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Abstract: The warning of the potential faults occurring in the future in a sucker rod well can help
technicians adjust production strategies in time. It is of great significance for safety during well
production. In this paper, the key characteristic parameters of dynamometer cards were predicted by
a temporal neural network to implement the warning of different working conditions which might
result in failures. First, a one-dimensional damped-wave equation was used to eliminate the dynamic
loads’ effect of surface dynamometer cards by converting them into down-hole dynamometer cards.
Based on the down-hole dynamometer cards, the characteristic parameters were extracted, including
the load change, the position of the valve opening and closing point, the dynamometer card area,
and so on. The mapping relationship between the characteristic parameters and working condi-
tions (classification model) was obtained by the Xgboost algorithm. Meanwhile, the noise in these
parameters was reduced by wavelet transformation, and the rationality of the results was verified.
Second, the Encoder–Decoder and multi-head attention structures were used to set up the time series
prediction model. Then, the characteristic parameters were predicted in a sequence-to-sequence way
by using historical characteristic parameters, date, and pumping parameters as input. At last, by
inputting the predicted results into the classification model, a working conditions warning method
was created. The results showed that noise reduction improved the prediction accuracy significantly.
The prediction relative error of most characteristic parameters was less than 15% after noise reduction.
In most working conditions, their F1 values were more than 85%. Most Recall values could be
restored to over 90% of those calculated by real parameters, indicating few false negative cases. In
general, the warning method proposed in this paper can predict faulty working conditions that may
occur in the future in a timely manner.

Keywords: sucker rod well; dynamometer card; characteristic parameters; time series prediction;
working conditions warning

MSC: 68T07

1. Introduction
1.1. Research Background

During the production of sucker rod wells, where equipment, such as rods and
pumps, works continuously, the inflow and outflow dynamics near the wellbore will
change over time. The equipment and fluid flow status is influenced by complex factors,
which cause various working conditions to occur during the artificial lifting. Down-hole
working conditions can be monitored in real-time by the dynamometer, which provides
dynamometer cards. The dynamometer card, which consists of load and displacement,
reflects the different working conditions. Based on the real-time monitoring of working
conditions, technicians can quickly understand the current production status of oil wells.
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However, when the technician uses real-time monitoring to identify a fault, it usually either
began or occurred at a previous time in the oil well. If so, the time when technicians adjust
production strategies usually lags behind when the fault occurs. Warnings about working
conditions can be used to identify a potential fault occurring in the future. It can help alert
technicians in advance and shorten the interval between the occurrence of the fault and the
implantation of corrective measures. It is of great significance for safety and efficient well
production.

During normal production, the working conditions are usually stable. When there
is an abnormality, the shape of the down-hole dynamometer cards will change gradually.
When the change reaches a certain degree, it will be labeled as a fault. The working
condition changes of some wells are shown in Figure 1.
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Figure 1 shows the progressive changes in four abnormal working conditions, includ-
ing the liquid pound, gas effect, pump hitting down, and standing valve leakage. It can be
seen that the faults become increasingly significant over time. In this process, the position
and shape of a dynamometer card changes with the change in working conditions. It also
means that the load and displacement of each point on the dynamometer card change
jointly. It is not necessary to focus on all points on the dynamometer card when the work-
ing conditions change. By extracting the load, displacement, and geometric parameters
(hereinafter referred to as the characteristic parameters) of the key points and areas [1,2],
the dynamometer card features used for working conditions recognition can be simplified.
By predicting the change in characteristic parameters, it is possible to predict the working
conditions over time.

In general, future working conditions are predictable. During a working conditions
warning process, there are three important tasks that need to be completed. First, set up the
mapping relationship between characteristic parameters and working conditions. Second,
accurately find the change rules of the characteristic parameters over a continuous time.



Mathematics 2024, 12, 2253 3 of 25

Third, set up the working conditions warning method based on the mapping relationship
and prediction results.

1.2. Related Works

Real-time diagnosis of working conditions based on dynamometer cards is the founda-
tion for studying working conditions warnings. Traditional methods integrated statistical
analysis of expert experience to match it with working conditions, which is easy to under-
stand but highly subjective [3,4]. By calculating key features in the dynamometer cards,
such as peak and valley loads, valve opening and closing point positions, and so on, typical
working conditions can also be matched with them, thereby forming recognition rules [5].
Similarly, geometric features, grayscale matrices, and Fourier descriptors can also serve
as the basis for forming recognition rules [6,7]. In recent years, with the development of
machine and deep learning, research on the automation and intelligence recognition of
dynamometer cards has become increasingly rich. Based on interpretable key characteristic
parameters of dynamometer cards, some algorithms have been used to generate structured
data classification [8]. Jinze Liu et al. (2021) used an improved Fourier descriptor for feature
extraction and utilized the support vector machine (SVM) as the model to classify faults [9].
Considering the occurrence probabilities of different faults, Xiaoxiao Lv (2021) proposed
evolutionary SVM methods [10]. Tianqi Chen (2016) proposed the Xgboost model, which
has strong generalization ability for structured data modeling [11]. Lu Chen et al. (2021)
used it as an effective method for fault recognition as well [12]. Compared with traditional
machine learning methods, artificial neural networks are more flexible and widely used
in fault recognition [13]. Yanbin Hou et al. (2019) and Tong Xu et al. (2019) used extreme
learning machines [14,15] and RBF neural networks for fault recognition in dynamometer
cards. Convolutional neural networks (CNN) have strong image recognition capability [16],
and it is feasible to use CNN for fault recognition when the dynamometer cards are viewed
as unstructured data, such as images [17]. With further research, researchers have noticed
that insufficient samples lead to a decrease in the accuracy of fault recognition. Kai Zhang
et al. (2022) effectively solved the fault recognition problem with small samples by using
Meta-transfer learning [18]. Xiang Wang et al. (2021) oversampled the categories with
fewer samples to solve the class imbalance problem in dynamometer card recognition [19],
but it was prone to overfitting. Chengzhe Yin et al. (2023) used the Conditional Genera-
tive Adversarial Neural Network (CGAN) to generate dynamometer cards and enhanced
the diversity of generated samples [20]. In this way, the recognition performance of the
categories with fewer samples can be improved further.

The existing research about real-time working conditions diagnosis covers various
aspects, including data, features, and models. Whether it is structured data, such as key
characteristic features, or unstructured data, such as images, the working conditions of
oil wells can be reflected accurately. From machine learning to deep learning, various
diagnostic models can solve many complex problems. These research results provide rich
references for working conditions warnings.

Warnings about working conditions are based on real-time diagnosis. It can predict
the future production status of sucker rod wells. However, the features used to describe
future working conditions are usually unknown. Therefore, the recognition of future
working conditions is more difficult. Shaoqiang Bing (2019) proposed a comprehensive
index related to wax deposition and used LSTM to predict the degree of wax deposition
quantitatively [21]. Lin Xia et al. (2020) used LSTM and CNN to predict the trend in the
dynamometer card shape over time [22]. Hui Tian et al. (2021) extracted the dynamometer
card features by CNN to predict the occurrence time of severe paraffin problems [17].
Chaodong Tan et al. (2022) used the dynamometer card image and electrical features to
predict the wax accumulation level through LSTM [23]. In other industrial fields, there
are also some fault warnings research results worth learning from. Mathis Riber Skydt
et al. (2021) defined three severity levels of power grid states and classified time series
by data augmentation and LSTM [24]. Yulei Yang et al. proposed a novel method based
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on SAE-LSTM to excavate features highly related to time series data, which can warn of
defects 85 h in advance compared with the traditional threshold warning method [25].
Congzhi Huang et al. (2024) proposed a dual warning method considering univariate
abnormal detection and multivariate coupling thresholds to learn about coal mill faults
in time [26]. Kuan-Cheng Lin et al. (2024) used LSTM to analyze historical pre-failure
information to predict the future status of wind turbine health [27]. Yunxiao Chen et al.
(2024) analyzed the reasons for wind power prediction model failure and used variance to
assist Bi-LSTM in 1-h-ahead early warning to solve the problems [28]. Hongqian Zhao et al.
(2024) combined the gated recurrent unit neural network and multi-step ahead prediction
scheme to accurately predict the battery voltage 1 min in advance [29]. In addition, the
noise inside the data will affect the model performance during prediction. Na Qu et al.
(2020) used discrete wavelet transformation for noise reduction and to decompose electrical
signals, which improved the prediction accuracy of fault monitoring on the ENET public
dataset [30]. Jun Ling et al. (2020) used multi-resolution wavelet transformation for noise
reduction and fault warning for nuclear power machinery through RNN and Bayesian
statistical inference [31].

The existing research on fault warning is generally based on time series prediction
models. In the petroleum field, the warning research of sucker rod wells has mainly focused
on a single working condition, and there are few studies on collaborative warnings for
multiple working conditions. In other industrial fields, researchers generally predict faults
from key signal data related to the specific field. When the noise in the data has an obvious
influence on the prediction performance, it is necessary to reduce the noise and then recon-
struct the data. During fault warning, many strategies exist, including category sequence
prediction, threshold delineation, and binary classification, based on predicting results in
advance. Although these studies focused less on multiple working conditions warnings,
they also provided us with many references in terms of data processing and algorithms.

With the help of existing research results, in this paper, we extracted key characteristic
parameters from dynamometer cards and used deep learning to predict them. Based on
the prediction results, a working conditions warning method was implemented. The main
content and innovations are as follows:

First, based on the sequence-to-sequence prediction mode, the time series of multiple
characteristic parameters of the dynamometer cards could be predicted.

Second, the influence of noise on the characteristic parameters prediction results was
considered in this paper.

Finally, multiple working conditions warning methods of the sucker rod well were
proposed based on characteristic parameters prediction.

2. Characteristic Parameters Extraction

There may be deviations when extracting characteristic parameters from surface
dynamometer cards due to the influence of dynamic loads. Based on the research of
Gibbs S. G. and Qi Zhang et al. [32,33], to extract the characteristic parameters more
accurately, in this paper, the surface dynamometer cards were converted into down-hole
dynamometer cards by solving the one-dimensional damped-wave equation with a Fourier
series and taking surface load and displacement as the boundary conditions. In this way,
the calculation deviations caused by dynamic loads, such as vibration, inertia, and friction,
can be eliminated to some degree.

In this paper, the characteristic parameters were extracted to describe the difference
among several typical working conditions based on the down-hole dynamometer cards, as
shown in Figure 2.
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Figure 2. Characteristic parameters extraction results of the down-hole dynamometer cards.

In Figure 2, S represents the displacement, and W represents the load. In addition, A,
B, C, and D represent the traveling valve closed point, standing valve open point, standing
valve closed point, and traveling valve open point, respectively. It can be seen that the basic
shape of the down-hole dynamometer cards was determined by the load and displacement
change of the valve opening and closing points. Based on these, other key characteristic
parameters can be obtained to describe different working conditions further. The detailed
names are as follows, and the serial numbers are consistent with those in Figure 2.

(1) Maximum load

Maximum load always appears in the upstroke. It can be obtained by selecting the
maximum value of the load data from B to C;

(2) Average load of the upstroke

The average load of the upstroke reflects the average level of the load change in the
upstroke. It can be obtained by calculating the arithmetic mean of the load data from B to C;

(3) Slope of the upstroke

The slope of the upstroke is used to describe the uncertainty of the load change
quantitatively. In this paper, the slope can be calculated by fitting the linear relationship
between load and displacement from B to C;

(4) Average load of the downstroke

Similar to that of the upstroke, it can be obtained by calculating the arithmetic mean
of the load data from D to A,

(5) Minimum load

The maximum load always appears in the downstroke. It can be obtained by selecting
the minimum value of the load data from D to A;

(6) Slope of the downstroke

Similar to that of the upstroke, the slope can be calculated by fitting the linear relation-
ship between load and displacement from D to A;

(7) Effective stroke

The effective stroke, also known as the piston stroke, usually reflects the production
efficiency of the pump. It can be obtained by calculating the displacement difference
between D and A;

(8) Area of the dynamometer card
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The area of the dynamometer card indicates how much work the pump has done. It
can be obtained by the numerical integration of the closed curve.

Different working conditions can be distinguished further by the above calculated
parameters. Moreover, if the working conditions are described only by a specific charac-
teristic parameter, there will be significant recognition deviation when multiple working
conditions coexist. Therefore, they need to be determined by multiple characteristic param-
eters together.

In addition, it can be seen from Figure 1 that A, B, C, and D should be located at
positions with significant curvature changes. However, because down-hole dynamometer
cards eliminate the influence of vibration loads, the load change with displacement be-
comes smoother in the upstroke and downstroke. Therefore, it is more difficult to identify
curvature changes, which leads to greater uncertainty of A, B, C, and D. When extracting
the load and displacement of A, B, C, and D, there will be significant fluctuations. At the
same time, the other extraction results also depend on the positions of A, B, C, and D,
so there is noise in the time series of each characteristic parameter, which will have an
influence on the prediction performance.

3. Methodology
3.1. Model of Working Conditions Classification

When the characteristic parameters extracted are in different intervals, they corre-
spond to different working conditions. The mapping relationship between the working
conditions and the parameter values can be set up through conditional judgment. However,
it relies on expert experience. A trainable and self-learning knowledge tree (also named the
classification model) can help construct a mapping relationship that is similar to the rules
established between characteristic parameters and working conditions.

Xgboost is the improved version of tree models such as decision trees, Random forests,
and GBDT. It establishes K regression trees (CART trees) to make the predicted values
of the tree clusters as close to the true values as possible with the greatest generalization
ability at the same time. The objective function is shown as Equation (1).

L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (1)

where i represents the i-th sample. The objective function consists of two parts: loss function
l and regularization term Ω. l(ŷi, yi) is the prediction error of the i-th sample, and Ω( fk) is
the function that reflects the complexity of a tree. The less L(ϕ) is, the lower the error and
the stronger the generalization ability.

Through Taylor expansion and split search algorithms, the model can be trained by
optimizing the objective function values. For detailed information, please refer to Part 3 of
Tianqi Chen et al.’s article [9].

3.2. Noise Reduction Based on Wavelet Transformation

According to the analysis in Part 2, parameters to be predicted can be considered
as one-dimensional signal data with noise. They are non-stationary signals composed of
regular parts that change-over-time and noise is generated during extraction. Therefore,
wavelet transformation is suitable for noise reduction. The process is shown in Figure 3.

First, after inputting a signal with noise, a wavelet basis function (db8) is used to
perform multi-scale wavelet decomposition of the time sequence. The actual sequence
length of each well determines the number of decomposed layers. Then, based on the
setting threshold, the decomposed wavelet coefficients are selected. If the amplitude of
the wavelet coefficients is lower than the threshold, it would be caused by noise, and the
corresponding decomposed coefficients should be removed. The threshold is calculated
by the hard threshold function in this paper to reserve more information on working
conditions. Finally, by reconstructing the remaining decomposed coefficients, the time
sequence after noise reduction can be obtained [34,35].
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The selection of thresholds is challenging work. If the threshold is too large, the
sequence will be smoother, and prediction accuracy will be higher. However, at the same
time, it removes more valuable information, which makes the sequence unable to reflect
the true rules. If the threshold is too small, the sequence will be closer to the real data and
reserve more information that is valuable. But it also contains more noise, which results in
poorer prediction performance. Therefore, the noise reduction performance under different
thresholds has been shown in the Experiment Results analysis in order to select a reasonable
threshold.

3.3. Model of Characteristic Parameters Prediction

The characteristic parameters of the future M-days can be predicted according to that
of the past N-days. The prediction mode includes many-to-one rolling prediction and
many-to-many sequence prediction.

Many-to-one rolling prediction refers to predicting the parameters for the next day
based on those from the past N days. Then, the parameters of the second next day are
predicted based on the above prediction results, and so on, until the M-th day. In this way,
the sequential relationship between future time series can be considered. However, due
to errors in each prediction step, error propagation and accumulation can occur. Many-
to-many sequence prediction refers to directly predicting the parameters for the next M
days based on those from the past N days without error propagation and accumulation.
However, the model cannot learn the sequential internal relationships of the predicted time
series by sequence-to-sequence prediction alone. In summary, it is necessary to choose a
prediction method that can both avoid error propagation and learn the sequential inner
relationships.

In addition, the pumping parameters, including pump diameter, pump depth, stroke,
and stroke frequency, can describe the production difference in different wells. They can
contribute to characteristic parameter predictions as supplementary features. In general,
they change little in a short period and are known in prediction time. During the prediction,
they are used in the prediction interval (M-days). There is a one-to-one relationship between
them and the predicted parameters. However, the historical features are different because
they are used in the history interval (N-days), and there is a sequence-to-sequence (M-N)
relationship between them and the predicted parameters. Therefore, it is necessary to
choose a model that can fuse the features within different time intervals (M-days or N-days)
for prediction.
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Based on the above analysis, the model should have the following two functions.
First, it can achieve sequence-to-sequence prediction and learn the sequential internal
relationships. Second, it can effectively fuse historical characteristic parameters and supple-
mentary features. Bryan Lim et al. (2020), from Google, proposed the Temporary Fusion
Transformers (TFT) [36], which combine the advantageous strategies of existing time series
prediction research and can meet the need for parameter prediction in this paper. The main
structure of the model is shown in Figure 4.
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Figure 4. The model structure of Temporal Fusion Transformers (TFT).

It can be seen that TFT can solve the problem of sequence-to-sequence prediction by
Encoder and Decoder. It divides features into static inputs Xs =

{
Xs1 , Xs2 , . . . , XSN+M

}
, past

inputs XP =
{

XP1 , XP2 , . . . , XPN

}
, and known future inputs XK =

{
XK1 , XK2 , . . . , XKM

}
.

Based on Encoder and Decoder, those features are fused effectively. The main principle
and function of the model are explained as follows:

Encoder–Decoder is popularly used in Seq2Seq semantic models. The Encoder and
Decoder are composed of Long-Short-Term Memory (LSTM) units, which enable the flexible
lengths of the input and output of sequences, as shown in Figure 5.
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It can be seen that because the Encoder is composed of N LSTM units, it is possible
to learn the sequence internal relationship of the N historical time steps of data as input.
The output vector of the Encoder is C, which is also the input of the Decoder. The Decoder
consists of M LSTM units corresponding with prediction time steps, which enables learning
the internal relationship of predicted sequences. This method meets the demand for
many-to-many time series prediction in this paper.

The supplementary features consist of the static and known future inputs, as shown in
Figure 4. Static inputs are concatenated with historical and prediction time steps. Known
future inputs correspond to predicted time steps together with past inputs by Encoder–
Decoder. The simplified details of the correspondence between the above features (without
considering hidden layers such as Gate and Variable Selection) are as follows:

First, there are three output components XSce , XSch , XScs after inputting Xs into Static
Covariate Encoders. XSce enters into the static enrichment layer, XSch and XP enter into
LSTM Encoder and XScs is directly connected with the input layer. The input layer can be
simplified as Equation (2).{

XInput_i|i ∈ {1, 2, . . . , N + M}
}

=
{
(XP1 , XScs1), . . . , (XPN , XScsN ), (XK1 , XScsN+1), . . . , (XKM , XScsN+M )

} (2)

After inputting XP, XSch , and
{

XInput_i|i ∈ {1, 2, . . . , N}
}

into the LSTM Encoder, the
intermediate output in each LSTM unit in the Decoder is shown as Equation (3).

X̃PSch =
{

X̃PSch1 , X̃PSch2, . . . , X̃PSchM

}
(3)

Therefore, after the Encoder–Decoder, the output of the static enrichment layer can be
simplified as Equation (4).

XOutput =
{

Encoder((XP1 , XScs1), . . . , (XPN , XScsN ))
}

∪
{

Decoder((X̃PSch1 , XK1 , XScsN+1), . . . , (X̃PSchM , XKM , XScsN+M ))
} (4)

Through the above calculation, the model can incorporate autoregressive historical
features and other supplementary features, such as pump diameter, pump depth, stroke,
and stroke frequency.

In addition, in the feedforward of the neural network structure, a gated residual
network (GRN) is also applied to TFT in order to control the degree of nonlinear transfor-
mation. Variables a and optional context vector c (which can be ignored in this article) are
the inputs of GRN, which can be shown in Equation (5) to Equation (7).

GRN(a, c) = LayerNorm(a + GLU(η1)) (5)

η1 = W1η2 + b1 (6)

η2 = ELU(W2a + W3c + b2) (7)

where W is the weight, b is the bias, and ELU is the activation function [32]. The expression
for GLU is shown as Equation (8).

GLU(γ) = σ(W4γ + b4)⊙ (W5γ + b5) (8)

where σ is the sigmoid activation function and ⊙ is the Hadamard product. When the
data volume of some wells is small, complex nonlinear transformation does not need to
be performed during training. After using GLU, its output is a vector close to 0, which is
almost equivalent to no nonlinear transformation.

Finally, the TFT adopts a multi-head attention mechanism to solve the problem of
information loss caused by excessive information in the Encoder–Decoder process.
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3.4. Working Conditions Warning Technical Route

By inputting the predicted characteristic parameters into the above working condition
classification model, the future working conditions can be predicted as well, which provides
intuitive working conditions warning results for the site. The research technical route is
shown in Figure 6.
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4. Experiment Results Analysis
4.1. Real-World Dataset from D Oilfield

In the D oilfield, the dynamometer card was to have been collected about once every
20 min. However, due to facilities and real-site condition differences, the collection fre-
quency of dynamometer cards for each well was different. Furthermore, the dynamometer
card would not change obviously within 20 min. Therefore, to unify the data frequency,
we diluted the dynamometer cards to one sample per day, which can also meet the needs
of actual oilfield applications. Then, by converting the surface dynamometer cards into
down-hole dynamometer cards and the characteristic parameters extraction (Part 2), the
real-world dataset could be obtained.

In the dataset, there were 182414 samples from 565 wells in the D oilfield, covering a
total of 664 days in the past two years. The samples from the first 295 days account for 70%
of all the samples, which were used as the training set. The remaining samples (from the
296th to 664th days) which account for 30% of all the samples were used as the validation
set. The data size of different working conditions in the training and validation set is shown
in Table 1.

Table 1. Data size of different working conditions.

Working Conditions Data Size of Training Set Data Size of Validation Set

Normal 71,174 31,336
Liquid pound 48,622 22,248

Gas effect 3402 687
Standing valve leakage 2808 36

Pump hitting down 2396 392
Total 128,402 54,012
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It can be seen that normal and liquid pound samples account for over 90%. Due to the
temporal characteristics, the date of the validation set must be after that of the training set.
Therefore, stratified sampling cannot be used to split the data.

4.2. Working Conditions Classification Results

Based on the extraction results of the characteristic parameters, the Xgboost classifica-
tion model was constructed to obtain the mapping relationship between parameters and
working conditions. Based on the data volume, number of features, and experience, the
values of the main hyperparameters are set out in Table 2.

Table 2. Values setting of the Xgboost model hyperparameters.

Hyper Parameters Name Value Meaning

Learning rate 0.06 It is used to control the iteration rate of trees.

Numbers of estimators 800 The total number of iterations, i.e., the number of decision trees.

Max depth 8 The max depth of trees represents the complexity of the tree model.

Min child weight 10 The minimum number of samples specified on the child nodes. The larger the
value, the easier it is to cause under-fitting.

Gamma 1 The penalty coefficient represents the minimum loss function descent required
for specified node splitting.

Subsample 0.8 The proportion of data used in training each tree to the entire training set.

Colsample btree 1 The proportion of features used in training each tree to all features.

To eliminate the influence of dimensionality and accelerate model convergence, the
characteristic parameters were standardized by Equation (9) before model training.

Xstd =
X − µ

σ
(9)

where Xstd and X are the real and standardized values of some characteristic parameters,
respectively, µ and σ are the mean value and standard deviation of the corresponding
parameter, respectively.

The binary classification model performance is usually evaluated by the confusion
matrix in machine learning, as shown in Table 3.

Table 3. Confusion matrix of the classification results.

Actual Results
Prediction Results

Positive Category Negative Category

Positive category TP (True positive) FN (False negative)
Negative category FP (False positive) TN (True negative)

Based on Table 3, Precision, Recall, and F1 were used to evaluate the model’s perfor-
mance. The detailed calculation method is shown in Equation (10) to Equation (12).

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F1 = 2 × Precision × Recall
Precision + Recall

(12)
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Recall refers to the proportion of positive samples that are correctly classified among
all positive samples. It reflects whether the model has underreporting for the specific
working condition. Precision refers to the proportion of samples that are truly positive
among all samples classified as positive. It reflects whether the model has misreporting.
The F1 value is the harmonic mean of Recall and Precision, which reflects the general
performance of the model classification.

When evaluating the performance of multiple classifications, the specified category is
usually viewed as the positive category, and the other categories are viewed as the negative
category. Therefore, the model of multiple working conditions classification can also be
evaluated using the above method. The results are shown in Table 4.

Table 4. Working conditions classification results of the training and validation set.

Working Conditions
Training Set Validation Set

Precision Recall F1 Precision Recall F1

Normal 1.00 1.00 1.00 1.00 1.00 1.00
Liquid pound 1.00 1.00 1.00 1.00 1.00 1.00

Gas effect 0.99 0.98 0.99 0.96 0.94 0.95
Pump hitting down 1.00 1.00 1.00 0.99 1.00 0.99

Standing valve leakage 1.00 0.98 0.99 0.89 0.86 0.87

It can be seen that the F1 values of most working conditions were over 0.95 on the
validation set. Recall values for the standing valve leakage were relatively lower than the
other working conditions. Furthermore, the confusion matrix of the classification results
on the validation set is shown in Figure 7.
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Figure 7. The confusion matrix of the classification model on the validation set. Explanation of
the working conditions number: Normal: 0, Liquid pound: 1, Gas effect: 2, Pump hitting down:
3, Standing valve leakage: 4.

It can be seen that some samples of the standing valve leakage were classified as liquid
pound, resulting in Recall decrease. The detailed reasons will be discussed further in the
working conditions warning results.

4.3. Noise Reduction and Soundness Verification

The noise of characteristic parameters was reduced by wavelet transformation with
the db8 as the basis function. The high-frequency part in the parameters may be either
noise or an indication of some faulty working conditions. It is important to reserve the
high-frequency part, which indicates the fault as much as possible. Therefore, the hard
threshold function was chosen for noise reduction. In this paper, the reciprocal of the
standard deviation of parameters (reflecting the degree of noise reduction) and the average
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Recall of working conditions after noise reduction under different thresholds have been
applied to help obtain an appropriate threshold value. The results are shown in Figure 8.
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It can be seen that as the threshold increased, the reciprocal of the standard deviation
of the parameters increased, as well, which indicates that more high-frequency parts were
discarded and the parameter changed more smoothly over time. Meanwhile, the decrease
in Recall indicates that the noise reduction discarded some high-frequency parts indicating
faults. When the threshold was greater than 1.0, the reciprocal and Recall appeared to
change suddenly. Therefore, 1.0 can be the threshold for wavelet noise reduction.

When the threshold was 1.0, the average Recall was 0.84, which decreased by 0.14
compared with 0.98 of the original data in the training set (threshold = 0). In order to
reserve more fault information on the noise reduction data, we restored the characteristic
parameters after noise reduction to the original values, except those of normal and liquid
pound, so that the prediction model learned fault information as much as possible. The
classification model performance with the noise reduction data and original data on the
validation set is shown in Table 5.

Table 5. Classification results of the validation set before and after noise reduction.

Working Conditions
Before Noise Reduction After Noise Reduction

Precision Recall F1 Precision Recall F1

Normal 1.00 1.00 1.00 1.00 1.00 1.00
Liquid pound 1.00 1.00 1.00 1.00 1.00 1.00

Gas effect 0.96 0.94 0.95 0.97 0.94 0.96
Pump hitting down 0.99 1.00 0.99 1.00 1.00 1.00

Standing valve leakage 0.89 0.86 0.87 0.78 0.86 0.82

Similarly, the confusion matrix before and after parameters noise reduction is shown
in Figure 9.

It can be seen that after noise reduction, the Precision, Recall, and F1 values were
nearly equal to those before noise reduction. Due to the change in characteristic parameters
after noise reduction, more normal samples were wrongly classified into standing valve
leakage. Therefore, the Precision of the standing valve leakage decreased compared to
before noise reduction.

In this paper, we also proposed the Restored rate to evaluate the performance after the
data process or prediction. It can be defined as Equation (13).

Restored rate =
AR
R

(13)



Mathematics 2024, 12, 2253 14 of 25

where R is the value of original data, such as the Recall before noise reduction or prediction.
AR is the value of processed data, such as the Recall after noise reduction or prediction.
The Restored rate of Precision, Recall, and F1 values in Table 5 are shown in Table 6.
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Table 6. Restored rate of the validation set.

Working Conditions
Restored Rate

Precision Recall F1

Normal 1.00 1.00 1.00
Liquid pound 1.00 1.00 1.00

Gas effect 1.01 1.00 1.01
Pump hitting down 1.01 1.00 1.01

Standing valve leakage 0.88 1.00 0.94

It can be seen that after noise reduction, the Precision, Recall, and F1 values of most
working conditions were restored to over 95%, except the Precision of standing valve
leakage, which was restored to 88%. It indicates that the majority of fault characteristics
were reserved, and the degree of noise reduction was controlled reasonably. Moreover,
in terms of the gas effect and pump hitting down, the Restored rates of Precision and F1
values were over 1.0, indicating that the noise reduction can contribute to the classification
performance. Generally, in this way, we can remove the invalid high-frequency noise and
reserve the effective high-frequency fault information at the same time, which can provide
higher-quality training data for parameters prediction.

4.4. Characteristic Parameters Prediction Results

According to the model structure shown in Figure 4, the feature names corresponding
to different feature types are shown in Table 7.

Table 7. Features name of different feature types inside the TFT model.

Feature Name Feature Type

Prediction characteristic parameters Past inputs

Date (month, day) Known inputs

Pump depth Known inputs

Stroke Known inputs

Stroke frequency Known inputs

Pump diameter Static inputs

Well name Static inputs



Mathematics 2024, 12, 2253 15 of 25

Historical characteristic parameters, such as past inputs, are the most important
features used for autoregressive prediction. Date, pump depth, stroke, and stroke frequency
are usually known in the operation process, so they can be viewed as known inputs. If the
pump is not replaced, the pump diameter usually remains unchanged. During prediction,
the most recent pump diameters can be used as static inputs along with the well name.

Based on the data volume, prediction length and experience, the values of main TFT
hyperparameters were set as shown in Table 8. The values of the other hyperparameters
can be set according to Bryan Lim’s research paper [36].

Table 8. Values setting of TFT model hyperparameters.

Hyper Parameters Name Value Meaning

Learning rate 4 × 10−4 It is used for controlling the speed of gradient descent

Dropout rate 0.1
It is used for preventing overfitting. During the training process, 10%

of neurons will be randomly discarded to improve the model’s
generalization ability

Batch size 64 It represents the amount of training data used for updating network
weights each time.

Hidden layer size 160 Number of hidden layer neurons of Variable Selection, LSTM
Encoder, LSTM Decoder, GRN, Dense layers, and so on.

Max gradient norm 0.01
It is used to set the degree of gradient clipping so that the 2-norm of

gradient values cannot exceed this value, which can help prevent
gradient explosion or disappearance.

Number of heads 4 Number of heads in multi-head attention mechanism.

Activation ELU Name of the activation function.

Early stopping patience 1
The training epoch that stops early. If the validation loss does not

improve before the number of this epoch, the training process will be
terminated.

Number of encoder steps 28 Historical time steps.

Total time steps 35 The sum of historical time steps and prediction time steps.

The prediction models were trained using the original and noise reduction data. In this
article, the data from the first four weeks (28 days) were used to predict the characteristic
parameters of the following one week (7 days). Before model training, the input features
and output labels were also standardized by Equation (1). The mean absolute error was
used for Loss calculation. In the training process, when the loss of the validation set
increased, the model training should be terminated. The loss changes of each characteristic
parameter before and after noise reduction on the training and validation sets are shown in
Figure 10.

It can be seen that the loss of each parameter on the validation set was lower than that
without noise reduction. Before noise reduction, due to invalid high-frequency data, the
model overfitting was severe, resulting in poor prediction performance on the validation
set. In addition, after noise reduction, the number of epochs was larger before the loss of
the validation set increased, which made the model training more complete.

The normalized absolute error (relative error) of the validation set was used to evaluate
the prediction model performance. It can be shown as Equation (14).

relative error =
100%
7N

7

∑
t=1

N

∑
i=1

∣∣∣∣∣ytrue(i, t)− ypred(i, t)
ytrue(i, t)

∣∣∣∣∣ (14)

The relative errors of different characteristic parameters before and after noise reduc-
tion are shown in Table 9.
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Table 9. Prediction relative error of characteristic parameters.

Predicted Parameters Before Noise
Reduction

After Noise
Reduction

Displacement of the traveling valve closed point 33.9% 13.61%
Displacement of the traveling valve open point 4.58% 2.00%

Displacement of the fixed valve closed point 1.93% 0.77%
Displacement of the fixed valve open point 28.99% 11.68%

Load of the traveling valve closed point 11.65% 5.25%
Load of the traveling valve open point 11.08% 5.75%

Load of the fixed valve closed point 6.2% 2.58%
Load of the fixed valve open point 6.2% 2.82%

Slope of the upstroke 33.7% 14.4%
Slope of the downstroke 41.58% 21.71%

Average load of the downstroke 21.08% 10.07%
Average load of the upstroke 1.00% 0.35%

Maximum load 2.39% 0.92%
Minimum load 3.5% 1.48%

Area of the dynamometer card 6.87% 2.49%
Effective stroke 5.27% 2.53%

It can be seen that the relative errors were generally lower than without noise reduction,
especially for the Displacement of the traveling valve closed point and the fixed valve
open point, Slope of the upstroke and downstroke, and Average load of the downstroke.
The relative prediction errors of most parameters after noise reduction were less than 15%,
which can meet the requirements of engineering applications.
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Due to the space limitation, taking two significantly improved parameters (Slope
of down stroke and Displacement of the traveling valve open point) as examples, the
comparison before and after noise reduction is shown in Figures 11 and 12.
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It can be seen that the high-frequency noise decreased after noise reduction, and
the fluctuation of parameters decreased as well, which can help obtain better prediction
performance. In fact, deep learning methods are better at handling time series with internal
correlation during prediction. If the fluctuation is too large, it will greatly increase the
difficulty of model prediction and even cause overfitting. Therefore, a fluctuation decrease
is beneficial for improving the prediction performance on the validation set.

As the prediction time step increased, the gap between the prediction and real values
increased, which indicates that the effective information provided by the past 28 time steps
for the future time steps decayed continuously. It is normal for time series predictions that
the prediction results rely on the information that was closer in time to them. In addition,
during some time intervals, there is a time lag in the prediction results (i.e., compared to the
real value at time t + 1, the predicted result at time t + 1 is closer to the true value at time
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t). The result is that the internal correlation of the time sequence over time is not obvious,
which means that the time sequence is closer to a random walk sequence. Moreover, this
phenomenon also results from the lack of effective features that change over time, which is
also a common problem in time series prediction.

4.5. Working Conditions Warning Results

The working conditions of the next seven days for each well could be predicted by
inputting the characteristic parameters into the classification model. In this way, a short-
term working conditions warning method can be achieved. Within 7 days, the comparisons
of working conditions warning results, including Precision, Recall, and F1 value, based on
real and predicted parameters is shown in Tables 10–12, respectively.

Table 10. Precision comparison between real and predicted parameters.

Working Conditions Number 0 1 2 3 4

Day1 Real 1 1 0.97 1 0.71
Prediction 1 0.99 0.87 0.93 0.51

Day2 Real 1 1 0.97 1 0.7
Prediction 1 0.99 0.87 0.93 0.45

Day3 Real 1 1 0.97 1 0.68
Prediction 1 0.99 0.87 0.93 0.43

Day4 Real 1 1 0.97 1 0.69
Prediction 1 0.99 0.86 0.93 0.4

Day5 Real 1 1 0.97 1 0.7
Prediction 1 0.99 0.86 0.93 0.4

Day6 Real 1 1 0.97 1 0.7
Prediction 1 0.99 0.86 0.93 0.38

Day7 Real 1 1 0.97 1 0.72
Prediction 1 0.99 0.86 0.93 0.34

Table 11. Recall comparison between real and predicted parameters.

Working Conditions Number 0 1 2 3 4

Day1 Real 1 1 0.94 1 0.81
Prediction 0.99 0.99 0.96 0.82 0.85

Day2 Real 1 1 0.95 1 0.81
Prediction 0.99 0.99 0.96 0.81 0.85

Day3 Real 1 1 0.94 1 0.79
Prediction 0.99 0.99 0.95 0.81 0.73

Day4 Real 1 1 0.94 1 0.8
Prediction 0.99 0.99 0.95 0.8 0.76

Day5 Real 1 1 0.94 1 0.81
Prediction 0.99 0.99 0.94 0.81 0.73

Day6 Real 1 1 0.94 1 0.81
Prediction 0.99 0.99 0.94 0.8 0.69

Day7 Real 0.99 1 0.94 1 0.81
Prediction 0.99 0.99 0.94 0.8 0.62
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Table 12. F1 score comparison between real and predicted parameters.

Working Conditions Number 0 1 2 3 4

Day1 Real 1 1 0.96 1 0.76
Prediction 0.99 0.99 0.92 0.87 0.64

Day2 Real 1 1 0.96 1 0.75
Prediction 0.99 0.99 0.91 0.86 0.59

Day3 Real 1 1 0.96 1 0.73
Prediction 0.99 0.99 0.91 0.87 0.56

Day4 Real 1 1 0.96 1 0.74
Prediction 0.99 0.99 0.9 0.86 0.52

Day5 Real 1 1 0.96 1 0.75
Prediction 0.99 0.99 0.9 0.86 0.51

Day6 Real 1 1 0.96 1 0.75
Prediction 0.99 0.99 0.9 0.86 0.49

Day7 Real 1 1 0.96 1 0.76
Prediction 0.99 0.99 0.9 0.86 0.44

It can be seen that compared with real parameters, Precision, Recall, and F1 score based on
predicted parameters decreased during a working conditions warning, especially in Precision
and F1 score of standing valve leakage. In order to make the results more vivid, the working
conditions warning results of change-over-time are shown in Figures 13 and 14 based on
Tables 10–12.
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Figure 13. Warning results of change-over-time based on real parameters.
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Figure 14. Warning results of change-over-time based on predicted parameters.

In order to compare the differences between warning and real classification results for
change-over-time quantitatively, based on Figures 13 and 14 and the definition of Restored
rate, the Restored rates of different working conditions are shown in Figure 15.
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Figure 15. Restored rates of change-over-time of different working conditions.

It can be seen that as the prediction time went by, the classification performance
with real parameters changed little. However, the warning performance with predicted
parameters became worse over time, especially for standing valve leakage. Within a 7-day
prediction interval, the Restored rates of F1 values under most working conditions reached
over 85%, and those of Recall values reached over 80%. Moreover, the Recall values of the
liquid pound, normal, and gas effect were restored to over 95%, indicating that there were
few fault-underreporting samples.

In addition, the Precision values and the Restored rates of the standing valve leakage
were generally low within the prediction interval. The classification results are shown in
detail in the confusion matrixes (Figure 16) within a 7-day prediction.
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It can be seen that there were more samples wrongly classified during warning by
predicted parameters than true parameters. For normal and liquid pound, samples were
wrongly classified into the standing valve leakage and pump hitting down. Due to the
larger number of them than in other working conditions, their down-hole dynamometer
cards were more diverse as well. Therefore, some samples were not identical but similar to
other working conditions that existed in them, which is shown in Figure 17.
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From Figure 17, some conclusions can be summarized as follows. First, in the samples
of normal condition, there were some standing valve leakage and pump hitting down
samples with weak severity. Second, in the samples of liquid pound, not only were there
composite working conditions between liquid pound and standing valve leakage but there
were also composite working conditions between liquid pound and pump hitting down.
It may cause the liquid pound to be prone to misclassification as standing valve leakage
and pump hitting down. Third, in the samples of pump hitting down, there were some
samples that were similar to severe liquid pound. It may cause the pump hitting down
to be prone to misclassification as liquid pound. Finally, in the samples of standing valve
leakage, there were composite working conditions between liquid pound and standing
valve leakage. It may cause the standing valve leakage to be prone to misclassification as
liquid pound as well.

In summary, there were similar or composite shapes in different working conditions.
When there were errors during parameter prediction, these samples were more likely to be
misclassified. These samples only account for a small proportion of the normal condition
and liquid pound due to their large data size. However, in the validation set, the data size
of standing valve leakage was much smaller than the other working conditions. Therefore,
these easily misclassified samples account for a large proportion of standing valve leakage,
which resulted in lower precision during working conditions warning.

In order to show the warning results in detail, representative time points of some wells
were selected. In Figure 18, the warning process (28–34) with historical data (0–27) over
time can be observed visually.
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It can be seen that the unknown working conditions of the future 7 days were predicted
by the samples of the past 28 days, which restored the warning process in the oilfield site.
In the working conditions warning interval (28–34), most samples were predicted correctly
with the method proposed in this paper when the working conditions began to change.
Because the predicted results were based on the information of the past time steps, there
was also a time lag in the warning process. Nonetheless, the warning results can be
corrected after several time steps (usually 1–3 steps).
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5. Conclusions

In this paper, the characteristic parameters of down-hole dynamometer cards were
extracted to describe the temporal change of different working conditions. Based on
them and the classification model, the mapping relationship between the parameters and
working conditions were obtained.

Due to the position shifts during parameters extraction, there was noise inside the
extraction results, which had a negative influence on the prediction results. Therefore,
we proposed the selective noise reduction method based on wavelet transformation and
verified the rationality of the noise reduction results by the Restored rates. The results
showed that noise reduction can remove the invalid high-frequency noise and reserve the
effective high-frequency fault information at the same time.

In order to excavate the temporal relationships better, the Temporal Fusion Transform-
ers (TFT) was used as the prediction model. It mainly consists of a multi-scale feature input
structure, Encoder–Decoder structure and self-attention structure. The experimental results
showed that before noise reduction, the prediction relative errors of some parameters were
over 20%. After noise reduction, the errors of nearly all the parameters were less than 20%.

By inputting the prediction results into the classification model, warnings can be
flagged for future working conditions. The results showed that Recall values of most
working conditions within the next 7 days were high, which indicates there were few
underreporting cases for future faults. However, due to prediction bias and similarity
between different working conditions, Precision values of the standing valve leakage were
lower, which can be improved in future research.

In addition, only five common working conditions were used for warning research in
this paper. Therefore, the research in this paper is only applicable to these common working
conditions. In addition, there is still room for improvement in the warning accuracy of time-
sequence conversion between different working conditions. In the future, more working
conditions and their conversion relationship should be considered to extend the existing
research content.
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