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Abstract: This paper presents new classes of strong fuzzy negations, fuzzy implications and Copulas.
It begins by presenting two theorems with function classes involving the construction of strong
fuzzy negations. These classes are based on a well-known equilibrium point theorem. After that, a
construction of fuzzy implication is presented, which is not based on any negation. Finally, moving
on to the area concerning copulas, we present proof about the third property of copulas. To conclude,
we will present two original constructions of copulas. All the above constructions are motivated by
a specific formula. For some specific conditions of the variables x, y and other conditions for the
function f(x), the formula presented produces strict and strong fuzzy negations, fuzzy implications
and copulas.
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1. Introduction

It is well known that one of the most rapidly growing branches of modern applied
mathematics is fuzzy logic and its objects. More and more applications of fuzzy implica-
tion and fuzzy negations are widespread; negations either through these implications or
autonomously. Fuzzy implication is the generalization of classical (Boolean) implication
in the interval [0, 1]. It plays perhaps the most important role in the field of fuzzy logic,
decision theory and fuzzy control. The article presents new methods for constructing fuzzy
negations [1–4]. Furthermore, the creation of new fuzzy implications [5–14], and through
them, new fuzzy negations is necessary. Using the knowledge and information gained
through the study of relevant writings [15–19], the article proceeds to study other areas of
fuzzy logic. Other interesting objects of fuzzy logic are copulas [20–25]. Since new classes
of negations and implications can be defined, the generated negations will be used to
construct, additionally, two new classes of copulas.

Methodologically, this article’s analysis begins in Section 2 by listing all the theorems
and remarks that will be useful in the proof of the constructions below. Those definitions
are listed in the order they are used. Definitions 1–5 relate to the construction of the
fuzzy negations, Definitions 6 and 7 relate to the construction of fuzzy implications and
Definitions 8–12 are helpful in the construction of copulas.

Therefore, for practical reasons, the first object to deal with is the construction of strong
negations [1–4]. Some of the areas that strong negations apply are as follows:

1. Artificial Intelligence (AI): Particularly in designing systems that handle uncertain or
imprecise information.

2. Control Systems: For instance, in developing controllers for complex systems like
washing machines, air conditioners and automotive systems.
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3. Decision Making: Assisting in multi-criteria decision-making processes where inputs
are not clear-cut.

4. Pattern Recognition: Helping in classifying patterns that are not crisply defined.
5. Robotics: Enabling robots to handle ambiguous or uncertain environments.
6. Data Mining: For analyzing and interpreting data that are noisy or incomplete.
7. Natural Language Processing (NLP): Managing the inherent ambiguity and impreci-

sion in human language.
8. Medical Diagnosis: Supporting systems that need to deal with uncertain or imprecise

medical data.

All the fuzzy negations that will be presented will have the form of a multi-branch
function and will be based on Definition 5 [1]. This definition constructs negations with the
help of the equilibrium point. Two classes of strong fuzzy negations will be constructed.
And every class of negations is followed by one example. The second example presents a
class of negations with a special property: it makes it very easy to calculate the equilibrium
point. This calculation will be obtained by solving a simple secondary equation.

What follows is the construction of a fuzzy implication [8–13,20,21,24] with an alterna-
tive way, without the use of fuzzy negations.

This will be achieved with the use of the formula f
(

f−1(y) ∗ x
)

. For every x, y into

the interval [0, 1] and the use of a decreasing function f(x), the formula f
(

f−1(y) ∗ x
)

helps
to construct fuzzy implications. In addition, the formula constructs one branch of a strong
fuzzy negation (Remark 1) and, autonomously, a strict fuzzy negation (Remark 2). The
construction of the implication will be achieved with the use of Definitions 6 and 7. Let us
mention some of the areas where fuzzy implications are important:

1. Artificial Intelligence (AI) and Machine Learning (Expert System, Knowledge Rep-
resentation) 2. Control Systems (Fuzzy Control) 3. Decision Support System (Multi-Criteria
Decision Making (MCDM), Risk Assessment) 4. Pattern Recognition and Image Processing
(Classification, Image Segmentation) 5. Robotics (Autonomous Navigation, Sensor Fusion)
6. Natural Language Processing (NLP) (Semantic Analysis, Text Mining) 7. Medical Diag-
nosis and Healthcare (Diagnostic Systems, Treatment Planning) 8. Economics and Finance
(Forecasting, Credit Scoring).

Finally, with the use of the fuzzy negations, newly constructed classes of copulas are
built. Making some adjustments to the functions used in the construction of the negations,
three-dimensional copulas [20–24] will be generated. Again, the formula f

(
f−1(y) ∗ x

)
will participate in the construction of a class of copulas, with some minor modifications.
It is well known that copulas find huge applications in economic problems, portfolio
management and risk analysis, specifically in the banking, insurance and investing fields.

In conclusion, this article aims to answer the following questions:

(1) Is there an easy way to calculate the equilibrium point in a two-branch strong negation?
(2) Are there real functions that can provide at the same time the construction of strong

negations, implications and copulas?
(3) Is there a point of convergence in the construction of fuzzy negations, fuzzy implica-

tions and copulas?
(4) Can the formula f

(
f−1(y) ∗ x

)
provide more alternative options?

(5) Can this article provide knowledge for future use in robotics kai AI technology?

The paper is organized as follows: Section 2 is a reminder of the basic concepts and
definitions used in the paper. Section 3 analyzes the newly constructed methods of strong
fuzzy negations, fuzzy implications and copulas. One example for every theorem given is
presented. Section 4 is about the discussion of the results, and Section 5 is the conclusion.

2. Materials and Methods

Some theorems of fuzzy logic and some definitions will be listed here. This will be
conducted so that the theorems concerning the upcoming constructions will be explained
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and proved. To help the readers get familiar with the theory, some of the concepts and
results employed in the rest of the paper shall be recalled below.

In this section all the theorems and propositions necessary to be able to present and
fully prove the constructions we have mentioned above will be given.

Theorems from the whole range of the literature concerning the structural definitions
of fuzzy negations, fuzzy implications and copulas will be given. In particular, Definitions
1–5 are concerned exclusively with the construction of negations, Definitions 6 and 7 are
concerned with the construction of fuzzy implications, and Definitions 8–12 are concerned
with the constructions to be presented in the area of copulas.

Note also that between Definitions 5 and 6 there is a table with reference to the most
important and best-known classes of fuzzy negations.

At this point, a special bibliographical reference could be made to the articles on the
construction of copulas, their properties, Archimedeans and fuzzy copulas [21,24,26].

Definition 1. (see [1–4,8–14] Definition 1.4.1). The function N : [0, 1] → [0, 1] is a fuzzy
negation if the following properties are applied:

N(0) = 1, N(1) = 0 (1)

N : is decreasing (2)

Definition 2. (see [1–4,8–14] Definition 1.4.2 (i)). A fuzzy negation N is called strict if the
following properties are applied:

N is strictly decreasing (3)

N is continuous (4)

Definition 3. (see [1–4,8–14] Definition 1.4.2 (ii)). A fuzzy negation N is called strong if

N(N(x)) = x (5)

Definition 4. (see [1–4,8–14] Definition 1.4.2 (ii)). The solution of the equation N(x) = x is
called the equilibrium point of N. If the function N is continuous, the equilibrium point is unique.

Definition 5 ([1]). Strong branching fuzzy negations can be produced, while in every branch
is a decreasing function. If N1 is a fuzzy negation, which is not necessary, a strong negation and
N1(ε) = ε where ε is the equilibrium point of N1. So, if N1 is any continuous fuzzy negation in the
interval [0, 1], then the following form [12] product is strong fuzzy negations N2 and, in our case,
rational fuzzy negations (Figure 1).

N2(x) =


N1(x) , x ∈ [0, ε]

N−1
1 (x) , x ∈ (ε, 1]

(6)

The above formula will be generalized by using two functions (f, g), one decreasing
and one increasing.

Below is Table 1 listing the most well-known classes of fuzzy negations.
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Table 1. Some examples of known negation classes.

Name Fuzzy Negations

Yager class Nw(x) = (1 − xw)
1
w ,

w > 0

Threshold class Nt(x) =


1, αν x < t

1 ή 0, αν x = t
0, αν x > t

, t ∈ (0, 1)

Standard negation N(x) = 1 − x

The least fuzzy negation ND1(x) =
{

1, i f x = 0
0, i f x ∈ (0, 1]

The greatest fuzzy negation ND2(x) =
{

0, i f x = 1
1, i f x ∈ [0, 1)

Sugeno Class Nδ(x) = 1−x
1+δx , δ > −1

Fuzzy implications have probably become the most important operations in fuzzy
logic, approximate reasoning and fuzzy control. These operators not only model fuzzy
conditionals but also make inferences in any fuzzy rule-based system. These operators are
defined as follows:

Definition 6 (see [8–14] Definition 1.1.1). A function I : [0, 1]2 → [0, 1] is called a fuzzy
implication if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

x1≤ x2 ⇔ I(x1, y) ≥ I(x 2, y), i.e., I(·, y) is decreasing. (7)

y1 ≤ y2 ⇔ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing. (8)

I(0, 0) = 1 (9)

I(1, 1) = 1 (10)

I(1, 0) = 0 (11)

Definition 7 (see [8–14] Definition 1.4.15 (ii)). If I is a fuzzy implication, then the func-
tion NI : [0, 1] → [0, 1] with the form NI(x) = I(x, 0) is called natural negation of I.

Definition 8 ([26]). Let I be a nonempty interval of R. A function f from I to R is convex if, and

only if, ∂2 f
∂x2 ≥ 0.
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Definition 9 ([20–24,26]). A function C : [0, 1]2 → [0, 1] is called a copula if it satisfies the
following properties:

C(0, t) = C(t, 0) = 0 for each 0 ≤ t ≤ 1 (12)

C(1, t) = C(t, 1) = t for each 0 ≤ t ≤ 1 (13)

The C-volume of a rectangle must be not negative, e.g.,

VH = C(x1, y1)− C(x1, y2)− C(x2, y1) + C(x2, y2) ≥ 0 (14)

for each x1 ≤ x2 and y1 ≤ y2 where 0 ≤ x1, x2,y1, y2 ≤ 1.

Definition 10 ([20–24,26]). If the function C is a copula, then the function in form C∗(x, y) =
x + y − 1 + C(1 − x, 1 − y) for each 0 ≤ x, y ≤ 1 is also a copula, and it is called survival copula.

Definition 11 ([20–24,26]). If f is a decreasing function where f (1) = 0, then we define the
pseudo-inverse of function f

Given by f [−1] =


f−1(x) , i f 0 ≤ x ≤ f (0)

0 , i f f (0) ≤ x ≤ ∞

(15)

Definition 12 ([20–24,26]). Let f : [0, 1] → [0, ∞] be a continuous, strictly decreasing and convex
function such that f (1) = 0, and let f [−1] be the pseudo-inverse. Let C : [0, 1] → [0, 1], defined by

C(x, y) = f [−1]( f (x) + f (y)) (16)

Then, C is an Archimedean Copula.

3. Results

In this section, this article will present all the constructions resulting from the use
of the definitions in the previous section. All the proofs will be presented in detail, with
mathematical relations and explanations. In total, five theorems and an interesting proof on
the third property of copulas (increasing with respect to the variables x, y) will be presented.

The first theorem proves that a class of multi-branching functions will be a strong
fuzzy negation. An example of this follows. The second theorem presents another class of
possible fuzzy negations. This second class with some adjustments presents the formula
f
(

f−1(y) ∗ x
)

. The following example gives a class of strong fuzzy negations that presents
great ease in finding the equilibrium point.

The third proof concerns the presentation of a fuzzy implication using the same
formula f

(
f−1(y) ∗ x

)
, avoiding the use of some fuzzy negation.

This article then moves on to the spectrum of copulas.
First, a proof of some classes of copulas will be presented.
This will be followed by the proofs of two propositions on the definition of copulas

and, finally, another proof of a class of copulas containing the formula f
(

f−1(y) ∗ x
)

.

3.1. New Forms of Strong Fuzzy Negations

Strong branching fuzzy negations can be produced [1] while in every branch there
is a decreasing function. Let N1 be a fuzzy negation, not necessarily a strong negation,
and N1(ε) = ε where ε is the equilibrium point of N1. So, if N1 is any continuous fuzzy
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negation in the interval [0, 1], then the following form [12] produces strong fuzzy negations
N2 and, in our case, rational fuzzy negations.

N2(x) =


N1(x) , x ∈ [0, ε]

N−1
1 (x) , x ∈ (ε, 1]

(17)

In the Figure 2 below, consider N1(x) = f(x) and N−1
1 (x) = f−1(x)
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The above formula will be generalized using two functions (f, g), one decreasing and
one increasing.

Generating Classes of Strong Fuzzy Negations

Theorem 1. Let ε the equilibrium point of NPM1, f : [0, 1] → [0,+∞) continuous decreasing
function and g : [0, 1] → [0,+∞) continuous increasing function with the conditions: f−1, g−1

well defined, f (0) = 1 and g(0) = 0 and k > 0 positive real number. Then, the following form is a
class of strong fuzzy negations:

NPM1(x) =


f(g(x)∗k) , 0 ≤ x ≤ ε

g−1
(

f−1(x)
k

)
, ε < x ≤ 1

(18)

Proof of Theorem 1. The proof that the class of strong negations above is a continuous
function will be given first. It is obvious that what is examined is the continuity in the
equilibrium point. Assuming that all the values x of the equilibrium points are the solution
of the equation NPM1(x) = x, then it implies:

f (g(x) ∗ k) = x ⇔ f−1( f (g(x) ∗ k )
)
= f−1(x) ⇔g(x) ∗ k = f−1(x), for k > 0 implies

that g(x) = f−1(x)
k and, finally, x = g−1

(
f−1(x)

k

)
. That proves that the two multi-branched

functions intersect on the line y = x at the equilibrium point. That proves that the negation
NPM1(x) is a continuous function in the interval [0, 1].

Boundary conditions

• For x ≤ ε implies that NPM1(x) = f (g(x) ∗ k)

NPM1(0) = f (g(0) ∗ k) = f (0) = 1
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• For x > ε implies that NPM1(1) = g−1
(

f−1(1)
k

)
= g−1(0) = 0

Monotony condition

• For x ≤ ε implies that NPM1(x) = f (g(x) ∗ k)
For every x1, x2 ∈ [0, ε] where

x1 ≤ x2
g↗⇔ g(x1) ≤ g(x2)

thus k > 0, g(x1) ∗ k ≤ g(x2) ∗ k
f↘⇔ f (g(x1) ∗ k) ≥ f (g(x1) ∗ k)

⇔ NPM1(x1) ≥ NPM1(x2)

So that proves that NPM1 is decreasing when x ≤ ε.

• For x > ε implies that NPM1(x) = g−1
(

f−1(x)
k

)
For every x1, x2 ∈ (ε, 1] where

for x1 ≤ x2 ⇔ f−1(x1) ≥ f−1(x2) and for
1
k
> 0 arises :

:
f−1(x1)

k
≥ f−1(x2)

k
and finally

g−1↗⇔ g−1
(

f−1(x1)

k

)
≥ g−1

(
f−1(x2)

k

)
.

So NPM1(x1) ≥ NPM1(x2). That concludes that NPM1 is decreasing when x > ε.

Synthesis condition
The most important condition for a negation to be strong is as follows:

NPM1(NPM1(x)) = x

Because of the way the negation class is constructed, the set of values of one branch
is mapped to the definition domain of the other branch. Thus, when synthesizing the
negation with itself, the type of one branch inside the other is placed and vice versa.

That equals the following:

f
(

g
(

g−1
(

f−1(x)
k

))
∗ k

)
= f

(
f−1(x)

k
∗ k

)
= f

(
f−1(x)

)
= x.

And vice versa the following:

g−1
(

f−1( f (g(x) ∗ k))
k

)
= g−1

(
g(x) ∗ k

k

)
= g−1(g(x)) = x.

The class of negations is continuous as an operation of continuous functions, and
it holds that for any x ∈ [0, 1] then NPM1(NPM1(x)) = x. Therefore, this class of fuzzy
negations is a strong one. □

Example 1. One example of fuzzy negations is presented, generated by Theorem 1.

Let the decreasing function f(x) be the function f(x) = 1
x+1 . It is easy to check that f(x)

is positive, decreasing, f (0) = 1 and continuous. Let g(x) =
√

x, g(x) ≥ 0 and increasing,
g(0) = 0 and k > 0. This means that f(g(x)∗k)= 1

k∗
√

x+1 . Let us now construct the fuzzy
negation proved before, which will be the following:



Mathematics 2024, 12, 2254 8 of 19

Nk
PM1(x) =


1

k∗
√

x+1 , 0 ≤ x ≤ ε

( 1−x
kx )

2
, ε < x ≤ 1

(19)

where ε is the equilibrium point. Quite easily can someone find out that Nk
PM1(x) com-

pletes all the conditions needed.
Boundary conditions

Nk
PM1(0)=

1
k ∗

√
0 + 1

= 1/1 = 1 and Nk
PM1(1)=

(
1 − 1
k ∗ 1

)2
= 0

Monotony conditions

• For x ≤ ε, every x1 ≤ x2 ⇔
√

x1 ≤
√

x2 ⇔ k ∗
√

x1 ≤ k ∗
√

x2 ⇔ k ∗
√

x1 + 1 ≤ k ∗
√

x2 + 1 ⇔

1
k ∗ √x1 + 1

≥ 1
k ∗ √x2 + 1

⇔ Nk
PM1(x1) ≥ Nk

PM1(x2) so, it is decreasing.

• For ε < x every x1 ≤ x2 ⇔

1 − x1 ≥ 1 − x2 (1) and again x1 ≤ x2 ⇔ k ∗ x1 ≤ k ∗ x2 ⇔ 1
k∗x1

≥ 1
k∗x2

(2) I multi-
ply (1) and (2):

1 − x1

k ∗ x1
≥ 1 − x2

k ∗ x2
⇔ (

1 − x1

kx1
)

2
≥ (

1 − x2

kx2
)

2
⇔ Nk

PM1(x1) ≥ Nk
PM1(x2)

it is decreasing.
Synthesis condition
The most important condition for a negation to be strong is the following:

NPM1(NPM1(x)) = x

Again, because of the way the negation class is constructed, the set of values of one
branch is mapped to the definition domain of the other branch. Thus, when synthesizing
the negation with itself, the type of one branch is placed inside the other and vice versa.

• For ≤ ε:

NPM1(NPM1(x)) =
1

k ∗
√
( 1−x

kx )
2
+ 1

=
1

k ∗ 1−x
kx + 1

=
1

1−x
x + 1

=
1
1
x
= x.

And vice versa:
• For ε < x

NPM1(NPM1(x)) = (
1 − 1

k∗
√

x+1

k 1
k∗
√

x+1

)

2

= (

k∗
√

x
k∗
√

x+1

k 1
k∗
√

x+1

)

2

= (
√

x)2
= x

Theorem 2. Let ε the equilibrium point of NPM2, f : [0, 1] → [0,+∞) continuous decreasing
function and k > 0 with the following conditions:
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f−1 well defined, f (0) = 1. Then, the following form is a class of strong fuzzy negations:

NPM2(x) =


f(k∗x) , 0≤x ≤ ε

f−1(x)
k , ε < x ≤ 1

(20)

Proof of Theorem 2. First of all, the proof that the class of strong negations above is a
continuous function must be given. It is obvious that the continuity in the equilibrium
point must be examined. So, let someone assume that all the values x of the equilibrium
points are the solution of the equation NPM2(x) = x. That implies the following:

f (k ∗ x) = x ⇔ f−1( f (k ∗ x )
)
= f−1(x) ⇔ k ∗ x = f−1(x), for g(x) > 0 then x = f−1(x)

k .
That proves that the two bifurcated functions intersect on the line y = x at the equilibrium
point. That proves that the negation NPM2(x) is a continuous function in the interval [0, 1].

Boundary conditions

• For x ≤ ε implies that

NPM2(x) = f (k ∗ x) ⇔ NPM2(0) = f (k ∗ 0) = f (0) = 1

• For x > ε implies that NPM2(1) =
(

f−1(1)
k

)
= 0

k = 0

Monotony condition

• For x ≤ ε implies that NPM2(x) = f (k ∗ x)
For every x1, x2 ∈ [0, ε] where

x1 ≤ x2

and get k ∗ x1 ≤ k ∗ x2
f↘⇔ f (k ∗ x1) ≥ f (k ∗ x1) ⇔ NPM2(x1) ≥ NPM2(x2)

So, it is concluded that NPM2 is decreasing when x ≤ ε.

• For x > ε then NPM2(x) = f−1(x)
K

For every x1, x2 ∈ (ε, 1] where

for x1 ≤ x2
f−1 ↘⇔ f−1(x1) ≥ f−1(x2)

so, we have :
f−1(x1)

k
≥ f−1(x2)

k
and finally,

NPM2(x1) ≥ NPM2(x2)

So, we conclude that NPM2 is decreasing when x > ε.

Synthesis condition
The most important condition for a negation to be strong is the following:

NPM2(NPM2(x)) = x

Again, because of the way the negation class we are studying is constructed, the set of
values of one branch is mapped to the definition domain of the other branch. Thus, when
we synthesize the negation with itself, we place the type of one branch inside the other and
vice versa.

So, we have: f
(

f−1(x)
k ∗ k

)
= f

(
f−1(x)

)
= x. And vice versa, it is the following:

f−1( f (x ∗ k) )

k
=

x ∗ k
k

= x.
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The class of negations is continuous as an operation of continuous functions, and
it holds that for any x ∈ [0, 1] then NPM2(NPM2(x)) = x. Therefore, this class of fuzzy
negations is a strong one. □

Remark 1. Let k = f−1(y) > 0, for every 0 ≤ y < 1 then 0 < f−1(y) ≤ 1, so the negation takes the
following form:

NPM2(x) =


f
(

f−1(y)∗x
)

, 0 ≤ x ≤ ε

f−1(x)
f−1(y)

, ε < x ≤ 1
(21)

This is a strong fuzzy negation.

Remark 2. For y = 0 and f(1) = 0 the function NPM2(x) = f
(

f−1(y) ∗ x
)

is a strict fuzzy negation.

Remark 3. We will examine later the form f
(

f−1(y) ∗ x
)
, which we will prove is a fuzzy

implication. The same form of the g(x) function, g−1(g(y) ∗ x) will take part in the construction of
a copula.

Example 2. One example of fuzzy negations is presented, generated by Theorem 2.

Let the decreasing function f(x) be the function f(x) = 1
x+1 . It is easy to check that f(x)

is positive, decreasing, f (0) = 1 and continuous. Let k > 0. This means that f(k*x) = 1
k∗x+1 .

Let us now construct the fuzzy negation proved before, which will be the following:

Nk
PM2(x) =


1

kx+1 , 0 ≤ x ≤ ε

1−x
kx , ε < x ≤ 1

(22)

where ε is the equilibrium point. This means that finding the point x=ε is the target.
To achieve this someone has to solve the equation 1

kx+1 = x ⇔ kx2 + x − 1, which is a
second-degree equation. We use the type

x1,2=
−1 ±

√
4k + 1

2k

where the one solution is rejected x2 = −1−
√

4k+1
2k because it is negative. That means

ε =−1+
√

4k+1
2k . So, the formula takes the form of: i f ε = −1±

√
4k+1

2k then

Nk
PM2(x) =


1

kx+1 , 0 ≤ x ≤ −1+
√

4k+1
2k

1−x
kx , −1+

√
4k+1

2k < x ≤ 1
(23)

In this way, a strong negation has been constructed in which someone can quite easily
calculate the equilibrium point. That way, negations can exist that satisfy many types of
implications or other problems while the class of negations created has a great range of
values, easily calculated. For example (Figure 3):

• For k = 12, we calculate that ε = 0.25 and appears at the graph N12
PM(x).

• For k = 2, we calculate that ε = 0.5 and appears at the graph N2
PM(x).

• For k = 0.3125, we calculate that ε = 0.8 and appears at the graph N0.3125
PM(x)
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3.2. Constructing Non-Symmetric Fuzzy Implications without the Use of Fuzzy Negations

Already mentioned above are the conditions that must be met for a function to be
a fuzzy implication. In this section, there will be presented a construction of a fuzzy
implication, non-symmetric and without the use of fuzzy negation. To perform this, it is
necessary to use one of the two functions we have already used so far. The function f(x),
which is strictly decreasing, is continuous, and f(0) = 1.

Theorem 3. Let the function s f , f−1 continuous, well defined, then I : [0, 1]2 → [0, 1] as
I(x,y) = f

(
f−1(y)∗x

)
, and f(x) decreasing and f(0) = 1. Then, I(x,y) is a fuzzy implication.

Definition 13 ([20–24,26]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y , y1, y2 ∈ [0, 1], the following conditions:

(a) x1≤ x2 ⇔ I(x 1 , y
)
≥ I(x 2 , y

)
, i.e., I(·, y) is decreasing.

(b) y1 ≤ y2 ⇔ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing.

(c) I(0, 0) = 1

(d) I(1, 1) = 1

(e) I(1, 0) = 0

Proof of Theorem 3.

(a) For every x1≤ x2 ⇔ f−1(y) x1 ≤ f−1(y)x2 f or f−1(y) ≥ 0
f ↘⇔ f ( f−1(y)x1) ≥

f ( f−1(y)x2) so, I( x1,y)≥ I(x2, y)

(b) For every y1 ≤ y2
f−1 ↘⇔ f−1(y1) ≥ f−1(y2) ⇔ f−1(y1)x ≥ f−1(y2)x for x ≥ 0

f ↘⇔ f ( f−1(y1)x) ≤ f ( f−1(y2)x) so, I( x, y1) ≤ I(x, y2)
(c) I(0,0) = f

(
f−1(0) ∗ 0

)
= f (0) =1

(d) I(1,1) = f
(

f−1(1) ∗ 1
)
= f

(
f−1(1)

)
= 1

(e) I(1,0) = f
(

f−1(0) ∗ 1
)
= f

(
f−1(0)

)
= 0. □

This verifies all five properties of fuzzy implications. So, our function
I(x,y) = f

(
f−1(y) ∗ x

)
is a non-symmetric fuzzy implication.

Example 3. Now, one example will be presented of the theorem above.
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Let the function f(x) =
√

1 − ( χ
2 ), which is decreasing, f(0) = 1 and f−1(x) = 2 ∗ (1− x2)

be well defined in the interval [0, 1]. Let us prove that I(x,y) =
√

1 − (1 − y2) ∗ x is a
fuzzy implication.

(1) For every x1≤ x2 ⇔ 2 ∗
(
1 − y2)∗x1 ≤ 2 ∗

(
1 − y2) ∗ x2

f ↘⇔
√

1 − (1 − y2) ∗ x1 ≥√
1 − (1 − y2) ∗ x2 so I( x1,y)≥ I( x2, y)

(2) For every y1 ≤ y2
f−1 ↘⇔ 2 ∗

(
1 − y1

2) ∗ x ≥ 2 ∗
(
1 − y2

2) ∗ x for x ≥ 0
f ↘⇔√

1 − (1 − y1
2) ∗ x ≤

√
1 − (1 − y22) ∗ x so I(x, y1) ≤ I( x, y2)

(3) I(0,0) =
√

1 − (1 − 02) ∗ 0 =
√

1 = 1
(4) I(1,1) =

√
1 − (1 − 12) ∗ 1 =

√
1 = 1

(5) I(1,0) =
√

1 − (1 − 02) ∗ 1 =
√

1 − 1 = 0. That means that I(x,y) =
√

1 − (1 − y2) ∗ x is
a fuzzy implication.

3.3. Generating Copulas Using the Same Functions

In this section, the construction of copulas will be given, functions that are known
from their applications in economics and risk analysis, as well as in fuzzy logic in general.
So far, our constructions were based on two specific functions called f(x) and g(x) and given
some properties. Now, exactly the same functions will be used to construct the copulas. In
some of these cases, some additional properties will be given.

Theorem 4. Let the function g : [0, 1] → [0,+∞) be continuous, strictly increasing and convex,
g(0) = 0, g(1) = 1, with g−1 continuous. The function C1 : [0, 1]2 → [0, 1] , when C1(x,y) =
g
(

g−1(x) ∗ g−1(y)
)

is a copula with the symmetric and incentive effect.

Proof of Theorem 4. Let us remember that there are three conditions that make C(x, y) a
copula.

(1) C(0, t) = C(t, 0) = 0 for each 0 ≤ t ≤ 1
(2) C(1, t) = C(t, 1) = t for each 0 ≤ t ≤ 1
(3) The C-volume of a rectangle must be not negative, e.g.,

VH = C(x1, y1)− C(x1, y2)− C(x2, y1) + C(x2, y2) ≥ 0

for each x1 ≤ x2 and y1 ≤ y2 where 0 ≤ x1, x2,y1, y2 ≤ 1.

For the proof of the first condition after replacing the following:

(1) C1(t, 0) = g
(

g−1(t) ∗ g−1(0)
)
= g

(
g−1(t) ∗ 0

)
= g(0) = 0

C1(0, t) = g
(

g−1(0) ∗ g−1(t)
)
= g

(
0 ∗ g−1(t)

)
= g(0) = 0

(2) C1(t, 1) = g
(

g−1(t) ∗ g−1(1)
)
= g

(
g−1(t) ∗ 1

)
= g

(
g−1(t)

)
= t

C1(1, t) = g
(

g−1(1) ∗ g−1(t)
)
= g

(
1 ∗ g−1(t)

)
= g

(
g−1(t)

)
= t

(3) There are two options for proving the third property. If the function g(x) is productive,
then it is relatively easy to prove the third property, provided that the derivative
∂2C(x,y)

∂xy ≥ 0 is positive. But, if the function g(x) is not productive, then the proof
becomes much more complex and difficult. Both cases will be listed. □

Proposition 1. Knowing that for a function to be 2-increasing, must satisfy the inequality

C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0. This inequality is equivalent to ∂2C(x,y)
∂xy ≥ 0

when C is a differentiable function.

Proof of Proposition 1. When someone applies the Mean Value Theorem for the function
C(x, y1) in the interval [x1, x2]

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y1)

∂x
=

C(x2, y1)− C(x1, y1)

x2 − x1
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Applying the Mean Value Theorem for the function C(x, y2) in the interval [x1, x2]

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y2)

∂x
=

C(x2, y2)− C(x1, y2)

x2 − x1

Let us suppose that C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0 then

∂C(ξ1, y2)

∂x
−

∂C(ξ1, y1)

∂x
≥ 0 ⇔ ∂2C(x, y)

∂xy
≥ 0.

□

(a) Considering g(x) is convex, we have that (g )′′(x) ≥ 0. So, we have the following:

∂C(x, y)
∂x

= (g)′
(

g−1(x) ∗ g(−1)(y)
)
∗
[

g−1
]
′(x) ∗ g−1(y).

And then,

∂2C(x,y)
∂xy =

(g)′′
(

g−1(x) ∗ g−1(y)
)
∗ g−1(x) ∗

[
g−1] ′(y) ∗ [g−1]′(x) ∗ g−1 (y)+

(g)′
(

g−1(x) ∗ g−1(y)
)
[g−1

] ′(x) ∗
[
g−1]′(y) =

[g−1] ′(x) ∗ [g−1]′(y) ∗ [ g−1(x) ∗ g−1(y) ∗ (g)′′
(

g−1(x) ∗ g−1(y)
)
+

(g)′
(

g−1(x) ∗ g−1(y)
)]

≥ 0

Indeed, because g(x) ≥ 0, g’(x) ≥ 0,
(

g−1)′ ≥ 0, (g)′′ ≥ 0,
(

g−1) ≥ 0.
(b) If function g(x) is not productive, the proof of the third property becomes very difficult

and interesting and comes with the help of the classical definition of convexity.

Definition 14. A function f : A → R is convex if, for all (x, y) in the domain of f, and for all t in
[0, 1] when the inequality

(f (t ∗ x + (1 − t) ∗ y) ≤ t ∗ f (x) + (1 − t) ∗ f (y) (24)

holds.

Knowing that the copula we constructed is a three-dimensional function, the definition
is the following:

Definition 15. A function f : A2 → R is convex if, for all points (x1, y1), (x2, y2) in the domain
of f (x), and for all t ∈ [0, 1] when the inequality

f (t ∗ x1 + (1 − t) ∗ x2, t ∗ y1 + (1 − t) ∗ y2) ≤ t ∗ f (x1, y1) + (1 − t) ∗ f (x2, y2) holds (25)

Proposition 2. Knowing that for a function to be 2-increasing, must satisfy the inequality
C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0. If g(x) is convex and strictly increasing yet
non-productive, then the function C1 (x, y) = g

(
g−1(x) ∗ g−1(y)

)
is 2-increasing.

Proof of Proposition 2. First of all, let us give a proof that if g(x) is convex, then C(x, y) is
convex. Let

C1(x, y) =g
(

g−1(x) ∗ g−1(y)
)
, 0 ≤ x ≤1, 0 ≤ y ≤ 1, which also means that

0 ≤ g−1(x) ≤ 1, 0 ≤ g−1(y) ≤ 1.

Also, g(x) is strictly increasing
g↗⇔ , so let g−1(x) = u and g−1(y) = w. That means that

0 ≤ u ∗ w ≤ 1.
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So, let u ∗ w = v. That makes C1(x, y) =g
(

g−1(x) ∗ g−1(y)
)

= g(u ∗ w)=g(v), which
proves that if g(x) is convex, then C1(x, y) is convex.

Due to the monotony conditions, it is proved that
For every pair of y1, y2 ∈ A2, when

y1 ≤ y2
g−1 ↗⇔ g−1(y1) ≤ g−1(y2) ⇔ g−1(x1)g−1(y1) ≤ g−1(x1) g−1(y2)

g−1↗⇔
g(g−1(x1) ∗ g−1(y1)) ≤ g( g−1(x1) ∗ g−1(y2)) ⇔ C1(x1, y1) ≤ C1(x1, y2)

(26)

For every pair of x1, x2 ∈ A2, when

x1 ≤ x2
g−1↗⇔ g−1(x1) ≤ g−1(x2) ⇔ g−1(x1)g−1(y1) ≤ g−1(x2) g−1(y1)

g ↗⇔
g(g−1(x1) ∗ g−1(y1)) ≤ g( g−1(x2) ∗ g−1(y1)) ⇔ C1(x1, y1) ≤ C1(x2, y1)

(27)

For every pair of y1, y2 ∈ A2, when

y1 ≤ y2
g−1 ↗⇔ g−1(y1) ≤ g−1(y2) ⇔ g−1(x2)g−1(y1)g−1(x2) g−1(y2)

g−1↗⇔
g
(

g−1(x2) ∗ g−1(y1)
)
≤ g( g−1(x2) ∗ g−1(y2)) ⇔ C1(x2, y1) ≤ C1(x2, y2)

(28)

For every pair of x1, x2 ∈ A2, when

x1 ≤ x2
g−1↗⇔ g−1(x1) ≤ g−1(x2) ⇔ g−1(x1)g−1(y2) ≤ g−1(x2) g−1(y2)

g ↗⇔
g
(

g−1(x1) ∗ g−1(y2)
)
≤ g

(
g−1(x2) ∗ g−1(y2)

)
⇔ C1(x1, y2) ≤ C1(x2, y2)

(29)

Using the four inequalities above, someone can build the inequalities below:

C1(x1, y1) ≤ C1(x1, y2)≤ C1(x2, y2) (30)

C1(x1, y1) ≤ C1(x2, y1) ≤ C1(x2, y2) (31)

multiplying relation (30) by t, t ∈ [0, 1] and relation (31) by (1 − t), by (1 − t) ∈ [0, 1], and so

t ∗ C1(x1, y1) ≤ t ∗ C1(x1, y2) ≤ t ∗ C1(x2, y2) (32)

(1 − t) ∗ C1(x1, y1) ≤ (1 − t) ∗ C1(x2, y1) ≤ (1 − t) ∗ C1(x2, y2) (33)

Adding by members the inequalities (32) and (33) it implies the following:

C1(x2, y2) ≥ t ∗ C1(x1, y2) + (1 − t) ∗ C1(x2, y1) ≥ C1(x1, y1) (34)

Knowing that the function C(x, y) is a continuous function inside the domain of
[x1, y1] × [x2, y2], someone can make use of the intermediate value theorem, which means
that for every t ∈ [0, 1] there are points (xt, yt) ∈ [x1, y1] × [x2, y2] so that

C1(xt, yt) = t ∗ C1(x1, y2) + (1 − t) ∗ C1(x2, y1) (35)

Remembering the definition of convexity for points (x1, y1 ), (x2, y2) in the domain of
f(x) and for all t ∈ [0, 1], then

C1(t ∗ x1 + (1 − t) ∗ x2, t ∗ y1 + (1 − t) ∗ y2) ≥ t ∗ C1(x1, y1) + (1 − t) ∗ C1(x2, y2) (36)

It is assumed, without the limitation of generality and knowing, that the function
C(x, y) is symmetric

(C1(x, y) = C1(y, x)) that for every t ∈ [0, 1] and every x1 ≤ xt ≤ x2, y1 ≤ yt ≤ y2 that
xt = t ∗ x1 + (1 − t) ∗ x2 and yt = t ∗ y1 + (1 − t) ∗ y2. Thus, substituting in relation (36)

we obtain the following:
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C1(xt, yt) ≤ t ∗ C1(x1, y1) + (1 − t) ∗ C1(x2, y2 ). Now the substitute from relation (35)
and obtain:

t ∗ C1(x1, y2) + (1 − t) ∗ C1(x2, y1) ≤ t ∗ C1(x1, y1) + (1 − t) ∗ C1(x2, y2) (37)

Relation (37) stands for every t ∈ [0, 1], so for t = 0.5, we obtain the following:

(0.5) ∗ C(x1, y2) + (0.5) ∗ C(x2, y1) + (0.5) ∗ C(x1, y1) + (0.5) ∗ C(x2, y2).

Multiply by two, and finally

C1(x1, y2) + C1(x2, y1) ≤ C1(x1, y1) + C1(x2, y2).

This is the third property needed to satisfy for C1(x, y) to be a copula. □

Remark 3. In addition, it should be noted that the copula constructed above matches both the
symmetric and the prefix property.

And that is because

C1(x, y) = g
(

g−1(x) ∗ g−1(y)
)
= g

(
g−1(y) ∗ g−1(x)

)
= C1(y, x)

also

C1(C1(x, y), w) = g
(

g−1
(

g
(

g−1(x) ∗ g−1(y)
))

∗ g−1(w)
)
= g

(
g−1(x) ∗ g−1(y) ∗ g−1(w)

)
And

C1(x, C1 (y, w))= g
(

g−1(x) ∗ g−1
(

g
(

g−1(y) ∗ g−1(w)
))

= g
(

g−1 (x) ∗ g−1(y) ∗ g−1(w)
)

thus
C1(C1(x, y) , w) = C(x, C1(y, w)).

Example 4. Let the function g(x) =
√

χ when 0 ≤ x ≤ 1, then, g−1(x) = x2 when 0 ≤ x ≤ 1.

So, we construct the copula C1 (x, y) =
(√

x ∗ √y
)2. Let us check the three conditions:

(1) C1(t, 0) =
(√

t ∗
√

0
)2

= 0 =

(√
0 ∗

√
t
)2

= C1(0, t)

(2) C1(t, 1) =
(√

t ∗ 1
)2

= 0 =
(√

1 ∗
√

t
)2

= C1(1, t)

(3) The function g(x) is productive, so it is relatively easy to prove the third property, provided
that the derivative

∂2C1(x,y)
∂xy ≥ 0 ⇔

∂C(x,y)
∂x =

(
1√
x ∗ √y

)(√
x ∗ √y

)
= y and ∂2C(x,y)

∂xy = 1 ≥ 0 .C1 is a copula.

In the next theorem, we will try to combine the construction of the fuzzy implication
that we have already constructed with the construction of the last copulas.

Theorem 5. Let the function g : [0, 1] → [0,+∞) continuous, strictly increasing and convex,
g(0) = 0, g(1) = 1 and g−1 continuous. The function C : [0, 1]2 → [0, 1] , when

C(x, y) = max
{

g
(

g−1(x) ∗ y
)

, g
(

g−1(y) ∗ x
)}

is a copula. (38)
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Proof of the Theorem 5.

(1) C(t, 0) = C(t, 0) = max
{

g
(

g−1(t) ∗ 0
)
, g
(

g−1(0) ∗ t
)}

= max{g(0), g(0 ∗ t)} =
max{g(0), g(0)} = max{0, 0} = 0
C(0, t) = max

{
g
(

g−1(0) ∗ t
)
, g
(

g−1(t) ∗ 0
)}

= max{g(0 ∗ t), g(0)} = max{0, 0} = 0,
which proves that C(t, 0) = C(0, t) = 0

(a) C(t, 1) = C(t, 1) = max
{

g
(
g−1(t) ∗ 1

)
, g
(
g−1(1) ∗ t

)}
= max

{
g
(
g−1(t)

)
, g(t)

}
= max{t, g(t)} = t.
and that is because g(x) is convex, which means that g(t) ≤ t.

(b) C(1, t) = C(1, t) = max
{

g
(
g−1(1) ∗ t

)
, g
(
g−1(t) ∗ 1

)}
= max

{
g(t), g

(
g−1(t)

)}
= max{g(t), t} = t. So, C(1, t) = C(t, 1) = t.

(2) Let g−1(x) ∗ y = u and g−1(y) ∗ x = w, which means that C(x, y) is either equal to
g(u) or g(w). It has already been proven before that if the function g(x) is convex,
the third property of the copulas is settled. So, there is no need to prove again, as the
proof is obvious. □

Example 5. Let the function g(x) = x
3−2x for every x in the interval 0 ≤ x ≤ 1 be continuous,

strictly increasing and convex, with g−1(x) = 3x
2x+1 continuous and strictly increasing. We will

prove the following:

The function C(x,y) = max{
3x

2x+1 y
3−2 3x

2x+1 y
,

3y
2y+1 x

3−2 3y
2y+1 x

} is a copula.

(1) C(x,0) = max{
3∗x

2x+1 0
3−2 3x

2x+1 0
,

3∗0
2∗0+1 x

3−2 3∗0
2∗0+1 x

} = max{0, 0} = 0

C(0,y) = max{
3∗0

2∗0+1 y
3−2 3∗0

2∗0+1 y
,

3y
2y+1 0

3−2 3y
2y+1 0

} = max{0,0} = 0

(2) C(x,1) = max{
3x

2x+1 1
3−2 3x

2x+1 1
,

3∗1
2∗1+1 x

3−2 3∗1
2∗1+1 x

} = max{x, x
3−2x } = x because x ≥ x

3−2x .

C(1,y) = max{
3∗1

2∗1+1 y
3−2 3∗1

2∗1+1 y
,

3y
2y+1 1

3−2 3y
2y+1 1

}= max{ y
3−2y ,y} = y again because y ≥ y

3−2y .

(3) As for the third property, we just have to prove that g(x) is convex. We can easily check that
g’(x) = 3

(3−2x)2 ≥ 0 and g′′ (x) = 4
(3−2x)3 ≥ 0, so g(x) is convex and the third property is

automatically proved.

4. Discussion

The primary main goal of this paper is to present fuzzy negations, fuzzy implications
and copulas through a common construction process, using very simple functions with
certain properties. In fact, by studying the paper in its entirety, one can see that the present
constructions could be performed using a single function.

In an attempt to detail the role played in these constructions by the formula f
(

f−1(y) ∗ x
)

,

the following points should be emphasized: f(x) is strictly decreasing, f(0) = 1 and f−1 (y) > 0.
Going ahead with the constructions, some additional properties are given to f(x), such as it is
convex, and f(1) = 0. These additional properties do not negate the previous constructions
but merely come to complement them. In Section 3 where the constructions are presented, a
reference to two functions is made, since, in addition to the decreasing function f(x), there is
also in use an increasing function g(x) with almost similar properties. To be precise, one can
easily assume that g(x) = f (1−x). So, what is achieved? The achievement is to represent all
of the above constructs by means of a single formula f

(
f−1(y) ∗ x

)
and a single function f(x).

Recall also that strong negations were constructed with the help of the use of the equilibrium
point. Negations that help to calculate exactly what the equilibrium point will be. In addition
to that, a very interesting construction is presented that is proved to be a copula, the C1(x,
y) = g

(
g−1(x) ∗ g−1(y)

)
. This copula formula is very similar to the other formula presented
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in Section 3 (C(x,y) = max
{

g
(
g−1(x) ∗ y

)
, g
(
g−1(y) ∗ x

)}
). A very detailed proof is given

concerning the fact that if the function g(x) is convex, C1(x, y) will always be a copula.
If we try to talk about the consequences of, for example, applying some of the copulas

proved in Section 3 to domains of fuzzy logic such as AI and robotics, this will be a signifi-
cant prospect. Other areas, such as “Control synthesis for discrete-time T-S fuzzy systems
based on membership function-dependent H∞ performance” [27] or “Finite-Time Mem-
bership Function-Dependent H∞ Control for T-S Fuzzy Systems via a Dynamic Memory
Event-Triggered Mechanism” [28] will have results that could be some of the below:

1. Uncertainty Handling: Copulas can be used to model the dependency between
different uncertainties in the system. By incorporating copulas into the T-S fuzzy
model, one can more accurately capture the interdependencies between different
sources of uncertainty, leading to more robust control designs.

2. Performance Enhancement: Copulas can help in designing membership function-
dependent H∞ controllers by accurately modeling the joint behavior of the system’s
uncertainties. This leads to better performance metrics, such as improved disturbance
rejection and enhanced stability under varying operating conditions.

3. Event-Triggered Mechanisms: The use of copulas can optimize event-triggering con-
ditions by better predicting the evolution of system states and disturbances. This
optimization can lead to more efficient control actions, reducing unnecessary compu-
tations and communications while maintaining desired performance levels.

- Modeling Dependencies: Both papers focus on enhancing control synthesis by consid-
ering the dependencies between uncertainties. Copulas offer a sophisticated way to
model these dependencies, leading to improved controller performance.

- Robustness and Adaptivity: By using copulas, controllers can be designed to be more
adaptive to varying conditions and more robust against disturbances, aligning with
the goals of H∞ performance and finite-time stability.

- Efficiency in Control: In event-triggered mechanisms, copulas can optimize the condi-
tions for control actions, leading to more efficient system operation without compro-
mising performance.

In essence, copulas provide a powerful tool to enhance the modeling and control of
T-S fuzzy systems by accurately capturing the dependencies between uncertainties, thus
improving the robustness and efficiency of control strategies discussed in both papers.

5. Conclusions

Fuzzy negations are necessary in many areas and especially in generating new fuzzy
implications. In this article, there have been proposed some novel construction methods of
strong fuzzy negations. This is achieved using a specific type of formula to construct at the
same time strong fuzzy negations, fuzzy implications and Copulas in an attempt to bring
those mathematical concepts a bit closer. Two theorems are presented in negations, one in
implications and two theorems in copulas. All of the above are accompanied by their own
proofs. Furthermore, there is presented one very interesting proof in the third property of
the copulas regarding how one non-productive function g(x) constructs a copula only if it
is convex.

The above constructions are intended to provide the mathematical community with
the following information:

(a) All of the above constructs can be represented by means of very simple functions,
common among the concepts used.

(b) A formula is presented that participates in all three mathematical concepts discussed
in this article.

(c) A proof in the area of copulas is presented.

All of the above is intended to bring all the mathematical concepts discussed in
this article closer together, from a mathematical point of view, and to give ground for
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future analysts to build on it and further investigate the convergence and application of
these concepts.

6. Patents

The formula f
(

f−1(y) ∗ x
)

, which can generate strict fuzzy negations, strong fuzzy
negations, fuzzy implications and copulas for a strictly decreasing, positive function,
convex with

f (0) = 1 (in some cases f(1) = 0 also).

Author Contributions: Methodology, P.G.M.; Supervision, B.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Special thanks to all three reviewers for their notes and comments on this article.

Conflicts of Interest: The authors declare no conflicts of interest, financial or otherwise.

References
1. Bustince, H.; Campión, M.J.; De Miguel, L.; Induráin, E. Strong negations and restricted equivalence functions revisited: An

analytical and topological approach. Fuzzy Sets Syst. 2022, 441, 110–129. [CrossRef]
2. Bedregal, B.C. On interval fuzzy negations. Fuzzy Sets Syst. 2010, 161, 2290–2313. [CrossRef]
3. Gupta, V.K.; Massanet, S.; Vemuri, N.R. Novel construction methods of interval-valued fuzzy negations and aggregation functions

based on admissible orders. Fuzzy Sets Syst. 2023, 473, 108722. [CrossRef]
4. Pradera, A.; Beliakov, G.; Bustince, H.; De Baets, B. A review of the relationships between implication, negation and aggregation

functions from the point of view of material. Implic. Inf. Sci. 2016, 329, 357–380. [CrossRef]
5. Baczynski, M.; Jayaram, B. QL-implications: Some properties and intersections. Fuzzy Sets Syst. 2010, 161, 158–188. [CrossRef]
6. Baczynski, M.; Jayaram, B. (U, N)-implications and their characterizations. Fuzzy Sets Syst. 2009, 160, 2049–2062. [CrossRef]
7. Durante, F.; Klement, E.P.; Meriar, R.; Sempi, C. Conjunctors and their residual implicators: Characterizations and construction

methods. Mediterr. J. Math. 2007, 4, 343–356. [CrossRef]
8. Massanet, S.; Torrens, J. An overview of construction methods of fuzzy implications. In Advances in Fuzzy Implication Functions;

Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 300, pp. 1–30. [CrossRef]
9. Baczynski, M.; Jayaram, B.; Massanet, S.; Torrens, J. Fuzzy implications: Past, present, and future. In Springer Handbook of

Computational Intelligence; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 183–202. [CrossRef]
10. Baczynski, M.; Jayaram, B. On the characterization of (S, N)-implications. Fuzzy Sets Syst. 2007, 158, 1713–1727. [CrossRef]
11. Massanet, S.; Vicente, J.; Clapes, R.; Aguilera, D.R. On fuzzy polynomials implications. In Proceedings of the 2015 Conference of

the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15),
Gijón, Spain, 30 June–3 July 2015. [CrossRef]

12. Rapti, M.; Papadopoulos, B. A Method of Generating Fuzzy Implications from n Increasing Functions and n+1 Negations.
Mathematics 2020, 8, 886. [CrossRef]

13. Daniilidou, A.; Konguetsof, A.; Souliotis, G.; Papadopoulos, B. Generator of Fuzzy Implications. Algorithms 2023, 16, 569.
[CrossRef]

14. Baczynski, M.; Jayaram, B. Fuzzy Implications; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]
15. Bustince, H.; Pagola, M.; Barrenechea, E. Construction of fuzzy indices from fuzzy DIsubsethood measures: Application to the

global comparison of images. Inf. Sci. 2007, 177, 906–929. [CrossRef]
16. Bogiatzis, A.C.; Papadopoulos, B.K. Local thresholding of degraded or unevenly illuminated documents using fuzzy inclusion

and entropy measures. Evol. Syst. 2019, 10, 593–619. [CrossRef]
17. Bogiatzis, A.C.; Papadopoulos, B. Global Image Thresholding Adaptive Neuro-Fuzzy Inference System. Trained with Fuzzy

Inclusion and Entropy Measures. Symmetry 2019, 11, 286. [CrossRef]
18. Bogiatzis, A.C.; Papadopoulos, B.K. Producing fuzzy inclusion and entropy measures and their application on 277 global image

thresholding. Evol. Syst. 2018, 9, 331–353. [CrossRef]
19. Betsakos, D. Introduction to Real Analysis; Afoi Kyriakidi: Thessaloniki, Greece, 2016.
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