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Abstract: Analyzing treatment or exposure effect is a major research theme in scientific studies. In
the current big-data era where multiple sources of data are available, it is of interest to perform a
synthesized analysis of treatment effects by integrating information from different data sources or
studies. However, studies may contain heterogeneous and incomplete covariate sets, and individual
data therein may not be accessible. We apply and extend the generalized meta-analysis method
to integrate summary results (e.g., regression coefficients) of outcome and treatment (propensity
score, PS) regression analyses across different datasets that may contain heterogeneous covariate sets.
The proposed integrated analysis utilizes a reference dataset, which contains data on the complete
set of covariates. The asymptotic distribution for the proposed integrated estimator is established.
Simulations reveal that the proposed estimator performs well. We apply the proposed method to
obtain the causal effect of waist circumference on hypertension by integrating two existing outcomes
and PS regression analyses with different sets of covariates.

Keywords: data integration; multi-center study; missing covariate; treatment effect
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1. Introduction

The impact of a treatment or exposure on an outcome is a significant focus in many
scientific fields. These include clinical trials [1], education [2], economics [3], and medi-
cal [4] fields. In observational studies, treatment assignment often correlates with subject
characteristics, potentially leading to systematic differences between treated and control
groups. This can result in biased conclusions when directly comparing these groups.

To perform causal inferences in observational studies, Rubin [5] proposed the counter-
factual or potential outcome framework. Suppose the treatment assignment Z is binary
with Z = 1 denoting the treated group and Z = 0 the control group, and Y1 and Y0 are the
potential outcome values a subject would have if he/she had a treatment assignment Z = 1
and Z = 0, respectively. The outcome Y observed for a subject with treatment Z is then
given by

Y = ZY1 + (1 − Z)Y0.

A causal treatment effect for a subject is obtained as the difference of two potential
outcomes, Y1 − Y0. Usually, only one potential outcome can be observed for a subject,

Mathematics 2024, 12, 2265. https://doi.org/10.3390/math12142265 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12142265
https://doi.org/10.3390/math12142265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4038-9439
https://orcid.org/0009-0002-1588-5860
https://orcid.org/0000-0003-1596-8471
https://doi.org/10.3390/math12142265
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12142265?type=check_update&version=2


Mathematics 2024, 12, 2265 2 of 17

and the causal effect is unobserved. However, under suitable assumptions, the average
treatment effect (ATE)

E(Y1 − Y0) = E(Y1)− E(Y0)

is estimable from observational studies and has been a popular target of causal inferences. For
a binary outcome, the ATE amounts to the marginal risk difference P(Y1 = 1)− P(Y0 = 1).
A key assumption for estimating ATE with data from observational studies is that the
treatment assignment is strongly ignorable [6]:

(Y1, Y0) ⊥ Z | X,

where “⊥” stands for statistical independence; that is, the potential outcomes (Y1, Y0), and
the treatment assignment Z are independent conditioning on the covariate set X. In other
words, the treatment assignment Z is irrelevant to the values of potential outcomes Y1 and
Y0 once the covariates X are controlled. Another key assumption is the stable unit-treatment
value assumption (SUTVA), which ensures that Y1(Y0) is the unique outcome associated
with Z = 1(Z = 0) [6]. Under (1) and SUTVA, consistent estimation of the ATE can then be
achieved by the technique of matching, stratification, covariate adjustment (CA), or inverse
probability of treatment weighting (IPTW) [6–10].

Rosenbaum and Rubin [6] further proposed using propensity score (PS) for conducting
causal inferences. A PS is the probability P(Z = 1 | X) of a subject being assigned to the
treated group conditioning on his/her observed covariates and is the coarsest balancing
score such that the covariate distributions are the same between treatment groups once the
score is matched. Accordingly, a PS can replace the full covariate set X used for matching,
stratification, CA, or IPTW to conduct causal inferences on treatment effect when the
assumption (1) holds Rosenbaum and Rubin [6]. Since the PS is a univariate minimal
sufficient statistic, the PS-based method can also be viewed as an effective dimension-
reduction technique, since matching, stratification, CA, or IPTW can be simply performed
on a scalar PS rather than on a multi-dimensional covariate vector [6–10]. Since its invention,
the PS method has gained tremendous popularity in observational studies; see Figure 1 of
Simoneau et al. [11].

In the big data era, there is growing interest in conducting integrated analyses of
treatment effects by integrating information from databases across various observational
studies [12,13]. However, combining data from different databases presents challenges due
to variations in covariate variables, even if they share common outcome and treatment
variables, and discrepancies in baseline data distributions. Moreover, stringent data privacy
regulations such as the European Union’s General Data Protection Regulation (GDPR) and
the Health Insurance Portability and Accountability Act (HIPAA) pose barriers to directly
sharing, exchanging, and synthesizing individual-level data from disparate sources.

Analyzing treatment or exposure effects is a major research theme in scientific studies.
In the current big-data era where multiple data sources are available, it is interesting to
perform a synthesized analysis of treatment effects by integrating information from different
data sources or studies. However, studies may contain heterogeneous and incomplete
covariate sets, and individual data may not be accessible. This motivates us to consider
a framework for integrated regression analysis that can utilize summary results (e.g.,
regression coefficients) of outcome and treatment (PS) regression analyses across different
datasets that may contain heterogeneous covariate sets.

This study is specifically motivated by two recent investigations into the relationship
between waist circumference (WC) and hypertension (HT): Ren et al. [14] and Hu et al. [15].
Each study explored how WC influences the risk of HT while accounting for different sets
of covariates (detailed in Section 4). The aim here is to examine the impact of WC on HT
while controlling for the comprehensive set of covariates (combining the respective sets
from both studies). Specifically, this study integrates the regression analysis results from
two existing studies on the relationship between WC and HT, considering their respective
sets of covariates. Additionally, it incorporates the findings from propensity score analyses
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of WC as a treatment variable in both studies. This integrated approach aims to conduct a
synthesized analysis of the causal effect of WC on HT, utilizing a comprehensive covariate
dataset sourced from the Taiwan BioBank database. Specifically, we apply and extend the
generalized meta-analysis method developed by Kundu et al. [16] to integrate the existing
PS and outcome regression analyses with heterogeneous covariate variables using a dataset
on the complete covariate set, which provides a reference to the covariate distribution and
is termed “reference dataset” by Kundu et al. [16]. We obtain consistent estimates for the
parameters of the full PS and outcome regression models and for the ATE. Asymptotic
theory for the estimators of the regression parameters and the ATE is also established.
The proposed integrated analysis allows researchers to integrate summary results from
existing outcome and PS regression analyses with heterogeneous covariates sets, and hence
to obtain enhanced statistical efficiency and power from existing studies.

In Section 2, we describe the proposed estimation methods for the full PS and outcome
regression models and the ATE. In Section 3, we report simulation results to show the satis-
factory performance of the proposed method. Section 4 presents the empirical study on the
effect of waist circumference on hypertension based on two existing studies and a reference
sample of covariate data. Finally, concluding discussions are provided in Section 5.

2. The Proposed Method

In this section, we present an inferential framework that integrates results from existing
studies and results from treatment (i.e., propensity score, PS) regression analyses, in which
different and incomplete covariates may be present. We use the reference set on the full
set of covariates to convert existing outcome and PS regression analyses into consistent
estimates of the full outcome and PS regression model based on the full set of covariates,
which in turn generate causal inferences about treatment effects.

2.1. The Existing Outcome and PS Regression Analyses

Suppose that there exist K independent studies, where the kth study contains inde-
pendent data on

{
Y, Z, X(k)

}
of size nk, k = 1, 2, . . . , K. Here, Y and Z are, respectively, the

common outcome and binary treatment indicator of interest in the K studies, and X(k) is
the covariate set considered in study k and is some subset of X, the complete covariate
set satisfying the strong ignorability condition (1). Suppose that gk

(
Y | Z, X(k); γk

)
and

hk

(
Z | X(k); θk

)
are, respectively, the “reduced” outcome and PS regression models used in

the kth study, where γk and θk are the respective vectors of regression coefficients in the
reduced outcome and the PS models based on the reduced covariate set X(k). Note that
since the reduced PS and outcome models are from existing studies based on reduced sets
of the covariate variables, to make the proposed method applicable even when models used
in such studies are wrongly specified, we consider the general case where these models
can be misspecified. That is, gk

(
Y | Z, X(k)

)
and hk

(
Z | X(k)

)
may not equal to the true

conditional distributions P
(

Y | Z, X(k)

)
and P

(
Z | X(k)

)
, respectively. Assume that the

estimates of γk and θk are available for study k, k = 1, . . . , K. Individual data in these
studies are not required in the proposed method.

Further, assume that the true distribution of Z given the complete covariate set X is
given by the full PS model fZ(Z | X; α), where α is the vector of regression coefficients
of X, and hence the full PS is given by e(X) = fZ(Z = 1 | X; α). Also, assume that
the true distribution of Y given Z and X is given by the full outcome regression model
fY(Y | Z, X; β), where β is the vector of regression coefficients of (Z, X). To fix ideas, in the
following we consider the underlying distributions fZ(Z | X; α) and fY(Y | Z, X; β) that
follow the generalized linear models (GLMs) of Nelder and Wedderburn [17], although the
ideas may simply extend to more general models. We assume that the underlying treatment
and outcome distributions fZ(Z | X; α) and fY(Y | Z, X; β) are essentially the same across
different studies, except that their baselines, namely their intercept parameters in α and β
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are allowed to vary across different studies to accommodate possible differences in baseline
data distributions among existing studies; however, we do not make this explicit in the
notation for the regression parameters to keep the notation simple.

2.2. Reference Data

In addition to the existing regression results, the proposed method needs a reference
dataset with data on the complete covariate set.

Specifically, let {Xi}n
i=1 be the reference sample of n independent observations of X.

Since the intercept parameters in the treatment and outcome distributions fZ(Z | X; α)
and fY(Y | Z, X; β) are already allowed to be different among the existing studies, the
covariate distributions among the existing studies and the reference sample are assumed to
be the same up to location shifts, namely these covariate distributions can have different
means but become the same after mean removal. In fact, under the above assumptions,
it is possible just to assume the covariate distributions among the studies and the ref-
erence dataset are the same, and to adjust the intercept parameters of the underlying
treatment and outcome distributions fZ(Z | X; α) and fY(Y | Z, X; β) in each study, such
that fY(Y | Z, X; β)× fZ(Z | X; α)× fX(X) equals the joint distribution of (Y, Z, X) in each
study population. It is such adjusted full models fZ(Z | X; α) and fY(Y | Z, X; β) that are
our estimation targets.

2.3. Estimation of the Full Propensity and Outcome Regression Models

The generalized meta-analysis method of Kundu et al. [16] is a data integration method
for combining information on parameters of various outcome regression models with
disparate covariate sets. Assuming a common underlying data distribution, this method
integrates the estimating equations for parameter estimates of various outcome regression
models using the generalized method of moments approach [18] and a reference dataset on
the covariates to yield consistent estimation for the full outcome regression model.

We apply and extend the generalized meta-analysis method to estimate the parameters
in both the full PS and outcome models fZ(Z | X; α) and fY(Y | Z, X; β) using the available
estimates θ̂k and γ̂k, k = 1, . . . K, from the existing K studies, as well as the reference dataset
{Xi}n

i=1. Following the usual practice, for k = 1, . . . K, we assume the estimates θ̂k and γ̂k are
obtained by the maximum likelihood estimation (of the GLMs) based on the (reduced) mod-
els hk

(
Z | X(k); θk

)
and gk

(
Y | Z, X(k); γk

)
, k = 1, . . . K, respectively. Let tk

(
Z | X(k); θk

)
=

∂
∂θk

log
(

hk

(
Z | X(k); θk

))
and sk

(
Y | Z, X(k); γk

)
= ∂

∂γk
log
(

gk

(
Y | Z, X(k); γk

))
be the

score functions of the kth reduced PS and outcome models, respectively, and consider
the expected scores

tk(X; α, θk) = EZ|X

{
tk

(
Z | X(k); θk

)}
= ∑

Z=0,1
tk

(
Z | X(k); θk

)
fZ(Z | X; α), and

s(X; α, β, θk, γk) = E(Y,Z)|X

{
sk

(
Y | Z, X(k); θk, γk

)}
= ∑

Z=0,1

∫
sk

(
Y | Z, X(k); θk, γk

)
fY(Y | Z, X; β) fZ(Z | X; α)dY.

Let

T(X; α) =


t1

(
X; α, θ̂1

)
...

tK

(
X; α, θ̂K

)
, S(X; α, β) =


s1

(
X; α, β, θ̂1, γ̂1

)
...

sK

(
X; α, β, θ̂K, γ̂K

)
, and

U(X; α, β) =

(
T(X; α)

S(X; α, β)

)
.

The estimator (α̂, β̂) for (α, β) is obtained by minimizing the objective function
Un(α, β)TCUn(α, β), or equivalently solving the estimating equation U̇n(α, β)TCUn(α, β) = 0,
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where Un(α, β) = ∑n
i=1 U(Xi; α, β), U̇n(α, β) = ∂Un(α, β)/∂(α, β). The matrix C is an

arbitrary positive semi-definite weighting matrix and the optimal (minimal asymptotic
covariance of the resulting estimator) choice of C is C = (∆ + Λ)−1 [16], where ∆ is
the covariance matrix of U(X; α, β), and Λ arises from the covariances of

√
nk

(
θ̂k, γ̂k

)
,

k = 1, . . . , K, which may be available from the existing studies or estimated using the
reference dataset. The way of estimation of the matrices ∆ and Λ is given in Appendix A.

Following similar arguments in Kundu et al. [16],
√

n{(α̂, β̂)− (α, β)} has the asymptotic

normal distribution with zero mean and the covariance matrix given by
{

ΓT(∆ + Λ)−1Γ
}−1

,
where Γ = E{∂U(X; α, β)/∂(α, β)} whose estimation can be based on its sample analog
in the reference dataset, and the matrices ∆ and Λ are estimated in the way mentioned in
Appendix A using the final estimator (α̂, β̂) for (α, β).

We conclude this section by noting that, the covariance matrices of the regression
parameter estimates from the existing studies are not necessary for implementing the
proposed method. However, when the covariance matrix for the regression parameter
estimates is unavailable and the outcome regression model in an existing study contains a
dispersion parameter not fixed to 1 (e.g., the normal regression model), the estimate for
that dispersion parameter is required for the proposed method to implement estimation of
the covariance matrix of the regression parameters (see Appendix A for detail).

2.4. Estimation of the Average Treatment Effect (ATE)

Let Q(X) = E(Y | Z = 1, X)− E(Y | Z = 0, X). By the SUTVA and the strong ignora-
bility assumption (1), Q(X) = E(Y1 | Z = 1, X)− E(Y0 | Z = 0, X) = E(Y1 | X)− E(Y0 | X)
corresponds to the conditional average treatment effect (CATE) at X, and EX{Q(X)} =
E(Y1)− E(Y0) ≡ µ corresponds to the ATE.

Let Q(X; β) =
∫

Y{ fY(Y | Z = 1, X; β)− fY(Y | Z = 0, X; β)}dY. Given the estimate
β̂ for the full outcome regression parameter obtained in Section 2.3, we can estimate
E(Y | Z, X) by

∫
Y fY(Y | Z, X; β̂)dY, the CATE Q(X) at X by Q(X; β̂), and the ATE by the

reference sample data {Xi}n
i=1 via

µ̂ =
1
n

n

∑
i=1

Q
(

Xi; β̂
)

.

The consistency of the proposed ATE estimator µ̂ follows directly from the consistency
of β̂. Also, using the delta method, we can obtain the asymptotic normal distribution of µ̂;
details are provided in Appendix B.

3. The Simulation Studies

In this section, we conduct simulations to assess the performance of the proposed estima-
tors for the regression coefficients of the underlying outcome and treatment distributions, as
well as for the ATE. We specifically report results for bias, standard deviation (SD), mean of
estimated standard errors (ESE), and coverage probability 1 and 2 (CP1 and CP2) of the 95%
and 90% Wald-type confidence intervals, respectively, across 2000 simulation replications.

3.1. The Simulation Setting

We consider a simple simulation setting where there exist independent datasets D1
on {Y, Z, X1}, D2 on {Y, Z, X2}, and D3 on {X1, X2}, where Y is the common outcome of
interest, Z is the common treatment indicator variable, X1 is the covariate observed in
dataset D1, X2 is the covariate observed in dataset D2, and (X1, X2) is the set of covariates
in the underlying full regression models for the outcome and the treatment (i.e., the PS).
We set the sample sizes of the datasets D1, D2, and D3 to n1 = 500, n2 = 500, n = 50, 100
or 200, respectively.

The covariates (X1, X2) in D1, D2, and D3 are generated by independent standard normal
random variables, and given (X1, X2), the treatment assignment Z in both D1 and D2 is gener-
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ated using the linear logistic regression model: P(Z = 1 | X1, X2) = expit(α0 + α1X1 + α2X2)
with expit(x) = exp(x)/(1+ exp(x)). The outcome Y in both D1 and D2 is binary and
generated by the linear logistic regression model for given treatment assignment Z and
covariates (X1, X2): P(Y = 1 | Z, X1, X2) = expit(β0 + βzZ + β1X1 + β2X2). The coeffi-
cients for the covariates, (α1, α2) and (β1, β2), in the PS and outcome models are both
fixed at (log(1.2), log(1.5)), and the coefficient βZ for the treatment indicator is set to 0,
log(1.2), log(1.5), or log(2) when generating both datasets D1 and D2. On the other hand,
the intercept parameters (α0, β0) are set to (−1,−1) and (0,−1.5) when generating datasets
D1 and D2, respectively, to reflect different baselines in the underlying distributions of
the two datasets. The reduced PS and outcome regression coefficient estimates are ob-
tained from both D1 and D2; in D1, the working PS and outcome regression models are,
respectively, the linear logistic models for (Z | X1) and (Y | Z, X1), while in D2 they are,
respectively, the linear logistic models for (Z | X2) and (Y | Z, X2). Such reduced-model
regression coefficient estimates are used in the later estimation procedure while individual
data in D1 and D2 are not. Individual data in D3 on the complete covariate set (X1, X2) are
used as the reference data for the proposed estimation.

The method in Section 2.3 is applied to the regression coefficient estimates from D1
and D2 and the individual data from D3 to obtain the estimates of the parameters in the
full PS and outcome regression models, which are correctly specified in the estimation as
the data generating models mentioned above. Further, the method in Section 2.4 is applied
to estimate the ATE of Z on Y.

We also perform an extended simulation with K = 4 existing datasets over 1000 sim-
ulation replications, and the distribution of the outcome Y is binomial, normal, or Pois-
son. The complete covariate set is X = (X1, X2, X3, X4), where (X1, X2) are generated
from standard normal with a correlation coefficient of 0.5, and (X3, X4) are Bernoulli ran-
dom variables with success probabilities expit(X1 + E1) and expit(X2 + E2), where X1,
X2 are the covariates mentioned above, E1, E2 are independent standard normal, and
expit(x) = exp(x)/{1 + exp(x)}. Accordingly, X3 is correlated with X1, and X4 is corre-
lated with X2 and hence also X1 since X1 and X2 are correlated. The four existing datasets
contain data on the common outcome variable Y and treatment variable Z, and data on the
different covariate sets (X1, X2), (X2, X3), (X3, X4), and (X1, X4), respectively. The treat-
ment variable Z in the kth dataset is generated using the linear logistic regression model:
Pk(Z = 1 | X1, X2, X3, X4) = expit(α0k + α1X1 + α2X2 + α3X3 + α4X4), (α1, α2, α3, α4) =
(log(1.2), log(1.5),− log(1.2),− log(1.5)), and α0k = −1,−1.5,−2,−2.5 for k = 1, 2, 3, 4.
The outcome Y in the kth dataset is generated using the linear logistic regression model:
Pk(Y = 1 | Z, X1, X2, X3, X4) = g(β0k + βzZ + β1X1 + β2X2 + β3X3 + β4X4) with g the ex-
pit, identity, or exponential function when the distribution of Y is binomial, normal, or
Poisson (i.e., the inverse canonical link function), respectively. The true parameter values
(β1, β2, β3, β4) = (log(1.2), log(1.5),− log(1.5),− log(1.2)), β0k = −1,−1.5,−2,−2.5 for
k = 1, 2, 3, 4, and βz = 0 or log(1.5). The reduced propensity (PS) and outcome regression
coefficient estimates are obtained from the four existing datasets, using the models having
the same link functions as in the data-generating models but the reduced covariate sets ob-
served in these datasets, as mentioned above. Such reduced regression coefficient estimates
are used in the estimation procedure while individual data in the existing datasets are not.
Individual data in the reference sample, which contain data on the complete covariate set
X = (X1, X2, X3, X4), are also used in the estimation procedure as proposed in Section 2.3.
The full PS and outcome regression models in the estimation are correctly specified as the
data-generating models mentioned above. Further, the method in Section 2.4 is applied to
estimate the average treatment effect (ATE) of Z on Y in the population of each dataset. All four
existing studies and the reference sample have the same sample size, set to 200, 500, or 1000.

3.2. The Simulation Results

Table 1 presents the simulation results for the proposed estimation of the regression
coefficient for the treatment variable in the full outcome model and the ATEs for the populations
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of the two existing datasets. The findings in Table 1 suggest that the proposed estimation for
the full outcome model parameter and the ATE is essentially unbiased, with the absolute bias of
the proposed estimates for both parameters being less than 1%. Also, the estimated standard
error (ESE) based on the asymptotic theory is close to the simulation standard deviation
of the estimator with the absolute difference less than 1%, and the coverage probability of
the 95% and 90% Wald-type confidence intervals based on the asymptotic normality of the
estimator is close to the nominal levels 0.95 and 0.90, respectively. These results reveal that
the proposed estimators perform well in finite samples.

Table 2 presents the simulation results for the proposed estimation of the regression
coefficients in the full PS model under the same simulation settings as in Table 1. The findings
demonstrate that our proposed method performs well in the estimation of the full PS model.

Table 1. Simulation results (multiplied by 100) for the estimates of the coefficient βZ of the treatment
variable in the full outcome model and the ATEs with true parameter values β0 = −1 in Study 1, and
−1.5 in study 2, (βX1 , βX2 ) = (log(1.2), log(1.5)), and different βZ and ATE values (in parenthesis),
α = (α0, α1, α2) = (−1, log(1.2), log(1.5)) in Study 1, and (0, log(1.2), log(1.5)) in Study 2.

n = 50 n = 100 n = 200
Bias SD ESE CP1 CP2 Bias SD ESE CP1 CP2 Bias SD ESE CP1 CP2

βZ (0) −0.19 17.0 17.7 96.5 91.6 −0.32 17.7 17.5 95.1 89.8 −0.94 17.3 17.4 95.1 89.7
ATE1 (0) 0.03 3.23 3.37 96.4 91.5 0.01 3.37 3.34 95.0 89.8 −0.11 3.29 3.32 94.8 89.5
ATE2 (0) −0.01 2.53 2.64 96.5 91.5 −0.04 2.62 2.60 95.1 89.8 −0.14 2.58 2.59 95.0 89.6

βZ (log(1.2)) −0.08 16.5 17.2 96.2 91.7 −0.21 17.2 17.0 95.1 89.2 −0.53 17.0 16.9 94.7 89.8
ATE1 (0.04) −0.00 3.33 3.47 96.3 91.4 −0.00 3.48 3.44 94.9 89.4 −0.07 3.41 3.42 94.6 89.6
ATE2 (0.03) −0.02 2.61 2.72 95.9 91.8 −0.05 2.70 2.68 95.3 89.3 −0.10 2.67 2.67 94.8 89.9

βZ (log(1.5)) −0.13 16.2 16.8 96.1 91.5 −0.14 16.4 16.6 95.4 90.2 −0.35 16.4 16.5 94.8 90.0
ATE1 (0.08) −0.07 3.46 3.59 96.4 91.4 −0.04 3.52 3.55 95.5 90.2 −0.09 3.49 3.52 94.5 89.8
ATE2 (0.07) −0.06 2.74 2.82 96.1 90.9 −0.08 2.75 2.78 95.6 91.0 −0.10 2.75 2.77 95.3 89.6

βZ (log(2)) 0.04 15.8 16.3 96.2 91.5 0.15 15.9 16.2 95.5 90.1 −0.17 15.9 16.1 95.6 90.3
ATE1 (0.15) −0.12 3.56 3.69 96.2 91.2 −0.03 3.59 3.65 95.0 90.0 −0.12 3.59 3.62 95.1 90.0
ATE2 (0.12) −0.09 2.87 2.96 95.9 90.6 −0.08 2.85 2.91 95.4 90.2 −0.12 2.85 2.89 95.6 90.1

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP1 and CP2, coverage probability
of 95% and 90% confidence intervals, respectively.

Table 2. Simulation results (multiplied by 100) for the estimates of the coefficients (αX1 , αX2 ) of the
covariate variables in the full propensity score model with true parameter values β0 = −1 in Study 1,
and −1.5 in study 2, (βX1 , βX2 ) = (log(1.2), log(1.5)), and different βZ values, α = (α0, αX1 , αX2 ) =

(−1, log(1.2), log(1.5)) in Study 1, and (0, log(1.2), log(1.5)) in Study 2.

n = 50 n = 100 n = 200
Bias SD ESE CP1 CP2 Bias SD ESE CP1 CP2 Bias SD ESE CP1 CP2

βZ = 0
αX1 0.99 13.0 12.8 96.0 90.3 1.19 12.0 11.7 95.7 89.5 0.32 11.0 11.1 95.2 90.2
αX2 1.29 10.8 10.9 96.4 91.6 0.91 10.1 10.2 95.6 90.9 0.44 9.82 9.84 95.5 90.3

βZ = log(1.2)
αX1 0.99 13.0 12.8 96.2 90.4 1.20 12.0 11.7 95.6 89.6 0.33 11.0 11.1 95.2 90.3
αX2 1.29 10.8 10.9 96.3 91.7 0.91 10.1 10.2 95.6 90.9 0.44 9.82 9.84 95.6 90.5

βZ = log(1.5)
αX1 1.00 13.0 12.8 96.2 90.2 1.20 12.0 11.7 95.5 89.5 0.33 11.0 11.1 95.3 90.3
αX2 1.30 10.8 10.9 96.3 91.9 0.93 10.1 10.2 95.9 91.1 0.44 9.82 9.84 95.4 90.3

βZ = log(2)
αX1 1.00 13.0 12.8 96.0 90.4 1.20 12.0 11.7 95.7 89.5 0.33 11.0 11.1 95.3 90.3
αX2 1.32 10.8 10.9 96.1 91.7 0.94 10.1 10.2 95.9 91.1 0.46 9.82 9.83 95.3 90.3

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP1 and CP2, coverage probability
of 95% and 90% confidence intervals, respectively.

The extended simulations, performed under the settings with K = 4 studies, corre-
lated covariates, and binomial, normal, and Poisson distributed outcome variables (see
Section 3.1 for detail), still reveal satisfactory performances of the proposed estimation
method; the results are shown in the Appendix C.
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The performance of the proposed method in terms of computation time is summarized
as follows. When K = 2, the computation time for a simulation case with n = 200 is 0.5 s
in a desktop computer with i7-9700 CPU, and the time increases to 1.2 s when K = 4 and
n = 200. Essentially, the computation time increases linearly with K. Also, when K = 4, the
computation time for running a case in the simulation study is 5.0 s when the size of the
reference sample increases to n = 1000.

4. A Real Data Application

In this section, we apply the proposed method to analyze the impact of waist circum-
ference (WC) on hypertension (HT) risk, while controlling for covariates such as age, sex,
body mass index (BMI), smoking status (SMK), drinking status (DRK), body fat percent-
age (BFP), heart rate (HR), and hip circumference (HC) among working-age individuals.
The analysis leverages regression analyses from two existing studies on the relationship
between WC and HT and a reference dataset encompassing the complete set of covariates.

4.1. Two Existing Studies on the Effect of Waist Circumference on Hypertension

The WC reflects the size of the visceral fat depot and is an effective clinical tool for
assessing the risk of diabetes and cardiovascular diseases [19]. Guagnano et al. [20] in-
dicated that WC seems to have a strong association with the risk of hypertension. In
recent years, Ren et al. [14] investigated the cut-off values for the obesity indices that
represent the elevated incidence of hypertension in Chinese adults aged between 18 and 65.
Hu et al. [15] indicated that a combination of WC and BMI was superior to individual in-
dices for identifying hypertension. Data from Ren et al. [14] and Hu et al. [15] were publicly
provided (https://doi.org/10.6084/m9.figshare.2151271.v1 (accessed on 15 February 2016),
https://doi.org/10.1371/journal.pone.0170238.s001 (accessed on 5 January 2017)). The
study of Hu et al. [15], termed Study 1, contains data on the covariate set X(1) including
age, sex, BMI, SMK, DRK, BFP, and HR, while the study of Ren et al. [14], termed Study 2,
contains data on the covariate set X(2) including age, sex, BMI, SMK, DRK, and HC. We
focus on working-age (20–65 years old) people and the subsamples from the two studies
meeting this criterion are of sizes n1 = 9926 and n2 = 2970, respectively, (after removing
missing observations).

4.2. The Reference Dataset with Complete Covariates

The Taiwan BioBank (TWB) database, created by Academia Sinica, comprises a
community-based cohort of over 200,000 study participants. It includes comprehensive
data on demographics, health behaviors, environmental factors, and biomarkers collected
through meticulously conducted questionnaires and thorough examinations. Details about
the TWB data can be found at https://www.twbiobank.org.tw/ (accessed on 1 June 2024).
The reference dataset we employ in the current analysis is based on the released subsample
of the TWB cohort consisting of 4575 randomly sampled study subjects aged 20–65 years.
The reference dataset contains data on the complete covariate set X including age, sex, BMI,
SMK, DRK, BFP, HR, and HC, but contains no data on either the treatment (WC) or the
outcome (HT).

4.3. The Proposed Analysis

In the following analysis, both WC and HT are defined as binary variables, classified
according to WC = I(waistcircumference > 80 cm) and HT = I(SBP ≥ 140 mmHg
or DBP ≥ 90 mmHg), where I(.) is the indicator function and SBP and DBP denote
systolic and diastolic blood pressures, respectively; the classification rules follow those in
Lean et al. (1998) [19]. The covariates age (years), BMI (kg/m2), BFP (%), HR (beats/min),
and HC (cm) are continuous variables, while the covariates sex (female vs. male), SMK
(yes vs. no), and DRK (yes vs. no) are binary.

We apply the proposed methods in Sections 2.3 and 2.4 to assess the treatment effect
of WC on the risk of HT controlling for the covariates age, sex, BMI, SMK, DRK, BFP, HR,

https://doi.org/10.6084/m9.figshare.2151271.v1
https://doi.org/10.1371/journal.pone.0170238.s001
https://www.twbiobank.org.tw/
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and HC, which are regarded as the complete covariate set among working-age people.
Specifically, the proposed analysis uses the results of the regression analyses from Study 1
(Hu et al. [15]) and Study 2 (Ren et al. [14]), as well as the reference dataset from the
TWB database. Both the analyses in Studies 1 and 2 employ linear logistic regressions to
examine the association between WC and HT by adjusting the covariate sets X(1) and X(2),
respectively; see Section 4.1 for detail. Also, both PS analyses in the two studies are based
on the linear logistic regressions for WC with the covariate sets X(1) and X(2), respectively.

In the proposed analysis, only the outcome and regression parameter estimates from
Studies 1 and 2 are employed, while individual data are not. The full outcome (HT) model
is specified by the linear logistic regression model for HT given the treatment (WC) and the
complete covariate set X, and the full PS model is specified as the linear logistic regression
model for WC given X; in these logistic regression models only the main effects of the
treatment and the covariate variables are considered. To account for possible differences
between the baselines of Studies 1 and 2, the intercept parameters of the full models,
including the outcome and the PS models, across the studies are treated as different.

4.4. The Analysis Results

The results for the proposed estimation of the logistic regression models for the
PS (treatment, WC) and the outcome (HT) adjusting for the complete covariate set are
provided in Tables 3 and 4, respectively. We can see from Table 3 that, older age, male, larger
BMI, higher heart rate, and larger hip circumference tend to have a waist circumference
greater than 80 cm (treatment group), and the estimation result seems to nicely summarize,
synthesize, and complement the results from the two existing studies. Also, we see from
Table 4 that, after adjusting for the covariates age, sex, body mass index (BMI), smoking
(SMK), drinking (DRK), body fat percentage (BFP), heart rate (HR), and hip circumference
(HC), the effect of waist circumference (WC) on the risk of hypertension (HT) is strongly
significant; the odds for hypertension in working-age people with waist circumference
greater than 80 cm is 1.4 (≈exp(0.323)) times as high as those with waist circumference
no greater than 80 cm (p-value < 0.001). In contrast, the effect of WC on the risk of HT
obtained by adjusting an incomplete covariate set can be somewhat higher (when adjusting
only for age, sex, BMI, SMK, DRK, BFP, and HR in Study 1) or lower (when adjusting only
for age, sex, BMI, SMK, DRK, and HC in Study 2). Since HR has its own significant effects
on both WC and HT, the lower effect of WC on HT without adjusting for HR obtained in
Study 2 is likely to be biased.

The average treatment effect of WC on HT, averaged over the covariate distribution, is
obtained as 0.044 with SE (standard error) = 0.009, p-value < 0.001, in Study 1 population,
and as 0.042 with SE = 0.009, p-value < 0.001, in Study 2 population. That is overall working-
age people with waist circumference larger than 80 cm can have 44 (42) additional cases of
HT per 1000 people in the Study 1 (2) population, 95% confidence interval 26–62 (24–60),
compared to those who with waist circumference no larger than 80 cm.

From the results mentioned above and shown in Table 3, we conclude that the pro-
posed integrated analysis, using information from both studies and the reference data with
complete covariates, can lead to less biased and possibly more efficient analysis results
than those from the original individual studies.
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Table 3. Results of the real-data analysis. The propensity score (PS) for waist circumference (WC)
with the covariates age, sex, body mass index (BMI), smoking status (SMK), drinking status (DRK),
body fat percentage (BFP), heart rate (HR), and hip circumference (HC) based on results from two
studies and a reference sample.

PS Model

Study 1 Study 2 Proposed
n1 = 9926 n1 = 2970 n = 4575
Est (SE) Est (SE) Est (SE)

Age 0.025 (0.002) * 0.041 (0.006) * 0.046 (0.003) *
Sex −1.234 (0.074) * −0.864 (0.150) * −1.237 (0.157) *
BMI 0.597 (0.013) * 0.301 (0.021) * 0.310 (0.028) *
SMK 0.009 (0.073) 0.055 (0.150) 0.052 (0.073)
DRK 0.065 (0.067) 0.229 (0.129) 0.118 (0.097)
BFP 0.035 (0.004) * - 0.025 (0.013)
HR 0.010 (0.002) * - 0.013 (0.004) *
HC - 0.217 (0.011) * 0.217 (0.017) *

Est: parameter estimate; SE: standard error; *: p-value < 0.05.

Table 4. Results of the real-data analysis. The risk of hypertension (HT) with treatment of waist
circumference (WC) adjusting for age, sex, body mass index (BMI), smoking status (SMK), drinking
status (DRK), body fat percentage (BFP), heart rate (HR), and hip circumference (HC) based on results
from two studies and a reference sample.

Outcome Model

Study 1 Study 2 Proposed
n1 = 9926 n1 = 2970 n = 4575
Est (SE) Est (SE) Est (SE)

WC 0.418 (0.067) * 0.047 (0.131) 0.323 (0.067) *
Age 0.085 (0.003) * 0.061 (0.006) * 0.080 (0.003) *
Sex −0.196 (0.074) * −0.382 (0.151) * −0.251 (0.126) *
BMI 0.101 (0.010) * 0.163 (0.020) * 0.109 (0.024) *
SMK 0.027 (0.071) 0.115 (0.146) 0.044 (0.064)
DRK −0.060 (0.066) −0.035 (0.131) −0.053 (0.084)
BFP 0.005 (0.004) - 0.005 (0.010)
HR 0.021 (0.002) * - 0.021 (0.003) *
HC - 0.002 (0.010) 0.003 (0.013)

Est: parameter estimate; SE: standard error; *: p-value < 0.05.

5. Discussion and Conclusions

In this study, we propose a new inference framework that integrates the results of
the outcome and the treatment (i.e., the PS) regression analyses across multiple existing
databases. These databases may vary in their coverage of covariate variables and may
contain incomplete data, potentially introducing bias in individual database analyses. More-
over, access to individual-level data from these databases may be restricted. Our proposal
integrates the existing PS and outcome regression analyses through a reference sample,
which contains only data on the complete covariate set. We obtain consistent estimates for
the parameters of the full PS and outcome regression models and for the ATE. The new
proposal extends the original generalized meta-analysis method of Kundu et al. [16] by
further considering the treatment (propensity score) regression in addition to the outcome
regression. Also, the new proposal can apply with a general outcome variable, such as
one following a generalized linear model, and hence is more flexible than the work of
Li et al. [21], which considers the setting similar to ours but is restricted to normality
outcome and linear regression model.

Our approach necessitates a dataset with comprehensive covariate information, which
acts as a benchmark for the underlying covariate distribution [16]. Such a reference dataset
could be sourced from a large-scale database like the Taiwan Biobank, as outlined in
Section 4 of our application. Alternatively, a reference sample might be gathered through a
smaller validation study, a method commonly discussed in the epidemiological literature
(e.g., Stümer et al. [22]).

As in the existing methods, such as Kundu et al. [16], for integrating common informa-
tion from different studies, we require the underlying treatment and outcome distributions
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to be the same across various studies. When this assumption is not satisfied, we should
interpret the parameter estimates from the proposed method with caution, since they no
longer represent consistent estimates for some common parameters, but instead represent
the estimates for some “average effects” over different studies.

In summary, our proposal is the best applicable in the following two scenarios: (1) A
multi-center study where individual data from each of the centers are not accessible except
for the derived summary statistics (e.g., regression coefficient estimates), and an independent
reference sample of complete covariate data is available. (2) A meta-analysis where results
for both the outcome and the treatment (propensity score) regression analyses are available
for various studies, together with a reference sample of complete covariate data. In both
scenarios, our approach optimally integrates analysis results from diverse data sources to
yield valid inferences on treatment effects using summarized and synthesized information.
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Appendix A. Estimation of the Matrices ∆ and Λ

The matrices ∆ and Λ are defined as ∆ = E
{

U(X; α, β)UT(X; α, β)
}

, and

Λ =

(
Λ(1) Λ(1,2)

Λ(1,2)T Λ(2)

)

with Λ(j) = diag
(

Λ
(j)
1 , . . . , Λ

(j)
K

)
, j = 1, 2, , Λ(1,2) = diag

(
Λ

(1,2)
1 , . . . , Λ

(1,2)
K

)
, where

(
Λ

(1)
k Λ

(1,2)
k

Λ
(1,2)T
k Λ

(2)
k

)
=

1
ck

E


 tk

(
Z | X(k); α, θk

)
sk

(
Y | Z, X(k); α, β, θk, γk

)  tk

(
Z | X(k); α, θk

)
sk

(
Y | Z, X(k); α, β, θk, γk

) T


≡ Λ∗
k , for k = 1, . . . , K,

ck = nk/n. In practice, we can first use the identity matrix for the weight C, namely
minimize the objective function Un(α, β)TUn(α, β) to obtain the initial estimator (α̃, β̃) for
(α, β), and use the initial estimator to estimate the matrix ∆ by

∆̂ =
1
n

n

∑
i=1

U
(

Xi; α̃, β̃
)

UT
(

Xi; α̃, β̃
)

and the matrix Λ∗
k (k = 1, . . . , K) by

Λ̂
∗
k =

(
1
ck

)
Pn

E(Y,Z)|X


 tk

(
Z | X(k); θ̂k

)
sk

(
Y | Z, X(k); θ̂k, γ̂k

)  tk

(
Z | X(k); θ̂k

)
sk

(
Y | Z, X(k); θ̂k, γ̂k

) T



where Pn{ f (X)} = 1/n ∑n
i=1 f (Xi) is the empirical measure with respect to the reference

sample and is evaluated at (α, β) = (α̃, β̃). The optimal weight C is then estimated by ∆̂ + Λ̂.
Note that, when the outcome regression in study k is specified by a GLM with a

dispersion parameter not fixed to 1 and estimated from study data, the calculation of Λ̂∗
k

involves the estimated value of the dispersion parameter.

Appendix B. Large Sample Theory for the ATE Estimator µ̂

By the consistency of the estimator β̂ and the continuous mapping theorem, in
large samples, the ATE estimator µ̂ converges to µ = E(Y1) − E(Y0) with probability
one. Also, by the delta method,

√
n(µ̂ − µ) converges in distribution to a zero-mean

normal distribution with the variance given by ω + ΦΩβΦT − 2ACTΓTΦT with ω =
var{Q(X; β)}, Φ = E{∂Q(X; β)/∂β}, Ωβ being the lower right p × p (p = dim(β)) subma-

trix of Ω =
{

ΓT(∆ + Λ)−1Γ
}−1

, i.e., the asymptotic covariance of
√

n
(

β̂ − β
)

, the matrix

A = E
{

Q(X; α, β)U(X; α, β)T}, H being the matrix formed by the lower p rows of Ω, and
Γ, ∆, and Λ are given in Section 2.3 and Appendix A. The estimation of the asymptotic
variance of µ̂ can be performed similarly to that of the asymptotic covariance of (α̂, β̂) as
mentioned in Appendix A.

Appendix C. Extended Simulations

The extended simulations, performed under the settings with K = 4 studies, correlated
covariates, and binomial, normal, and Poisson distributed outcome variables (see Section 3.1
of the main text for details about the simulation settings), are reported in the following
supplementary tables, including results for both the small sample (with sample size of
200 or 500) and the large sample (with samples size of 1000), and both the outcome
and the propensity score regressions. Tables A1–A4 are for the setting with βz = 0,
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while Tables A5–A8 are for the setting with βz = log(1.5). As seen from these tables, the
simulation results still reveal satisfactory performances of the proposed estimation method.

Table A1. Simulation results (multiplied by 100) for the estimates of the coefficient βZ of the treatment
variable in the full outcome model and the ATEs for the populations of the existing datasets under
the binomial, normal, or Poisson outcome distribution; true value of βz = 0 (small sample case with
sample size of 200 or 500).

n = 200 n = 500
Bias SD ESE CP Bias SD ESE CP

Binomial
βZ (0) −2.06 31.0 31.9 96.6 −1.33 20.0 19.4 94.6
ATE1 (0) −0.13 4.98 5.17 95.5 −0.11 3.29 3.20 94.2
ATE2 (0) 0.04 3.73 3.88 95.6 −0.05 2.45 2.40 94.4
ATE3 (0) 0.07 2.67 2.76 95.7 0.00 1.72 1.69 94.4
ATE4 (0) 0.10 1.77 1.86 97.1 0.00 1.14 1.15 94.5

Normal
βZ (0) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE1 (0) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE2 (0) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE3 (0) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE4 (0) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2

Poisson
βZ (0) −0.53 9.94 10.1 95.6 −0.20 6.12 6.17 94.7
ATE1 (0) −0.69 22.3 22.7 95.6 −0.25 13.8 13.9 95.1
ATE2 (0) −0.28 13.5 13.9 95.6 −0.10 8.37 8.43 95.0
ATE3 (0) −0.14 8.29 8.42 95.6 −0.05 5.08 5.11 95.0
ATE4 (0) −0.04 5.06 5.13 95.9 −0.02 3.09 3.11 95.1

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.

Table A2. Simulation results (multiplied by 100) for the estimates of the coefficients (αX1 , αX2 , αX3 , αX4 )

of the covariate variables in the full propensity score model with true parameter values
(αX1 , αX2 , αX3 , αX4 ) = (log(1.2), log(1.5)),− log(1.2),− log(1.5)), under the binomial, normal, or
Poisson outcome distribution; true value of βz = 0 (small sample case with sample size of 200 or 500).

n = 200 n = 500
Bias SD ESE CP Bias SD ESE CP

Binomial
αX1 0.61 23.1 23.3 96.1 −0.26 14.5 14.2 96.2
αX2 1.40 21.8 22.6 96.1 1.12 13.3 13.6 95.6
αX3 −0.76 41.3 39.7 95.3 0.53 23.8 24.2 95.5
αX4 −5.39 97.0 47.8 95.9 −1.00 29.0 29.0 95.0

Normal
αX1 0.57 23.5 23.4 95.7 −0.12 14.6 14.2 95.4
αX2 1.35 23.3 22.5 95.2 0.28 14.1 13.6 94.3
αX3 −2.58 40.7 39.8 95.6 −0.54 24.1 24.2 95.5
αX4 −3.00 50.3 47.9 95.5 0.17 29.2 29.0 95.2

Poisson
αX1 0.58 23.1 23.3 96.2 −0.29 14.5 14.2 96.2
αX2 1.72 21.6 22.4 96.3 1.12 13.1 13.4 96.0
αX3 −0.85 41.1 39.5 95.4 0.51 23.6 24.1 95.5
αX4 −5.92 97.0 47.6 96.3 −1.02 29.0 28.9 95.0

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.
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Table A3. Simulation results (multiplied by 100) for the estimates of the coefficient βZ of the treatment
variable in the full outcome model and the ATEs for the populations of the existing datasets under
the binomial, normal, or Poisson outcome distribution; true value of βz = 0 (large sample case with
sample size of 1000).

n = 1000
Bias SD ESE CP

Binomial
βZ (0) −0.22 13.3 13.5 94.5
ATE1 (0) 0.01 2.22 2.26 94.4
ATE2 (0) 0.02 1.65 1.68 94.2
ATE3 (0) 0.02 1.15 1.18 94.4
ATE4 (0) 0.03 0.78 0.79 94.7

Normal
βZ (0) −0.08 10.14 9.95 94.1
ATE1 (0) −0.08 10.14 9.95 94.1
ATE2 (0) −0.08 10.14 9.95 94.1
ATE3 (0) −0.08 10.14 9.95 94.1
ATE4 (0) −0.08 10.14 9.95 94.1

Poisson
βZ (0) −0.11 4.22 4.32 95.5
ATE1 (0) −0.17 9.47 9.71 95.6
ATE2 (0) −0.08 5.76 5.90 95.8
ATE3 (0) −0.05 3.50 3.58 95.7
ATE4 (0) −0.02 2.11 2.17 95.7

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.

Table A4. Simulation results (multiplied by 100) for the estimates of the coefficients (αX1 , αX2 , αX3 , αX4 )

of the covariate variables in the full propensity score model with true parameter values
(αX1 , αX2 , αX3 , αX4 ) = (log(1.2), log(1.5)),− log(1.2),− log(1.5)), under the binomial, normal, or
Poisson outcome distribution; true value of βz = 0 (large sample case with sample size of 1000).

n = 1000
Bias SD ESE CP

Binomial
αX1 −0.33 9.79 9.90 96.2
αX2 0.87 9.48 9.51 94.9
αX3 0.38 17.2 16.9 94.9
αX4 −1.27 20.3 20.3 95.3

Normal
αX1 −0.38 9.82 9.86 94.8
αX2 −0.02 9.14 9.45 96.1
αX3 0.09 16.6 16.9 95.6
αX4 0.38 20.3 20.2 94.9

Poisson
αX1 −0.32 9.78 9.88 96.3
αX2 0.85 9.42 9.39 95.4
αX3 0.43 17.1 16.8 94.9
αX4 −1.25 20.3 20.2 95.4

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.
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Table A5. Simulation results (multiplied by 100) for the estimates of the coefficient βZ of the treatment
variable in the full outcome model and the ATEs for the populations of the existing datasets under
the binomial, normal, or Poisson outcome distribution; true value of βz = log(1.5) = 0.41 (small
sample case with sample size of 200 or 500).

n = 200 n = 500
Bias SD ESE CP Bias SD ESE CP

Binomial
βZ(log(1.5) = 0.41) −0.40 28.4 29.4 96.7 −0.94 17.8 17.8 95.3
ATE1 (0.08) −0.15 5.30 5.53 95.5 −0.20 3.40 3.42 94.4
ATE2 (0.06) 0.04 4.31 4.44 95.3 −0.10 2.72 2.74 95.0
ATE3 (0.04) 0.11 3.30 3.36 95.2 −0.02 2.05 2.06 94.0
ATE4 (0.03) 0.14 2.37 2.41 93.4 −0.01 1.44 1.47 93.5

Normal
βZ(log(1.5) = 0.41) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE1 (0.41) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE2 (0.41) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE3 (0.41) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2
ATE4 (0.41) 0.66 22.7 22.7 95.1 −0.11 14.3 14.1 95.2

Poisson
βZ(log(1.5) = 0.41) −0.63 9.04 9.08 95.9 −0.18 5.56 5.58 95.0
ATE1 (1.13) −1.55 28.1 28.2 95.2 −0.52 17.6 17.3 94.4
ATE2 (0.68) −0.67 17.9 17.8 94.8 −0.19 11.0 10.9 94.2
ATE3 (0.41) −0.31 11.3 11.3 94.6 −0.03 6.85 6.96 95.6
ATE4 (0.25) −0.17 7.04 7.15 95.4 −0.03 4.38 4.39 94.8

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.

Table A6. Simulation results (multiplied by 100) for the estimates of the coefficients (αX1 , αX2 , αX3 , αX4 )

of the covariate variables in the full propensity score model with true parameter values
(αX1 , αX2 , αX3 , αX4 ) = (log(1.2), log(1.5)),− log(1.2),− log(1.5)), under the binomial, normal, or
Poisson outcome distribution; true value of βz = log(1.5) = 0.41 (small sample case with sample size
of 200 or 500).

n = 200 n = 500
Bias SD ESE CP Bias SD ESE CP

Binomial
αX1 0.62 23.1 23.3 96.1 −0.25 14.5 14.2 96.1
αX2 1.37 21.8 22.6 96.2 1.13 13.3 13.6 95.6
αX3 −0.76 41.3 39.7 95.5 0.51 23.9 24.2 95.6
αX4 −5.38 97.0 47.7 96.0 −1.02 29.0 29.0 94.9

Normal
αX1 0.57 23.5 23.4 95.7 −0.12 14.6 14.2 95.4
αX2 1.35 23.3 22.5 95.2 0.28 14.1 13.6 94.3
αX3 −2.58 40.7 39.8 95.6 −0.54 24.1 24.2 95.5
αX4 −2.98 50.3 47.9 95.5 0.17 29.2 29.0 95.2

Poisson
αX1 −0.51 23.2 23.2 96.7 −0.12 14.0 14.1 95.9
αX2 1.38 22.3 22.1 95.5 0.66 12.9 13.4 96.0
αX3 0.28 38.7 39.3 95.6 −0.72 23.7 24.1 95.7
αX4 −3.51 45.5 47.2 97.3 −1.03 29.0 28.9 95.4

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.
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Table A7. Simulation results (multiplied by 100) for the estimates of the coefficient βZ of the treatment
variable in the full outcome model and the ATEs for the populations of the existing datasets under the
binomial, normal, or Poisson outcome distribution; true value of βz = log(1.5) = 0.41 (large sample
case with sample size of 1000).

n = 1000
Bias SD ESE CP

Binomial
βZ(log(1.5) = 0.41) 0.22 12.3 12.4 95.5
ATE1 (0.08) 0.04 2.39 2.41 94.9
ATE2 (0.06) 0.05 1.90 1.93 94.5
ATE3 (0.04) 0.06 1.42 1.45 94.6
ATE4 (0.03) 0.06 1.03 1.04 95.3

Normal
βZ(log(1.5) = 0.41) −0.08 10.1 9.95 94.1
ATE1 (0.41) −0.08 10.1 9.95 94.1
ATE2 (0.41) −0.08 10.1 9.95 94.1
ATE3 (0.41) −0.08 10.1 9.95 94.1
ATE4 (0.41) −0.08 10.1 9.95 94.1

Poisson
βZ(log(1.5) = 0.41) 0.19 3.80 3.86 95.1
ATE1 (1.13) 0.42 11.7 12.0 96.2
ATE2 (0.68) 0.41 7.42 7.61 95.3
ATE3 (0.41) 0.35 4.76 4.85 95.5
ATE4 (0.25) 0.16 3.02 3.06 95.9

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.

Table A8. Simulation results (multiplied by 100) for the estimates of the coefficients (αX1 , αX2 , αX3 , αX4 )

of the covariate variables in the full propensity score model with true parameter values
(αX1 , αX2 , αX3 , αX4 ) = (log(1.2), log(1.5)),− log(1.2),− log(1.5)), under the binomial, normal, or
Poisson outcome distribution; true value of βz = log(1.5) = 0.41 (large sample case with sample size
of 1000).

n = 1000
Bias SD ESE CP

Binomial
αX1 −0.33 9.80 9.90 95.8
αX2 0.90 9.46 9.51 95.2
αX3 0.37 17.17 16.89 94.9
αX4 −1.31 20.23 20.27 95.4

Normal
αX1 −0.38 9.82 9.86 94.8
αX2 −0.02 9.14 9.45 96.1
αX3 0.09 16.61 16.86 95.6
αX4 0.38 20.27 20.18 94.9

Poisson
αX1 0.04 9.53 9.84 95.6
αX2 −0.11 9.08 9.34 95.6
αX3 0.06 16.6 16.8 95.6
αX4 0.32 20.3 20.2 94.3

n, size of reference data; SD, standard deviation; ESE, estimated standard error; CP, coverage probability of 95%
confidence intervals.
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