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Abstract: In this paper, we develop a new Best Uniform Rational Approximation-Semi-Discrete
(BURA-SD) method taking into account the singularities of the solution of fractional diffusion prob-
lems in polygonal domains. The complementary capabilities of the exponential convergence rate
of BURA-SD and the hp FEM are explored with the aim of maximizing the overall performance. A
challenge here is the emerging singularly perturbed diffusion–reaction equations. The main contribu-
tions of this paper include asymptotically accurate error estimates, ending with sufficient conditions
to balance errors of different origins, thereby guaranteeing the high computational efficiency of
the method.
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1. Introduction

We analyze a new method for numerically solving a spectral fractional diffusion equa-
tion in a curvilinear polygonal domain Ω ⊂ R2. There are no additional constraints on
the geometry of Ω. The equation can be written in the form Aαu(x) = f (x), where A
is a positive definite self-adjoint second-order elliptic operator in Ω with homogeneous
Dirichlet data. In recent years, several groups of methods have been proposed to approxi-
mate the inverse of Aα in the case of sub diffusion, i.e., for α ∈ (0, 1). Despite the different
approaches in obtaining them, they can all be written as a rational approximation. In the
original BURA (Best Uniform Rational Approximation) method, we used the approxima-
tion of zα, z ∈ [0, 1]. In the following years, this approach was applied to more general
equations that involve Aα. By definition, when applicable, BURA methods have the best
accuracy. The same applies to their computational complexity as well. Let us consider the
second-order elliptic equation with homogeneous Dirichlet data

−∇ · (a(x)∇v(x)) = g(x), for x ∈ Ω,
v(x) = 0, for x ∈ ∂Ω.

(1)

Here, Ω is a bounded curvilinear polygonal domain inR2, and we assume that 0 < a0 ≤ a(x)
for x ∈ Ω. The fractional powers of the elliptic operator associated with the problem (1) are
defined in terms of the weak form of the differential equation, namely, v(x) is the unique
function in V = H1

0(Ω) = {w(x) ∈ H1(Ω) : w(x) = 0 for x ∈ ∂Ω} satisfying

A(v, w) = (g, w), ∀w ∈ V, (2)
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where

A(v, w) :=
∫

Ω
a(x)∇v(x) · ∇w(x) dx and (v, w) :=

∫
Ω

v(x)w(x) dx.

For g ∈ X := L2(Ω), (2) defines a solution operator Υg := v. Following (1), we introduce
the unbounded operator A with domain

D(A) = {Υg : g ∈ X}

such that Av = g for u ∈ D(A) where g ∈ X with Υg = u. A is well defined as Υ
is injective.

Now, we consider the spectral fractional diffusion problem

Aαu = f , with a solution u = A−α f , α ∈ (0, 1), (3)

where

Aαu =
∞

∑
j=1

λα
j (u, ϕj)ϕj, and therefore u =

∞

∑
j=1

λ−α
j ( f , ϕj)ϕj. (4)

Here, α is the fractional power of the diffusion operator, {ϕj}∞
j=1 are the normalized

eigenfunctions of A, satisfying the equalities (Aϕi, ϕj) = (ϕi, ϕj) = δi,j, also assuming that
the positive eigenvalues {λj}∞

j=1 are in monotonically increasing ordering, i.e., 0 < λi ≤ λj
if i < j.

We apply the finite element method (FEM) to the numerical solution of (3), thus
obtaining the linear system

Aαuh = fh. (5)

Here, A ∈ RN×N is a sparse symmetric positive definite (SPD) matrix,

Aα = WtDαW, and consequently A−α = WtD−αW, (6)

where D is the diagonal matrix of the positive eigenvalues {λi,h}N
i=1 of A, and W is the

matrix of the corresponding eigenvectors {ϕi,h}N
i=1. Analogous to the continuous case, here

we assume that the eigenvectors of A are normalized to satisfy the equalities (Aϕi,h, ϕj,h) =
(ϕi,h, ϕj.h) = δi,j, and 0 < λi,h ≤ λj,h if i < j.

In the case of FEM discretization, the matrix A is symmetric with respect to the energy
scalar product associated with the mass matrix. The details are discussed in Section 2.

The Formulas (4) and (6) are clear and simple to interpret. But, are they applicable
in computational practice? In this regard, the first question is if the spectrum of A or A
is known, or if it is easily computable. In the general case (regarding the geometry of Ω
in particular), this is not the case. And, in the event that the spectrum is available, the
problem of implementation remains. In the discrete case, this concerns the computational
complexity to perform matrix-vector multiplications with W and Wt, which, excluding
some very special cases, is of order O(N2). Therefore, the relations (4) and (6) can be mainly
used in theoretical analyses.

There are different definitions of fractional Laplacian operators, and more generally of
fractional diffusion operators. They correspond to nonequivalent boundary value problems.
Fractional diffusion operators are non-local. As a result, the matrices emerging after their
finite element discretization are dense. One of the reasons for the growing interest in
spectral fractional diffusion is the recognized opportunities for development of efficient
numerical methods for multidimensional problems. Advances on this topic have been
strongly influenced by the work of Caffarelli and Silvestre [1] (see also [2]) on an extension
problem associated with the fractional Laplacian. Almost ten years later, this result has
been used to develop a numerical method [3] where the non-locality is avoided at the cost
of the increased dimensions of the computational domain.
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Transformations of the boundary value problem with fractional Laplacian in Ω ⊂ Rd to
(d+ 1)-dimensional local (of non-fractional order) equations have been used in a number of
approaches proposed over the past decade. From this view point, and without pretending
for completeness, we will cite the following classification used, for example, in [4]:

AP1. Methods based on the elliptic extension in Ω × (0, ∞), see, e.g., [3,5,6];
AP2. Methods based on the pseudo-parabolic extension in Ω × (0, 1), see, e.g., [7–9];
AP3. Methods based on the Dunford–Taylor integral representation of the solution, see,

e.g., [10,11];
AP4. Methods based on the best uniform rational approximation (BURA), see, e.g., [12,13].

Despite the substantial difference of the approaches AP1–AP4, the implementation of all of
them can be interpreted as some rational approximation of A−α. This common property was
first systematically discussed in [14]; see also the survey paper [15]. Over the next few years,
the work on the further development of efficient numerical methods for space-fractional
differential equations is actively continuing [4,16–28].

In the recent work [20], the convergence of hp FEM for spectral fractional diffu-
sion in polygons is studied. The developed method is based on the elliptic extension in
Ω × (0, ∞), i.e., on the approach AP1. Following the spectral decomposition proposed
in [5], the extended elliptic operator is diagonalized with respect to the auxiliary variable
in (0, ∞). Then, hp FEM is applied to the obtained series of auxiliary singularly perturbed
diffusion–reaction problems in Ω. Using the error analysis published in [29], exponential
convergence is proven.

Our research is motivated by [20]. However, the construction of the proposed method
is significantly different. The goal is to improve the computational complexity as well as
reduce some numerical stability limitations associated with the operator diagonalization
used in [20]. While ref. [20] exploits the elliptic extension of Caffarelli and Silvestre [1], this
new method is based on best uniform rational approximation of the solution. The similari-
ties/differences and advantages/disadvantages of these two approaches to numerically
solving fractional diffusion problems are discussed in detail in the survey paper [12]. The
main contributions of this paper are as follows. The developed and analyzed semi-discrete
BURA method is substantially new. The abbreviation BURA-SD is used to distinguish the
new method from the previously known fully discrete BURA method. The semi-discrete
scheme allows for the better adaptation of the construction and analysis of the rational
approximation to the regularity of the solution in the case of a polygonal domain. To
maximize the quality of the overall computational complexity, we integrate the optimal
exponential convergence rate of BURA-SD and the exponential convergence rate of hp FEM.

The rest of the paper is organized as follows. Basic results about hp FEM discretization
in curvilinear polygonal domains are presented in Section 2. Section 3 discusses how to
combine BURA-SD and hp FEM discretization. The next two sections contain the main
results of the paper. Exponential error estimates of the semi-discrete and fully discrete
BURA-SD methods are obtained in Section 4. The computational complexity is then
analyzed by balancing the different types of errors in the next section. At the end, brief
concluding remarks and challenging topics for future research are given.

2. hp FEM Discretization

The finite element approximation is defined in terms of a conforming finite dimen-
sional space Vh,p ⊂ V of piece-wise polynomial functions over a triangulation Th of the
polygonal domain Ω. Here, we consider isoparametric Lagrangian finite elements (FE) of
degree p ≥ 1. Following the assumptions of [20], we allow both triangular and quadrilat-
eral elements K ∈ Th, which in the general case for p > 1 can be curvilinear. In principle,
shape regularity of the triangulation is not required. In fact, as we shall discuss later,
anisotropic mesh refinement towards ∂Ω is natural to be applied to resolve singularities
of the boundary layers or around corner points of the boundary. Such singularities are
generically present in solutions of fractional diffusion problems in space.
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The discrete operator Ah is defined as the inverse of Υh : Vh,p → Vh,p with Υhgh := vh,
where vh ∈ Vh,p is the unique solution to

A(vh, wh) = (gh, wh), for all wh ∈ Vh,p. (7)

Then, the finite element numerical solution of (3), i.e., the approximation uh ∈ Vh,p of
u, is defined by the equation

Aα
huh = πh f , or equivalently uh = A−α

h πh f := A−α
h fh. (8)

Here, πh stands for the L2(Ω) projection onto Vh,p. In this case, N denotes the dimension
of the FEM space Vh,p and equals the number of (interior with respect to Ω) degrees of
freedom. The operator Ah in the finite element case is a map of Vh,p into Vh,p so that
Ahvh := gh, where gh ∈ Vh,p is the unique solution to

(gh, wh) = A(vh, wh), for all wh ∈ Vh,p. (9)

Let us denote by {ϕj}N
j=1 the standard nodal basis of Vh,p. With respect to this basis, the

operator Ah is represented by the matrix

A = M−1S, where Si,j = A(ϕi, ϕj), Mi,j = (ϕi, ϕj). (10)

In accordance with the terminology adopted in the finite element method, M and S are
the mass and stiffness matrices, respectively. They are both symmetric and positive defi-
nite (SPD).

Obviously, if w = Ahz and w, z ∈ RN are the coefficient vectors corresponding to
w, z ∈ Vh,p, then w = Az. Now, for the coefficient vector fh corresponding to fh = πh f , we
obtain fh = M−1Fh , where Fh is the vector with entries

Fh,j = ( f , ϕj), for j = 1, 2, . . . , N.

Thus, using vector notation so that uh is the coefficient vector representing the solution uh
through the nodal basis, we can write the finite element approximation of (3) in the form of
a system

Aαuh = fh = M−1Fh, which implies Suh = Fh. (11)

Therefore, for the finite element approximation of the subdiffusion problem (7) we obtain
the equation

MAαuh = Fh, or equivalently uh = A−αM−1Fh.

We note that the matrix A ∈ RN×N is SPD with respect to the Euclidean space defined by
the energy inner product associated with the mass matrix, that is

(v, w)M = (Mv, w).

This follows directly from the definition (10), which implies the equality

(Av, w)M = (Sv, w). (12)

In the context of our study, the FEM problem (8) is by default large-scale, i.e., N >> 1.
When analyzing the new BURA-SD algorithm, we will assume that systems of the type
(S+ dM)vh = gh, d ≥ 0 and vh, gh ∈ RN can be solved numerically in an efficient way by
a method that requires O(N) arithmetic operations, with a constant possibly depending
on p. This can be achieved by using fast iterative solvers for the aforementioned auxiliary
sparse linear systems, based for example on multigrid, multilevel or domain decomposition
preconditioners, see, e.g., [30]. In the present paper, our goal is to construct a solution
method for (3) whose total computational complexity is as close to O(N) as possible.
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In the case of quasi-uniform partition Th and h FEM approximation, the condition
number of the stiffness matrix S increases as h−2 when h → 0, i.e., κ(S) = O(h−2). Here, the
focus is on the hp FEM. It is known that in this case, shape functions based on interpolating
Lagrange polynomials at Gauss–Lobato points play an important role. Now, let us denote
by SGL the standard nodal basis stiffness matrix and by SSP the stiffens matrix obtained
if the corresponding spectral basis functions are used in the interior of the finite elements
K ∈ Thp. If the mesh Thp is quasi-uniform, then the following estimates hold (see [29]):

κ(SGL) = O(p4 log p h−2) and κ(SSP) = O(p3 h−2). (13)

As mentioned above, it is natural to apply local mesh refinement towards ∂Ω to resolve
singularities of the boundary layers or around corner points of the boundary. The case of
an L-shaped domain with a mesh refined towards the re-entrant corner is discussed in [31],
see also [32]. From the presented numerical test, one can see in particular the exponential
growth of κ(SGL) when the number of layers increases. The behavior of SSP is significantly
better. Under rather more general conditions, it was shown in [29] that, for meshes that
are refined geometrically toward singularities, κ(SSP) is independent of the number of
refinement levels.

The condition number of the mass matrix is also of interest when the BURACD solver
is implemented. In the case of quasi-uniform partition Th and h FEM approximation,
κ(M) = O(1). Now, unlike (13), if Thp is quasi-uniform and the hp FEM is applied,

κ(MGL) = O(p4 log p) and κ(MSP) = O(p3). (14)

These estimates do not depend on h, which is a general property of the condition number
of the mass matrix. Since the element mass matrix is positive definite, estimates of this type
are proved element-wise. And again, under conditions similar to those in [29], for meshes
that are geometrically refined in the singularity region, κ(MSP) does not depend on the
number of levels of refinement.

Estimates (13) and (14) are important for a better understanding of the computational
complexity analysis in Section 5.

Finally, although the improved BURA method presented in [12] is robust with respect
to the condition number of the discrete elliptic operator, the estimate of κ(A) = κ(M−1S)
is of practical importance in computing the best uniform rational approximation. So, for
example, in the numerical tests, we use the BRASIL [33] software to calculate BURA, where
an upper bound of κ(A) is needed as an input parameter.

3. BURA-SD

Let us denote by rα,k(z) the best uniform rational approximation (BURA) of degree k
of zα in [0, 1], belonging to the diagonal of the Walsh table. This means that we consider the
rational functions rk(z) = Pk(z)/Qk(z), where Pk and Qk are polynomials of equal degree
k. By definition, rα,k(z) is the error minimizer for which

Eα,k := min
rk(z)∈R(k,k)

max
z∈[0,1]

|zα − rk(z)|. (15)

The following additive and multiplicative representations of rα,k(z) can be used in the
implementation of the BURA methods and algorithms:

rα,k(z) = c0 +
k

∑
i=1

ci
z − di

= c0

k

∏
i=1

z − ξi
z − di

, where ci > 0. (16)

As was shown in [13], all k zeros ξ1, . . . , ξk and poles d1, . . . , dk are real and negative. Even
more precisely, they are interlacing, that is, with appropriate numbering

0 > ξ1 > d1 > ξ2 > d2 > . . . > ξk > dk > −∞.
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The following asymptotically sharp exponential estimate of Eα,k (see for more de-
tails [13] and references there in) holds:

Eα,k ≤ 4α+1 sin(απ) e−2π
√

αk. (17)

In accordance with the introduced notations, the BURA approximation of A−α for α ∈ (0, 1)
is defined as

A−α ≈ λ−α
1,h rα,k(λ1,hA−1),

where λ1,h is the smallest eigenvalue of A. In the particular case of FEM approximation,
see (10), λ1,h is the smallest positive eigenvalue of the generalized eigenvalue problem

Sv = λMv.

Here, we will use the variant of the BURA method as proposed and studied in [12], see also
the survey paper [15]. Let us denote by wh the BURA approximation of the solution uh of
hp FEM system (11) defined as follows

uh := λ−α
1,h rα,k(λ1,hA−1)fh. (18)

Following (16), we distinguish additive and multiplicative variants of the BURA
method. So far, the first one is more often used and analyzed. In this paper, we will look at
both. The additive variant relies on the partial fraction decomposition of rα,k(1/z), while
the multiplicative one deals with the factorization of rα.k(1/z). Thus, transforming the
expressions (16), we obtain the equalities

r̃α,k(z) := rα,k(1/z) = c̃0 +
k

∑
i=1

c̃i

z − d̃i
= c̃0

k

∏
i=1

z − ξ̃i

z − d̃i
. (19)

Here, c̃i > 0 and d̃i, ξ̃i < 0. In this way, the variants of BURA method based on (19) read as

uh = λ−α
1,h

[
c̃0I+

k

∑
i=1

λ1,h c̃i(A− λ1,hd̃iI)−1

]
fh,

uh = λ−α
1,h c̃0

k

∏
i=1

[
(A− λ1,h ξ̃iI)(A− λ1,hd̃iI)−1

]
fh.

(20)

Thus, the additive and multiplicative variants of the BURA method for numerical solution
of (3) require solving k auxiliary linear systems with SPD matrices, which are positive
diagonal shifts of A. We should note here that the matrix A = M−1S is dense and we do not
want to compute it explicitly and then solve the systems that appear in (20). To overcome
this problem we rewrite the additive and multiplicative representations (20) in the form

uh = λ−α
1,h

[
c̃0M−1 + ∑k

i=1 λ1,h c̃i(S− λ1,hd̃iM)−1
]
Fh,

uh = λ−α
1,h c̃0M−1 ∏k

i=1
[
(S− λ1,h ξ̃iM)(S− λ1,hd̃iM)−1]Fh.

(21)

Thus, the determining part of the computational complexity the BURA method is due to
solving k linear systems with sparse SPD matrices, which are positive shifts of the stiffness
matrix S with the mass matrix M.

The discussed BURA method can be directly applied to the hp FEM discretization
of (3) as follows:
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BURA method

(1) Consider the fractional diffusion problem (3), Aαu = f , α ∈ (0, 1).
(2) Choose the hp FEM space Vh,p ⊂ V and compute the stiffness matrix S corresponding

to the elliptic operator A and the mass matrix M.
(3) Choose the degree of rational approximation k and find the best uniform rational

approximation rα,k(z) of zα, z ∈ [0, 1].
(4) Applying (18), compute the BURA approximation of the solution uh of the system (11),

Aαuh = fh.
(5) Find the BURA approximation of u ∈ V as the hp FEM function uh ∈ Vh represented

by the nodal basis vector uh.

We now introduce the BURA-SD method. In the new method, the best uniform rational
approximation is applied to the continuous fractional diffusion equation. As we will see, the
semi-discrete BURA approximation leads to a composite method whose implementation
and analysis better suits the problem at hand.

BURA-SD method

(1) Consider the fractional diffusion problem (3), Aαu = f , α ∈ (0, 1).
(2) Choose the degree of rational approximation k and find the best uniform rational

approximation rα,k(z) of zα, z ∈ [0, 1].
(3) Find the semi-discrete BURA approximation û of u by the formula

û := λ−α
1 rα,k(λ1A−1) f . (22)

(4) Choose the hp FEM space Vh,p ⊂ V and compute the stiffness matrix S corresponding
to the elliptic operator A and the mass matrix M. Apply the hp FEM to (22) and obtain
the approximation ûh of û, which satisfies the equality

ûh := λ−α
1 rα,k(λ1A−1)fh, (23)

(5) Find the BURA approximation of û ∈ V as the hp FEM function ûh ∈ Vh represented
by the nodal basis vector ûh.

Remark 1. The BURA and BURA-SD methods are not equivalent, but the respective approxima-
tions asymptotically coincide. More precisely, it is easy to see that

lim
λ1,h→λ1

uh = ûh, and consequently lim
λ1,h→λ1

uh = ûh. (24)

Let us recall that the first eigenvalue of the operator A associated with the elliptic boundary value
problem (1) is uniformly separated from 0. Thus, λ1 = O(1) and accordingly, for a sufficiently fine
hp FEM discretization, λ1,h = O(1). We will also note that in the implementation of both methods,
BURA and BURA-SD, some approximation from below of the first eigenvalue is used.

In numerically solving spectral fractional diffusion problems, it is generally assumed
that the power k required to obtain a given accuracy of Eα,k is a measure of computational
efficiency. This principle will also be applied in the analysis in Section 5. However, it is
worth noting that some recent publications raise questions and suggest ideas for further
improvements in this direction as well. Thus, for example, it was shown in [27] that for
larger k, the so-called additive reduced sum BURA-AR method and the multiplicative re-
duced product BURA-MR method can be applied to improve the computational complexity.
Although the approach is different, the results based on the reduced conjugate gradient
method proposed in [34] lead to quite similar conclusions.
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4. Error Analysis

In this section, we estimate the accuracy of the numerical solution ûh obtained by
BURA-SD method. The analysis follows the representation E = u − ûh = (u − û) + (û −
ûh), which corresponds to the successive steps of the method.

4.1. Error of the Semi-Discrete BURA-SD Approximation

We begin by estimating the error of the semi-discrete BURA-SD approximation E1 =
u − û. The orthonormal basis of eigenfunctions of A is used to expand the right-hand side
f , thus obtaining the following estimate of E1 in the energy norm induced by A

||E1||2A =

(
∞

∑
j=1

λ−α
j ( f , ϕj)ϕj − λ−α

1 rα,k(λ1A−1)
∞

∑
j=1

λj( f , ϕj)ϕj,

∞

∑
j=1

λ−α
j ( f , ϕj)ϕj − λ−α

1 rα,k(λ1A−1)
∞

∑
j=1

λj( f , ϕj)ϕj

)
A

= λ−2α
1

∞

∑
j=1

λj

[(
λj

λ1

)−α

− rα,k

(
λ1

λj

)]2

( f , ϕj).

Then

||E1||2A = λ−2α
1,h

∞

∑
j=1

λj

[
θα

j − rα,k(θj)
]2
( f , ϕj)

where θj := λ1/λj ∈ (0, 1] ⊂ [0, 1]. Now, we apply (15) to obtain

||E1||2A ≤ λ−2α
1 E2

α,k

∞

∑
j=1

λj( f , ϕj) = λ−2α
1 E2

α,k|| f ||2A. (25)

The following lemma is an immediate consequence of this estimate.

Lemma 1. For each α ∈ (0, 1) the error of the semi-discrete BURA-SD approximation E1 =
u − û decreases exponentially as the degree of the best uniform rational approximation k increases,
satisfying the estimate

||E1||H1 ≤ c1λ−α
1 4α+1 sin(απ) e−2π

√
αk|| f ||H1 . (26)

Here, the constant c1 > 0 is independent of α and k.

Proof. The upper bound in the inequality (26) follows from the equivalence of the norms
||.||H1 and ||.||A, and from (25), where (17) is applied to estimate Eα,k.

4.2. hp FEM Approximation of Singularly Perturbed Diffusion-Reaction Equations

Without limiting the general applicability of the results, from now on, for convenience,
we will analyze the additive representation of the BURA-SD method. So, let us consider
the semi-discrete approximation in the form

û = λ−α
1

[
c̃0I +

k

∑
i=1

λ1 c̃i(A− λ1d̃iI)−1

]
f , (27)

where I is the identity operator, c̃i > 0 and d̃i < 0 are real constants. The above formula
follows from (19) as a semi-discrete analogue of the first equality from (20). It is important
for the analysis that the coefficients −d̃i have an exponential growth when i tends to 1. This
is explained by the exponential clustering toward 0 of the poles of rα,k.
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In this context, we will refer to [26], where the behavior of −d̃i is discussed, with
extreme growth illustrated by numerical results. For example, there we see that for k = 45
the first nine coefficients −d̃i for α = 1/4 are greater than 1020. For k = 70 the results are
similar: for α = 1/4 and α = 1/2, for the first 21 and the first 8, respectively, −d̃i > 1020.

Now, we rewrite (27) in the form

û = λ−α
1

[
c̃0I +

k

∑
i=1

(−c̃i/d̃i)(ε
2
i A+ I)−1

]
f , (28)

where ε2
i = −1/(λ1d̃i). Therefore, we will have to solve diffusion-reaction problems with

small positive parameters εi.
Thus, to ensure exponential convergence of the semi-discrete BURA-SD approximation,

a crucial role is played by obtaining a robust error estimate when applying the hp FEM to
singularly perturbed diffusion-reaction problems of the form

−ε2∇ · (a(x′)∇uε(x′)) + uε(x′) = f (x′), for x′ ∈ Ω,
uε(x′) = 0, for x′ ∈ ∂Ω,

(29)

where ε > 0 is a small parameter. It is known (see, e.g., [35]) that uε exhibits boundary layers
near ∂Ω with additional singularities induced by the corner points. A similar behavior is
also typical for the solution of the fractional diffusion problem (3).

In the present study, we will use the same finite element space Vhp for the numerical
solution of all diffusion-reaction subproblems that appear in the sum in (27) and in (28),
respectively. In constructing Vhp, it is natural to apply both the geometric refinement of the
boundary layer mesh and the geometric refinement of the corner mesh.

Here, we will use the meshes Thp = T L,n
geo,σ defined in [20]. They are generated by

geometric refinement of a small number of so-called reference patches associated with
the regular initial macro-triangulation TH of (possibly curvilinear) quadrilaterals. For
non-trivial patches with integers L ≤ n , we denote the number of layers of refinements
towards an edge and towards a vertex, respectively. Omitting some details of the strict
definitions and simplifying the notations, for a given parameter σ ∈ (0, 1) the construction
of T L,n

geo,σ is based on the following assumptions:

(A1) Trivial patches are not further refined.
(A2) Patches with L layers of geometric refinement towards an edge are characterized by

a reference macroelement [0, 1]2 containing L rectangles that are determined by the
nodes (0, 0), (0, 1), and (0, σi), (1, σi), i = 0, 1, · · · L.

(A3) Patches with n layers of geometric refinement towards a corner are characterized by a
reference macroelement [0, 1]2 containing triangles that are determined by the nodes
(0, 0), and (0, σi), (σi, 0), (σi, σi), i = 0, 1, · · · , n.

(A4) Patches with L layers of geometric refinement towards an edge and n layers of geo-
metric refinement towards a corner that is vertex of the same edge are characterized
by a reference macroelement [0, 1]2 with a tensor product of refinements of the types
described in assumptions (A2) and (A3), respectively.

(A5) Patches with L layers of geometric refinement towards two adjacent edges and n layers
of geometric refinement towards a corner that is a common vertex of these edges
are characterized by a reference macroelement [0, 1]2 with a tensor product of two
refinements described in assumption (A2) and a refinement described in assumption
(A3), respectively.

Three examples of patches characterized by the corresponding reference macroelements
in [0, 1]2 are shown in Figure 1. The assumptions (A1–A5) actually define a catalogue of
possible refinements. Additional figures illustrating such patches can be found in [20].
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Figure 1. Patches with: (left) L = 4 layers of geometric refinement towards an edge (A2);
(centre) n = 4 layers of geometric refinement towards a corner (A3); (right) L = 4 layers of ge-
ometric refinement towards an edge and n = 4 layers of geometric refinement towards a corner that
is vertex of the same edge (A4).

The following lemma will be used in the upcoming analysis.

Lemma 2. Let Ω ⊂ R2 be a curvilinear polygon with J vertices and let the mesh T L,n
geo,σ satisfies

the assumptions (A1–A5). Then, there exist constants C, γ > 0, β ∈ [0, 1) (depending only on
the data a(x′), f , and on the macro-triangulation TH), so if ε ∈ (0, 1] and L satisfies the scale
resolution condition

σL ≤ ε, (30)

then
||uε − uε

h||H1 ≤ Cε−2 p9
(

σ(1−β)n + e−γp
)

. (31)

Here, uε
h ∈ Vh,p ⊂ H1(Ω) is the hp FEM numerical solution of (27), where the finite element space

Vh,p is defined on T L,n
geo,σ. In addition, the dimension of Vh,p is bounded as follows

N := dim(Vh,p) ≤ CN Jp2
(

L2 + n
)

(32)

where the constant CN > 0 can depend only on a(x′), f and TH .

Proof. The error estimate (31) and the inequality (32) follow from Proposition 2 of [20].
To this end, the analysis must be reproduced in terms of the definitions and notations
introduced above. This result can also be derived directly from the earlier paper [35].

4.3. Exponential Convergence of the Fully-Discrete Approximation

Let us write the error of the fully discrete approximation as a sum of the following
two component errors

E = u − ûh = (u − û) + (û − ûh)

or
E = E1 + E2, where E1 = u − û and E2 = û − ûh.

The E1 component was estimated in Lemma 1. For the second term, we apply (28) to obtain
the representation

E2 = û − ûh =
k

∑
i=1

(−c̃i/d̃i)
(
ûεi − ûεi

h
)
, (33)

where
ûεi =

(
ε2

i A+ b̃iI
)−1

f

and
ε2

i = − 1
λ1d̃i

.
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In (33), ûεi
h ∈ Vh,p is the hp FEM approximation of ûεi obtained using the mesh T L,n

geo,σ. Now,
under the assumptions of Lemma 2 we obtain the estimate

||E2||H1 ≤ C
k

∑
i=1

(−c̃i/d̃i)ε
−2
i p9

(
σ(1−β)n + eγp

)
= C

k

∑
i=1

c̃iλ1 p9
(

σ(1−β)n + eγp
)

. (34)

Lemma 3. Let Ω ⊂ R2 be a curvilinear polygon with J vertices and let the mesh T L,n
geo,σ be

constructed in accordance with assumptions (A1–A5). Also, let L be large enough so that the scale
resolution condition

σL ≤
√
−1/(λ1d̃1) (35)

is satisfied. Then, there exist constants C2, γ > 0, β ∈ [0, 1) (depending only on the data a(x),
f (x), and on the macro-triangulation TH) such that

||E2||H1 ≤ C2 c̃1kp9
(

σ(1−β)n + e−γp
)

. (36)

Proof. Analogous to {ξi}k
i=1, {di}k

i=i, the coefficients {c̃i}k
i=1, {d̃i}k

i=1 satisfy the inequalities

∞ > c̃1 > c̃2 > · · · > c̃k > 0

and
−∞ < d̃1 < d̃2 < · · · < d̃k < 0.

Now, we use the equality
ε2

i = −di/λi = −1/(λi d̃i),

and taking into account that {d̃i}k
i=1 increases monotonically, we obtain from (35) that

(σL)2 < −1/(λ1d̃1) < −1/(λ1d̃i).

Therefore, the scale resolution condition (30) is satisfied for each εi, i = 1, · · · , k. Finally,
the estimate (35) follows from (34), noting that λ1 = O(1) and that {c̃i}k

i=1 increases
monotonically.

The following theorem completes our error analysis.

Theorem 1. Let Ω ⊂ R2 be a curvilinear polygon with mesh T L,n
geo,σ constructed according to

assumptions (A1–A5). Also, let L be large enough so that the scale resolution condition

σL ≤
√
−1/(λ1d̃1) (37)

is satisfied. Then, there exist constants C2, γ > 0, β ∈ [0, 1) (depending only on the data a(x),
f (x), and on the macro-triangulation TH) such that

||u − ûh||H1 ≤ C1e−2π
√

αk + C2 c̃1kp9
(

σ(1−β)n + e−γp
)

. (38)

Proof. The estimate (38) is a direct consequence of Lemmas 2 and 3.

5. Computational Complexity

In this section, we investigate sufficient conditions for balancing the terms on the right-
hand side of the error estimate in Theorem 1. This is the condition for ensuring the high
performance of the proposed method. In (38), the square root of k exponential convergence
of the BURA-SD interacts with the hp FEM exponential accuracy with respect to the mesh
parameters (n, p), which are in turn controlled by the scale resolution condition.
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An inherent property of the BURA methods is the exponential clustering of the poles
and roots of the corresponding best uniform rational approximation [36], see also [13,37].
Here, we will use the inequality √

− 1
d̃1

≥ cde−cdek (39)

with positive constants cd and cde that can only depend on the fractional power α.
The exponential decrease of −1/d̃i with increasing i for k = 30 is shown in Figure 2,

where the influence of α is also illustrated. In a local neighborhood of k, we note a zone of
faster decrease. However, this feature is not essential for the estimation of −1/d̃1, taking
into account the global monotonicity of d̃i. The BRASIL software [33] is used to calculate d̃i,
see also [38].

Figure 2. Behavior of ln
√
− 1

d̃i
for 1i ∈ {1, 2, . . . , 30} and α ∈ {0.25, 0.50, 0.75}.

Lemma 4. Let

L ≥ 1
ln(1/σ)

[
ln

1
λ1cd

+ cdek
]

. (40)

Then, the scale resolution condition (37) is satisfied.

Proof. We write (40) in the form

ln
1

λ1cd
+ cdek ≤ L ln(1/σ).

Then
1

λ1cd
ecdek ≤ (1/σ)L

and therefore
σL ≤ λ1cde−cdek. (41)

Thus, from (41) and (39) we obtain that (37) is satisfied.

Corollary 1. The scale resolution condition requires that the number of levels L in the geometrically
refined mesh T L,n

geo,σ be large enough to provide the necessary hp FEM accuracy to the ε2
i -perturbed
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reaction-diffusion problems that arise in the BURA-SD method. It follows from Lemma 4 that there
exists a constant ck > that can only depend on α, so the scale resolution condition is satisfied if

L = ⌈ck⌉k. (42)

We will now derive a sufficient condition for the degree k of BURA-SD to guarantee
balancing of the terms on the right-hand side of the error estimate (38). First, the BURA-SD
and h FEM errors are balanced if

e−2π
√

αk ∼ kp9σ(1+β)n.

Therefore, √
k ∼ ln kp + n,

and consequently
k ∼ (ln kp + n)2. (43)

Analogously, the sufficient condition for balancing the BURA-SD and p FEM errors has
the form

e−2π
√

αk ∼ kp9e−γp.

Then, √
k ∼ ln kp + p,

and consequently
k ∼ (ln kp + p)2. (44)

Using (43) and (44) we obtain the following lemma.

Lemma 5. Let the scale resolution condition (37) be satisfied and let

k = n2 + p2.

Then,
||u − ûh||H1 ≤ Ce(n2 + p2)p9

(
σ(1−β)n + e−γp

)
.

Similar to Lemma 3, the constants Ce, γ > 0, β ∈ [0, 1) depend only on the data a(x), f (x) and on
the macrotriangulation TH .

We conclude our analysis with the following theorem.

Theorem 2. Let Ω ⊂ R2 be a curvilinear polygon with mesh T L,n
geo,σ constructed according to

assumptions (A1–A5). Then, there exist a mesh refinement parameter σ ∈ (0, 1), BURA-SD degree
k, and constants Ce, Cc, γ > 0, β ∈ [0, 1) (depending only on the data a(x), f (x), and on the
macro-triangulation TH), such that the following error estimate holds

||u − ûh||H1 ≤ Ce(n2 + p2)p9
(

σ(1−β)n + e−γp
)

(45)

and the computational complexity is bounded by

NBURA ≤ Cc p4L(L2 + n). (46)

Proof. The error estimate (45) follows directly from Lemma 5. Now, to prove the computa-
tional complexity estimate (46) we analyze the implementation of the BURA-SD method.
It involves solving k linear systems with the sparse SPD matrices S− λ1,hd̃iM ∈ RN×N ,
i = 1, 2, · · · , k. We will assume that a suitable fast preconditioned iterative solver is used
for this purpose. For example, such a multigrid preconditioner for the p-hierarchical basis
finite element method is proposed in [30]. The number of multigrid iterations nMG

it = O(1)
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is uniformly bounded regardless of p. Then, the following estimate of the computational
complexity NBURA of the BURA-SD method holds

NBURA = O
(

kp2N
)

,

where p2 represents the number of nonzero off-diagonal elements of the matrices. Thus,
from (32) we obtain

NBURA = O
(

kp4(L2 + n)
)

,

and finally applying (42) we obtain

NBURA = O
(

p4L(L2 + n)
)

.

6. Concluding Remarks

In this paper, we have developed a new method for the numerical solution of sub-
diffusion problems in curvilinear polygons Ω ⊂ R2. This means that there are practically no
restrictions on the geometry of the bounded computational domain. The spectral definition
of the elliptic operator Aα, α ∈ (0, 1], is used. The proposed methodology allows the
construction of a method that fully utilizes the strengths of the hp FEM and new BURA-SD
methods. Only less than ten years ago, we did not have the theoretical basis for creating
computationally efficient methods and algorithms for large-scale problems of this type.

The error estimate (45) fully reproduces the exponential convergence rate O(σ(1−β)n +
e−γp) of the hp FEM, see (31), which characterizes the case of a standard (local) elliptic
boundary value problem. In addition, the developed algorithm providing this accuracy is
computationally highly efficient. In this context, we note that taking into account (32), we
can write (46) in the compact form NBURA = O(p2LN). We recall that in constructing the hp
FEM patches, we denote by L the number of geometric refinement layers to an edge where
n is the number of geometric refinement layers to a corner that is a vertex of the same edge.

Our research is influenced and motivated by the recently published results in [20]. In
short, the following steps apply there. The auxiliary elliptic extension equation in Ω× (0, ∞)
that was originally proposed in [1] is considered. It is first truncated and diagonalized in
the expanded variable. The fractional diffusion problem thus reduces to M decoupled
singularly perturbed diffusion-reaction equations in Ω. The hp FEM discretization and
error analysis from [35] are then utilized. By the arguments of [14], we can interpret the
method of [20] as a rational approximation of A−α. In the context of the present paper, the
integer M corresponds to the BURA-SD degree k.

In this work, we elaborated a novel approach to the BURA (here called BURA-SD)
approximation of A−α that is adapted to the specifics in the analysis of the hp FEM used.
One may wonder whether some other rational approximation can be integrated into this
framework instead of BURA-SD. The answer is yes. Alternatively, both pseudo-parabolic
extension (AP2 approach) and quadrature integral representation formulas (AP3 approach)
can be applied. It is also worth noting that in each of the AP2-AP3 cases, the problem
of computational instability that appears at the disorganization step of A1 approach for
larger M is overcome. Compared to all others, the essential advantage of the BURA-based
method is that it provides, by definition, the best uniform rational approximation. When
applicable, this leads directly to a better computational complexity as well.

The application of a newly developed numerical method for a class of elliptic problems
to the corresponding parabolic equations is usually expected to be a direct consequence.
Although this is true for standard (local) partial differential equations, this does not hold
in the case of space fractional diffusion problems. The reason for this is that multiplying
a vector by the matrix Aα turns out to be more complicated than solving a system with
the same matrix. A systematic analysis of BURA and BURA-based approximations of the
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fractional powers of sparse SPD matrices was recently presented in [4]. It follows from the
results in [4] that the application of the BURA-SD method proposed here for the case of
the hp FEM space discretization to parabolic equations will require a thorough analysis
of the computational complexity, which will also include the influence of the condition
number κ(A).

The degree of rational approximation k determines the number of auxiliary sparse
linear systems to solve in the implementation of the numerical methods for fractional
diffusion equations, which we classified here into four groups according to approaches
AP1–AP4. This is the argument for using k as a universal measure when estimating
computational complexity via O(k). More recently, a reduced conjugate gradient basis
method for fractional diffusion was proposed in [34]. It is shown there that a smaller number
of linear systems can be used without the loss of accuracy of the rational approximation.
This is also the aim of the earlier work [26], where the so-called reduced multiplicative
(BURA-MR) and additive (BURA-AR) methods were presented. Further theoretical analysis
is needed to better understand the possible similarities of the apparently quite different
approaches explored in [26,34]. In any case, such kinds of results can be used to improve
the algorithm and thus to refine the estimate of the computational complexity (46).

The results in [20], and now in the present paper, raise a wide range of questions
for future research. Here, we also note the recent work [39], where an a posteriori error
estimator for the spectral fractional power of the Laplacian is developed. In this context, we
will note such challenging examples as the generalization of currently available results to
fractional diffusion problems in three-dimensional polygons, as well as to equations with
heterogeneous and anisotropic coefficients. The development of a BURA-based multilevel
adaptive scheme is another attractive topic for future research.

In conclusion, the discussions in this paper have been focused on mesh methods and
in particular on the hp FEM discretization case. In perspective, however, we are analyzing
alternative possibilities to further develop our research in the spirit of meshless methods.
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