is quite large. As previously mentioned, as a result of how the
overall fitness (48) was defined, when it takes high values, all four channel fitnesses are not
only high enough but also grouped as much as possible around their averages. It seems
that the 2-MISO-NARXA model exhibits more scattered channel fitness values than the
2-MISO-NARMAX model.

In the sequel, the displayed figures have the following structure: to the left for 2-MISO-
NARMAX, in the middle for 2-MISO-NARXA and to the right for 2-MISO-ARMAX. In
each figure, output channels are naturally placed: #1 on top and #2 at bottom.
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All three optimal models are stable. As already mentioned in Section 2.4, the stability
is tested by observing the placement of the roots (poles) coming from polynomials A1 and
A2 in the complex plane. The pole placement is shown in Figure 8.
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In all the cases, there is a pole close to the unit circle, which means the stability
margin is quite narrow. The NARMAX and NARXA models are slightly better in this
respect, as their critical poles are a bit farther from the unit circle than the critical poles of
ARMAX model. What brings superiority to NARMAX model is the reduced number of
poles, compared to the other two models: {5,4} versus {10,1} (the same for NARXA and
ARMAX). Moreover, the NARMAX poles are almost equally distributed between the two
output channels (5 and 4, respectively), whereas NARXA and ARMAX exhibit unbalanced
distribution of their poles (10 and 1, respectively). From automatic control point of view,
the less poles, the better. Also, in case of ASTANK2 plant, since there is not big difference
between the two tanks in terms of configuration and placement, it is more realistic to have
almost the same number of poles on both channels, than to allocate sensibly higher number
of poles on one channel comparing to the other channel. Thus, NARMAX model seems to
be closer to real plant than the other two models, in this respect.

Note that the SchurCohn stability test [1,2] can be employed as well. However, through
this test, no polynomial roots are computed, which makes it impossible to visualize the
pole placement.

The next figures start with the variations for identification dataset, followed by the
variations for validation dataset. Also, a color system was adopted for easy reading. When
two variations are drawn, the one in blue stands for the acquired data, while the one in red
is associated to simulated signal. The magenta color was allocated to model error signals.
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Figure 9 reveals the performance of the useful part for all the models.
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The second and third columns in Figure 9 clearly show that both 2-MISO-NARXA and
2-MISO-ARMAX models are unable to correctly extract the useful information from the
data. One can notice the biases between the acquired output data and the simulated data.
By comparison, in the left column, the 2-MISO-NARMAX model exhibits smaller biases.
This is not only a subjective opinion, as the displayed SNR values confirm this observation.
They are greater for the 2-MISO-NARMAX model than for the other two models in all
four windows. Also, for all the models, the SNR values are smaller in the validation phase
than in the identification phase, as expected.

The simulated output signals are compared with the acquired output data in Figure 10.
The 2-MISO-ARMAX model performs the worst because of its linear nature.
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Nevertheless, although the useful simulated signals are the most biased from the ac-
quired data, the overall simulated outputs resulted closer to those data (see the correspond-
ing SNR values). In fact, the same phenomenon can be observed for the 2-MISO-NARXA
model. On the contrary, the 2-MISO-NARMAX model succeeded to provide good, simu-
lated signals in both cases. This means NARMAX was able to perform better separation
between useful and noisy information from the acquired data. The other two models did
not satisfactorily solve the denoising paradigm, as some of the useful information was
recovered by the noise filters. However, the 2-MISO-NARXA is closer to 2-MISO-NARMAX
than to 2-MISO-ARMAX, in terms of performance.

In Table 6, the partial fitness values, as well as their absolute difference are given for all
models. One can easily notice that the absolute difference is approximately 1.8 times bigger
for the 2-MISO-NARX model than for the 2-MISO-NARMAX model. Also, the difference
increases more than 3.4 times in case of 2-MISO-ARMAX model. This involved reduction
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of overall fitness, despite the values of partial fitnesses, which, as Table 6 clearly shows,
vary in quite a narrow range, from 74.57% to 78.66%.

Table 6. Partial fitness values of optimal identification models.

Model 2-MISO-NARMAX 2-MISO-NARXA 2-MISO-ARMAX

Partial fitnesses Fv, Fe [%] 75.78 74.74 76.37 74.57 78.66 75.07

Absolute difference |Fv − Fe| [%] 1.04 1.80 3.59

The model errors are depicted in Figure 11. They are decoding the biases between the
simulated and acquired signals.
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In each column, the same representation scale was employed. Regardless the model
under discussion, no absolute error is greater than 2.5 mm. (Recall that the operating points
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are above 9.29 cm). Also, the estimated variances of the white noises are specified in each
window. The lower, the better. They confirm once more that the final order of the models
in terms of performance was 2-MISO-NARMAX (the best), followed by 2-MISO-NARXA,
and 2-MISO-ARMAX (the worst).

The accuracy slightly decreases in case of the validation dataset. Moreover, the
corresponding errors reveal some auto-correlations, which means they are still colored
noises to some extent. Auto-correlation is visible in case of 2-MISO-ARMAX model,
even for identification errors. For good identification models, the final errors should
have characteristics similar to those of white noises. In fact, the whitening tests (usually
employed to validate identification models [1]) were satisfactorily passed only by the
2-MISO-NARMAX model.

The comparison between the acquired and simulated data can be performed not
only in the time domain but also in frequency domain. The frequency representations of
the inputs are illustrated in Figure 12 (for the identification stage) and Figure 13 (for the
validation stage), at a resolution of 2000 frequency samples over the full band.
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As one can see, all four signals exhibit almost a constant spectral envelope, which
places them nearby white noises. However, because white noise cannot be generated
artificially, more energy is allocated in the low-frequency band (due to the limitations of
pseudo-random generator). This effect can be helpful, though, since the overwhelming
majority of real-life systems behave in frequency like low-pass filters. The ASTANK2
installation is not an exception, as the following figures will prove. Thus, the generated
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inputs stimulate the plant not only in the low-frequency sub-band (where, very likely, the
useful information is encoded) but also towards the medium and high frequency sub-bands
to extract information about perturbations corrupting the output responses.

The sampling period of 1 s, which gives the sampling rate of 1 Hz, was selected after
carefully inspecting the frequency responses of ASTANK2 installation to the stimulating
inputs. Figures 14 and 15 display the frequency responses in both stages (identification and
validation, respectively).
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Indeed, ASTANK2 acts like a low-pass filter, as revealed by the spectral envelopes
of all the output acquired data. To estimate its cut-off frequency, an engineering point
of view was adopted. Thus, the first frequency at which the spectrum decreases with
at least 50 dB from the maximum (obtained at the null frequency) is a good candidate
for the cut-off frequency (This means the spectral power decreased more than 350 times
compared to the maximum). Since four output datasets are available, the cut-off frequency
was estimated by taking the minimum of the four corresponding cut-off frequencies, which
returned 0.081 Hz (approximately). A vertical line in green was drawn on all the spectral
representations in Figures 14 and 15 to mark the estimated cut-off frequency. Practically,
the useful information about ASTANK2 dynamics is roughly encoded into the sub-band to
the left of the green line. The noisy information is then encoded into the complementary
sub-band, to the right.

According to ShannonNyquist sampling rule [51,52], aliasing is avoided if the sam-
pling rate is at least twice the cut-off frequency. Thus, the minimum value of sampling rate
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is 0.162 Hz, which gives a maximum sampling period of approximately 6.17 s. Nevertheless,
the sampling rate was set to 1 s (more than 6 times smaller) for two main reasons. First,
although overall, ASTANK2 rather is a process with slow dynamics, the electrovalves
can react quite fast. Setting a sampling period towards the maximum implies the risk
of unrealistically reducing the information about perturbations corrupting the acquired
output data. Second, decreasing the sampling period under 1 s, involves the insertion of an
artificial noise in acquired data, which can cause the numerical instability of algorithms
devoted to solving the differential equations in simulation.

Figures 16 and 17 display zooms on pass-band of ASTANK2 installation.
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Figure 17. Zoom on pass-band in frequency representations of output signals employed in validation
stage.

Although not so easy to notice, differences between the four spectra exist. Much more
visible are the differences between the four spectral phases.

The frequency representations of the simulated outputs provided by the three optimal
identification models are compared next to the above ones, and the corresponding errors are
emphasized. Analyze first the frequency responses of the models over the full-frequency
band. The results are displayed in Figure 18 (for the identification phase) and Figure 19
(for the validation phase). In the figures, each column corresponds to an identification
model. In every column, the depicted variations are as follows: the spectrum, the phase,
the spectral relative error, and the phase relative error first for output channel 1 and then
for output channel 2 (i.e., 8 variations per column).
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Figure 18. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
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Figure 18. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
NARMAX (left column), 2-MISO-NARXA (middle column), and 2-MISO-ARMAX (right column) for
the full frequency band in the identification phase.
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Figure 19. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
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Figure 19. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
NARMAX (left column), 2-MISO-NARXA (middle column), and 2-MISO-ARMAX (right column) for
the full frequency band, in the validation phase.
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The relative errors were computed by normalization with peak-to-peak of frequency
representations resulted from acquired output data. More specifically, in case of spectrum
(which is expressed in dB), the absolute error, computed as the difference between the
acquired data spectrum and the simulated data spectrum, was divided by the peak-to-
peak of the first spectrum and multiplied by 100. Thus, the error is expressed in percents,
relatively to the highest variation of acquired data spectrum. In case of phase, the evaluation
is simpler, as any angle (measured in radians) is included into [−π,+π] interval. Thus,
the absolute error between phases is divided by 2π and multiplied by 100. The resulted
relative error of phase is then expressed in percents with respect to 2π.

Figures 18 and 19 reveal first that, without computing the errors, it is very difficult
to outline the differences between all the simulated spectra and the acquired spectra in
all four datasets. The same applies to the phases. However, errors exist. At first sight,
for all the models, the errors are reasonable, except for the ones corresponding to spikes.
In engineering, although relative errors between −5% and +5% are acceptable, it is more
suitable that they do not overpass ±3%.

Like in case of Figures 14 and 15, the low frequency pass-band of ASTANK2 was
separated by a green vertical line. Seemingly, more spikes lie in the high frequency (larger)
sub-band than in the pass-band, which means the information about noises is less accurately
decoded than the useful information. When looking at the relative error amplitude, one
can see that the 2-MISO-ARMAX model performs the worst, while the nonlinear models
exhibit similar performance. Moreover, the 2-MISO-ARMAX model is less accurate on
channel 1 than on channel 2, as expected (Recall that the trapezoidal tank was associated to
channel 1, which introduces more nonlinearity than the rectangular tank of channel 2).

For all the models, the errors are slightly higher in the validation phase than in the
identification phase, as expected as well. The spectra are better approximated than the
phases, where some spikes can reach 100%. Nevertheless, some of 100% spikes are not real,
since angles α− π and α + π produce the same spectral phase, in fact.

To make the difference between the nonlinear models, zooms on pass-band are added
in Figure 20 (for the identification phase) and Figure 21 (for the validation phase). The
overwhelming majority of the relative errors coming from the 2-MISO-NARMAX model
remain in the ±3% band, and most spikes do not overpass ±5%. Accidentally, there are
few spikes going beyond ±6% in validation phase. Thus, this model can be considered
as an acceptable one. The 2-MISO-NARXA model verifies almost all the same properties,
except for the relative errors of spectral phase, which have some big spikes. In fact, this
model even outperforms 2-MISO-NARMAX on channel 2 in identification and channel 1 in
validation. However, this performance rather is due to the ARMA-AR inner model of noise
than to the pure NARX model, as the useful information is not as accurately decoded as in
the case of 2-MISO-NARMAX model (see Figure 9 again). Still, the 2-MISO-NARXA is a
model to consider next the 2-MISO-NARMAX one. Anyway, the 2-MISO-ARMAX model
is less accurate. This is also proven by the variances of the errors shown in Table 7.

Table 7. Variances of spectral and phase relative errors.

Model σid
s,1 σid

p,1 σid
s,2 σid

p,2 σva
s,1 σva

p,1 σva
s,2 σva

p,2

2-MISO-NARMAX 0.3908 0.5786 0.1827 0.2716 0.5286 0.9731 0.5372 0.7487
2-MISO-NARXA 0.4181 1.4526 0.0984 0.1495 0.4050 0.6320 0.0848 5.5355
2-MISO-ARMAX 1.0524 5.4345 0.2276 5.4742 0.4378 0.8409 0.3151 4.9893
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Figure 20. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
NARMAX (left column), 2-MISO-NARXA (middle column), and 2-MISO-ARMAX (right column) for
the low frequency sub-band in the identification phase.
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Figure 21. Frequency representations and spectral errors of simulated outputs provided by 2-MISO-
NARMAX (left column), 2-MISO-NARXA (middle column), and 2-MISO-ARMAX (right column) for
the low frequency sub-band in the validation phase.
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In the table above, variances are naturally denoted. For example, σid
s,1 is the variance of

spectral relative error on channel 1, in identification phase, while σid
p,1 is the variance of twin

error, computed on spectral phase. One can easily see that all variances are higher for the
2-MISO-ARMAX model than for the other two nonlinear models. However, the nonlinear
models are close to each-other. What pushed the 2-MISO-NARXA model on second place
are the high variances of spectral phases errors σid

p,1 and especially σva
p,2 (because of a 100%

spike, though), beside the incapacity to correctly decode the useful information.
A final remark regard the two tanks of liquid in ASTANK2 installation. Recall that

the first output corresponds to the level in the trapezoidal tank, which accentuates the
nonlinear behavior, whereas second output measures the level in the rectangular tank,
which is closer to the linear behavior. As the results above prove, the accuracy of the first
tank model is lower than the accuracy of the second tank models. Evidently, in case of
ARMAX model, this result is normal because of its linear nature. Nevertheless, in case of
the nonlinear models, the first output should have been more accurately identified. Since
the results did not match such expectations, probably there are other nonlinear models that
perform better than the ones from NARMAX class in case of ASTANK2 plant.

5. Concluding Remarks

The aim of this article was to determine a nonlinear identification model from i/o-
acquired data by using a combination of techniques, including the MS-EOLS identification
method, the msp technique for simulation, and the CSA as a selected metaheuristic for
finding the optimal structural indices. Thanks to the msp technique, the model can be
directly integrated into a closed loop structure to design a good, suitably optimal controller.
Moreover, one can say that the proposed identification methodology by using the msp
technique can represent a general (yet practical) approach for the identification of various
nonlinear multivariable systems as a prior step for control applications. Subsequently,
a comparison between two nonlinear models (namely, 2-MISO-NARMAX and 2-MISO-
NARXA) and a linear model (2–MISO–ARMAX) was performed in a setting that employs
the ASTANK2 installation. Since both the static characteristic and the dynamic behavior
of ASTANK2 are nonlinear, the nonlinear models resulted in better performances than
those of the linear model. Moreover, the more complex model, of NARMAX type, resulted
to perform better not only than the linear model of ARMAX type but also than the other
nonlinear model, of NARX type.

The last remark of the previous section suggests that the investigation of other non-
linear models (especially from Wiener and WienerHammerstein classes) should be one of
the future research directions. Another direction is to exploit other metaheuristics (such as
PSO), to seek for better models that can be identified. And, of course, an interesting and
challenging direction is to perform a sound, in-depth analysis concerning the stability of
NARMAX models.

Author Contributions: Conceptualization, D.S., J.C., A.-C.V. and V.V.; methodology, D.S., J.C., A.-C.V.
and V.V.; software, D.S., J.C., A.-C.V. and V.V.; validation, D.S., J.C., A.-C.V. and V.V.; formal analysis,
D.S., J.C., A.-C.V. and V.V.; investigation, D.S., J.C., A.-C.V. and V.V.; resources, D.S., J.C., A.-C.V. and
V.V.; data curation, D.S., J.C., A.-C.V. and V.V.; writing—original draft, D.S., J.C., A.-C.V. and V.V.;
writing—review and editing, D.S., J.C., A.-C.V. and V.V.; visualization, D.S., J.C., A.-C.V. and V.V.;
supervision, D.S., J.C., A.-C.V. and V.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data employed while testing the numerical algorithms can be sent
to readers on request.

Conflicts of Interest: The authors declare no conflicts of interest.



Mathematics 2024, 12, 2252 48 of 50

Acronyms

ARMAX Auto-Regressive Moving Average with eXogenous input model
ARMA Auto-Regressive Moving Average model
ARX Auto-Regressive with eXogenous input model
CSA Cuckoo Search Algorithm
ELS Extended Least Squares
ERR Error Reduction Ratio
MA Moving Average model
MISO Multiple-Inputs-Single-Output (system)
MS-EOLS Multi-Step Extended OLS
NARMAX Nonlinear ARMAX model
NARMA Nonlinear ARMA model
NARX Nonlinear ARX model
NARXA NARX model combined with ARMA and AR models
NSI Nonlinear SI
OLS Orthogonal Least Squares
PSO Particle Swarm Optimization
SI System Identification
SISO Single-Input-Single-Output (system)
SNR Signal-to-Noise Ratio(s)
dB decibels (logarithmic scale)
i/o input/output (data, behavior, etc.)
id identification
msa multi-step ahead (prediction)
osa one-step ahead (prediction)
ppd-prg prescribed probability distribution prg
prg pseudo-random generator
upd-prg uniform probability distribution prg
va validation
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