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Abstract: In this study, some new necessary and sufficient conditions for a two-weight, weak-
type maximal inequality of the form φ1(λ)

∫
{x∈X:M f (x)>λ} ϱ(x)dµ(x) ≤ c

∫
X φ2(c| f (x)|)σ(x)dµ(x)

are obtained in Orlicz classes, where M f is a Hardy–Littlewood maximal function defined on
homogeneous spaces and ϱ is a weight function.
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1. Introduction

Weighted inequalities play an important role in weighted theory research and have
been extensively studied. For instance, Hardy and Littlewood [1] proved the weighted
norm inequality for fractional integrals for the one-dimensional case. Mamedov and
Harman [2] investigated two-weighted Hardy inequalities in the norms of generalized
Lebesgue spaces Lp(·)(Rn). Sawyer [3] characterized the weak weighted inequalities for the
one-sided Hardy–Littlewood maximal function on R. Ghosh and Mohanty [4] obtained the
extra-weak and weak-type inequalities for the one-sided maximal function on R2. Moen [5]
studied a class of two-weight inequalities for multilinear fractional integral operators and
maximal functions. Ren [6] explored a four-weight weak type maximal inequality for
martingales. Other relevant studies could be found in [7–10].

Let f be a locally integrable function on Rn; the Hardy–Littlewood maximal function
is defined as

M f (x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)|dy,

where M f is a Hardy–Littlewood maximal function and the supremum is taken over all cubes
Q containing x in Rn. In 1972, Muckenhoupt [11] proved the following critical conclusion.

Theorem 1 ([11]). Let 1 < p < ∞ and u, v be a pair of weight functions. The following statements
are equivalent:

(i) There exists a constant c > 0 such that∫
{x∈Rn :M f (x)>λ}

u(x)dx ≤ c
λp

∫
Rn

| f (x)|pv(x)dx, (1)

holds for arbitrary λ > 0.
(ii) (Muckenhoupt Ap condition) There exists a constant c > 0 such that, for all cubes Q,

(
1
|Q|

∫
Q

u(x)dx
)(

1
|Q|

∫
Q

v(x)−p′/pdx
)p/p′

≤ c,

where p′ = p
p−1 .
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Since the Muckenhoupt Ap condition is central to weighted theory, many scholars have
extended Muckenhoupt’s result to various function spaces. Research on the correspondence
of inequality (1) with the framework of Orlicz classes has aroused significant academic
interest (see [12–19]). In [16], Gogatishvili and Kokilashvili provided a generalization form
of (1) and its weighted characteristics; if ϱ is a weight function, then the weighted weak-type
inequality

φ(λ)
∫
{x∈X:M f (x)>λ}

ϱ(x)dµ(x) ≤ c1

∫
X

φ(c1| f (x)|)ϱ(x)dµ(x) (2)

holds if and only if the inequality

∫
B

φ̃

(
ε

φ(λ)

λ

∫
B ϱ(x)dµ(x)
ϱ(x)µ(B)

)
ϱ(x)dµ(x) ≤ c2 φ(λ)

∫
B

ϱ(x)dµ(x) (3)

is true. Then, they introduced the four-weight extension forms of inequalities (2) and (3) [17].
On the basis of [16,17], in 2020, Ding and Ren [18] obtained suitable four-weight extension
inequalities, which were new necessary and sufficient conditions of the four-weight, weak-
type maximal inequalities in [17]. They are all extended forms of Muckenhoupt’s result in
Orlicz classes.

In this study, we continue to investigate the extended forms of Muckenhoupt’s results
in Orlicz classes. Our research is motivated by the question of whether the two-weight,
weak-type inequalities shown in (6) have new equivalent characterization inequalities.
Combined with the work of Ding and Ren [18] and inspired by Lai’s research on two-weight
mixed inequalities for the Hardy–Littlewood maximal operator [20], we obtain a pair of two-
weight, weak-type inequalities (see (9) and (10) in Theorem 2) in Orlicz classes for maximal
functions defined on homogeneous spaces, which are new equivalent characterization
inequalities of the two-weight, weak-type maximal inequality (6) in Theorem 2.

The remainder of this article is organized as follows: In Section 2, as preliminaries, we
recapitulate some basic notions. The main result and its proof are given in the final section.

2. Preliminaries

In this section, we give a brief summary of facts about the homogeneous spaces, Young
functions, and Orlicz spaces that we require; see [9,14,16,21] for more details.

A homogeneous space (X, d, µ) is a metric space with a complete measure µ in which
a class of compactly supported continuous functions is densely organized in the space
L1(X, µ).
d : X × X → R1 is a nonnegative real-valued function and satisfies the following con-
ditions:

(i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) > 0 for all x ̸= y in X;
(iii) There is a constant a0 > 0 such that d(x, y) ≤ a0d(y, x) for all x, y in X;
(iv) There is a constant a1 > 0 such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for all x, y, z in X;
(v) For each neighborhood V of x in X, there is an r > 0 such that the ball B(x, r) = {y ∈

X : d(x, y) < r} is contained in V;
(vi) The balls B(x, r) are measurable for all x ∈ X and r > 0;
(vii) There is a constant b > 0 such that µB(x, 2r) ≤ bµB(x, r) for all x ∈ X and r > 0.

Let f be a µ-measurable locally integrable function on X, and let B be a ball; we set

( f )B :=
1

µ(B)

∫
B

f (x)dµ.
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The maximal function of f is defined by

M f (x) := sup
x∈B

1
µ(B)

∫
B
| f (y)|dµ(y), x ∈ X,

where the supremum is taken over all balls B containing x.
A µ-measurable locally integrable function that is positive almost everywhere is called

a weight function.
We use the symbol Φ to denote the set of all functions φ : R1 → R1 that are nonnega-

tive, even, and increasing on (0, ∞) such that φ(0) = 0, limt→∞ φ(t) = ∞.
We call ω a Young function if ω ∈ Φ and it is convex on (0, ∞); it may have a jump up

to ∞ at some point if t > 0, but in that case, it should be left continuous at t. A function φ is
called a quasi-convex function if there is a Young function ω and a constant c > 1 such that
ω(t) ≤ φ(t) ≤ ω(ct) for any t ≥ 0. A function φ is said to be quasi-increasing if there is a
constant c > 0 such that

φ(t1) ≤ cφ(ct2)

for each t1 and t2, 0 < t1 < t2. It was proved in [16] that φ is quasi-convex if and only if
φ(t)

t is quasi-increasing.
For a quasi-convex function φ, we define its complementary function φ̃ as

φ̃(t) = sup
s≥0

(st − φ(s)).

The subadditivity of the supremum readily implies that φ̃ is a Young function, and from
the definition of the complementary function φ̃, we obtain the following Young inequality:

st ≤ φ(s) + φ̃(t).

Let φ be a Young function; we define its inverse function φ−1 : [0, ∞] → [0, ∞] as

φ−1(s) = inf{t ≥ 0 : φ(t) ≥ s}.

Lemma 1 ([14]). Let φ be a Young function; then, φ(t)
t and φ̃(t)

t are continuous and increasing on
(0, ∞), and they satisfy

φ̃

(
φ(t)

t

)
≤ φ(t) ≤ φ̃

(
2

φ(t)
t

)
(4)

and

φ

(
φ̃(t)

t

)
≤ φ̃(t) ≤ φ

(
2

φ̃(t)
t

)
(5)

for all t > 0.

Lemma 2 ([22]). Let F be a family {B(x, r)} of balls with bounded radii. Then, there is a countable
subfamily {B(xi, ri)} consisting of pairwise disjoint balls such that each ball in F is contained in
one of the balls B(Xi, ari), where a = 3a2

1 + 2a0a1. The constants a0, a1 are from the definition of
the space (X, d, µ).

Let (X, µ) be a measured space, let v be a weight function, and let φ be a Young
function. The weighted modular is defined by

mv( f , φ) =
∫

X
φ(| f (x)|)v(x)dµ(x);
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the Orlicz space Lφ,v(X, µ) is equipped with the Orlicz norm

||| f |||φ,v = sup{
∫

X
f (x)g(x)v(x)dµ(x) :

∫
X

φ̃(|g(x)|)v(x)dµ(x) ≤ 1},

and the Luxemburg norm

|| f ||φ,v = inf{λ > 0 :
∫

X
φ

(
| f (x)|

λ

)
v(x)dµ(x) ≤ 1}.

The above two norms are equivalent, i.e.,

|| f ||φ,v ≤ ||| f |||φ,v ≤ 2|| f ||φ,v.

In addition, in [23], Luxemburg showed the following:

(i) The closed unit ball in Lφ,v with respect to the Luxemburg norm coincides with the
closed unit ball with respect to the modular, i.e.,∫

X
φ(| f (x)|)v(x)dµ(x) ≤ 1 i f and only i f || f ||φ,v ≤ 1;

(ii) The Hölder inequality∫
X

f (x)g(x)v(x)dµ(x) ≤ ∥ f ∥φ,v · |||g|||φ̃,v

holds for all µ-measurable functions f , g.

Throughout this article, we use ci and c to denote positive constants. They may denote
different values at different occurrences.

3. Main Result and Proof

On the basis of [18], in this section, we provide two equivalent characterization
inequalities for the two-weight, weak-type maximal inequality (6). Let us first present
Lemma 3 and Corollary 1 before stating and proving the main result.

Lemma 3 ([18]). Let φ ∈ Φ and ωi (i = 1, 2, 3, 4) be weight functions. Then, the following
statements are equivalent:

(i) The inequality∫
{x∈X:M f (x)>λ}

φ(λω1(x))ω2(x)dµ(x) ≤ c1

∫
X

φ(c1| f (x)|ω3(x))ω4(x)dµ(x)

holds with a constant c1 > 0, independent of f and λ > 0;
(ii) The function φ is quasi-convex, and the inequality

∫
{x∈X:M f (x)>λ}

φ̃

(
λ

ω3(x)ω4(x)

)
ω4(x)dµ(x) ≤ c2

∫
X

φ̃

(
c2

| f (x)|
ω1(x)ω2(x)

)
ω2(x)dµ(x)

holds with a constant c2 > 0, independent of f and λ > 0;
(iii) The function φ is quasi-convex, and there is a constant c3 > 0 such that the inequality

∫
B

φ̃

(
| f |B

ω3(x)ω4(x)

)
ω4(x)dµ(x) ≤ c3

∫
B

φ̃

(
c3

| f (x)|
ω1(x)ω2(x)

)
ω2(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
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(iv) There is a constant c4 > 0 such that the inequality∫
B

φ(| f |Bω1(x))ω2(x)dµ(x) ≤ c4

∫
B

φ(c4| f (x)|ω3(x))ω4(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
(v) The function φ is quasi-convex, and there are positive constants c5 and ε1 such that the

inequality∫
B

φ

(
ε1

λµ(B)

∫
B

φ̃

(
λ

ω3(x)ω4(x)

)
ω4(x)dµ(x) · ω1(x)

)
ω2(x)dµ(x) ≤ c5

∫
B

φ̃

(
λ

ω3(x)ω4(x)

)
ω4(x)dµ(x)

holds for any λ > 0 and an arbitrary ball B;
(vi) There are positive constants c6 and ε2 such that the inequality

∫
B

φ̃

(
ε2

∫
B φ(λω1(x))ω2(x)dµ(x)

λµ(B)ω3(x)ω4(x)

)
ω4(x)dµ(x) ≤ c6

∫
B

φ(λω1(x))ω2(x)dµ(x)

holds for any λ > 0 and an arbitrary ball B.

Remark 1. The conclusion in Lemma 3 remains valid upon the replacement of quasi-convex
functions with Young functions. Thus, let φ be a Young function, and ω1 = ω3 = 1, ω2 = ϱ,
ω4 = σ; then, we reach the following conclusion.

Corollary 1. Let (φ, φ̃) be a pair of complementary Young functions, and let ϱ and σ be weight
functions. Then, the following statements are equivalent:

(i) There is a constant c1 > 0 such that the inequality

φ(λ)
∫
{x∈X:M f (x)>λ}

ϱ(x)dµ(x) ≤ c1

∫
X

φ(c1| f (x)|)σ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary λ > 0;
(ii) There is a constant c2 > 0 such that the inequality

∫
{x∈X:M f (x)>λ}

φ̃

(
λ

σ(x)

)
σ(x)dµ(x) ≤ c2

∫
X

φ̃

(
c2
| f (x)|
ϱ(x)

)
ϱ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary λ > 0;
(iii) There is a constant c3 > 0 such that the inequality

∫
B

φ̃

(
| f |B
σ(x)

)
σ(x)dµ(x) ≤ c3

∫
B

φ̃

(
c3
| f (x)|
ϱ(x)

)
ϱ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
(iv) There is a constant c4 > 0 such that the inequality

φ(| f |B)
∫

B
ϱ(x)dµ(x) ≤ c4

∫
B

φ(c4| f (x)|)σ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
(v) There are constants c5 > 0 and ε1 > 0 such that the inequality

φ

(
ε1

λµ(B)

∫
B

φ̃

(
λ

σ(x)

)
σ(x)dµ(x)

) ∫
B

ϱ(x)dµ(x) ≤ c5

∫
B

φ̃

(
λ

σ(x)

)
σ(x)dµ(x)

holds for arbitrary λ > 0 and ball B;
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(vi) There are constants c6 > 0 and ε2 > 0 such that the inequality

∫
B

φ̃

(
ε2

φ(λ)

λ

∫
B ϱ(x)dµ(x)
µ(B)σ(x)

)
σ(x)dµ(x) ≤ c6 φ(λ)

∫
B

ϱ(x)dµ(x)

holds for arbitrary λ > 0 and ball B.

In Theorem 2, we obtain a pair of two-weight, weak-type inequalities in Orlicz classes
for maximal functions defined on homogeneous spaces, which are new necessary and
sufficient conditions of the two-weight, weak-type maximal inequality (6).

Theorem 2. Let (φ1, φ̃1) and (φ2, φ̃2) be two pairs of complementary Young functions, and let ϱ
and σ be weight functions. Then, the following statements are equivalent:

(i) There is a constant c1 > 0 such that the inequality

φ1(λ)
∫
{x∈X:M f (x)>λ}

ϱ(x)dµ(x) ≤ c1

∫
X

φ2(c1| f (x)|)σ(x)dµ(x) (6)

holds for any nonnegative µ-measurable function f and arbitrary λ > 0;
(ii) There is a constant c2 > 0 such that the inequality

∫
{x∈X:M f (x)>λ}

φ̃2

(
λ

σ(x)

)
σ(x)dµ(x) ≤ c2

∫
X

φ̃1

(
c2
| f (x)|
ϱ(x)

)
ϱ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary λ > 0;
(iii) There is a constant c3 > 0 such that the inequality

∫
B

φ̃2

(
| f |B
σ(x)

)
σ(x)dµ(x) ≤ c3

∫
B

φ̃1

(
c3
| f (x)|
ϱ(x)

)
ϱ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
(iv) There is a constant c4 > 0 such that the inequality

φ1(| f |B)
∫

B
ϱ(x)dµ(x) ≤ c4

∫
B

φ2(c4| f (x)|)σ(x)dµ(x)

holds for any nonnegative µ-measurable function f and arbitrary ball B;
(v) There are constants c5 > 0 and ε1 > 0 such that the inequality

φ1

(
ε1

λµ(B)

∫
B

φ̃2

(
λ

σ(x)

)
σ(x)dµ(x)

) ∫
B

ϱ(x)dµ(x) ≤ c5

∫
B

φ̃2

(
λ

σ(x)

)
σ(x)dµ(x) (7)

holds for arbitrary λ > 0 and ball B;
(vi) There are constants c6 > 0 and ε2 > 0 such that the inequality

∫
B

φ̃2

(
ε2

φ1(λ)

λ

∫
B ϱ(x)dµ(x)
µ(B)σ(x)

)
σ(x)dµ(x) ≤ c6 φ1(λ)

∫
B

ϱ(x)dµ(x) (8)

holds for arbitrary λ > 0 and ball B;
(vii) There are constants c7 > 0 and ε3 > 0 such that the inequality

∫
B

φ̃2

(
ε3

λ
∫

B ϱ(x)dµ(x)
σ(x)µ(B)

)
σ(x)dµ(x) ≤ c7 φ̃1(λ)

∫
B

ϱ(x)dµ(x) (9)

holds for arbitrary λ > 0 and ball B;
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(viii) There are constants c8 > 0 and ε4 > 0 such that the inequality

φ1

(
1

c8µ(B)
|| χB

ε4σ
||φ̃2(ε4σ)

)
≤ c8

ε4
∫

B ϱ(x)dµ(x)
(10)

holds for arbitrary ball B.

Proof. In Corollary 1, we replace the Young function φ with a pair of Young functions, φ1
and φ2, in the form of (i)–(vi) in Theorem 2. Since the proof of the equivalence relation
((i)–(vi)) in Theorem 2 is similar to that of Theorem 3.6 in [18], it is omitted. So, we have
(i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi). Now, we complete the proof by showing that
(v) ⇒ (vii) ⇒ (vi) and (i) ⇔ (viii).

(v) ⇒ (vii). In (7), we replace λ with λε1
∫

B ϱ(x)dµ(x)
2c5µ(B) ; then, we can obtain

φ1

(
ε1

µ(B)
· 2c5µ(B)

λε1
∫

B ϱ(x)dµ(x)

∫
B

φ̃2

(
λε1

∫
B ϱ(x)dµ(x)

2c5µ(B)σ(x)

)
σ(x)dµ(x)

) ∫
B

ϱ(x)dµ(x)

≤ c5

∫
B

φ̃2

(
λε1

∫
B ϱ(x)dµ(x)

2c5µ(B)σ(x)

)
σ(x)dµ(x).

So, we have

2φ1

(
2c5

λ
∫

B ϱ(x)dµ(x)

∫
B φ̃2

(
λε1

∫
B ϱ(x)dµ(x)

2c5µ(B)σ(x)

)
σ(x)dµ(x)

)
2c5

λ
∫

B ϱ(x)dµ(x)

∫
B φ̃2

(
λε1

∫
B ϱ(x)dµ(x)

2c5µ(B)σ(x)

)
σ(x)dµ(x)

≤ λ. (11)

If we set

s =
2c5

λ
∫

B ϱ(x)dµ(x)

∫
B

φ̃2

(
λε1

∫
B ϱ(x)dµ(x)

2c5µ(B)σ(x)

)
σ(x)dµ(x), (12)

then (11) becomes
2φ1(s)

s
≤ λ.

Notice that φ̃1(t)
t is increasing; then, we have

φ̃1

(
2φ1(s)

s

)
(

2φ1(s)
s

) ≤ φ̃1(λ)

λ
.

It follows from the above inequality and (4) that we have

s
2
=

φ1(s)(
2φ1(s)

s

) ≤
φ̃1

(
2φ1(s)

s

)
(

2φ1(s)
s

) ≤ φ̃1(λ)

λ
,

from which we obtain∫
B

φ̃2

(
ε3

λ
∫

B ϱ(x)dµ(x)
σ(x)µ(B)

)
σ(x)dµ(x) ≤ c7 φ̃1(λ)

∫
B

ϱ(x)dµ(x),

where ε3 = ε1
2c5

, c7 = 1
c5

.
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(vii) ⇒ (vi). In (9), we replace λ with φ1(λ)
λ ; then, we have

∫
B

φ̃2

(
ε3

φ1(λ)

λ

∫
B ϱ(x)dµ(x)
µ(B)σ(x)

)
σ(x)dµ(x) ≤ c7 φ̃1

(
φ1(λ)

λ

) ∫
B

ϱ(x)dµ(x).

Using (4), we obtain

∫
B

φ̃2

(
ε2

φ1(λ)

λ

∫
B ϱ(x)dµ(x)
µ(B)σ(x)

)
σ(x)dµ(x) ≤ c6 φ1(λ)

∫
B

ϱ(x)dµ(x),

where ε2 = ε3, c6 = c7.
(i) ⇒ (viii). For any ball B, we clearly see that B ⊂ {x : M(2 f χB)(x) > | f |B}.
So, we have

φ1(| f |B)
∫

B
ϱ(x)dµ(x) ≤ c1

∫
B

φ2(c1| f (x)|)σ(x)dµ(x).

We set f (x) = 1
c1

φ̃2(
1

δσ(x) )δσ(x), where δ is an arbitrary positive constant. From the
above inequality and (5), we have∫

B
ϱ(x)dµ(x)φ1

(
1

c1µ(B)

∫
B

φ̃2

(
1

δσ(x)

)
δσ(x)dµ(x)

)
≤ c1

∫
B

φ2

(
φ̃2

(
1

δσ(x)

)
δσ(x)

)
σ(x)dµ(x)

≤ c1

∫
B

φ̃2

(
1

δσ(x)

)
σ(x)dµ(x). (13)

Setting

1
η
= c1µ(B)φ−1

1

(
c1∫

B ϱ(x)dµ(x)

∫
B

φ̃2

(
1

δσ(x)

)
σ(x)dµ(x)

)
, (14)

(13) and (14) yield ∫
B

φ̃2

(
1

δσ(x)

)
δησ(x)dµ(x) ≤ 1, (15)

hence, we have

∥ χB
δησ

∥φ̃2(δησ) ≤
1
η

, (16)

where χB is the characteristic function of B.
From (14), we obtain

∫
B

φ̃2

(
1

δσ(x)

)
σ(x)dµ(x) = φ1

(
1

c1ηµ(B)

)
·
∫

B ϱ(x)dµ(x)
c1

. (17)

Then, using (15) and (17), we have

δηφ1

(
1

c1ηµ(B)

)
·
∫

B ϱ(x)dµ(x)
c1

≤ 1. (18)

Furthermore, we obtain

1
η
≤ φ−1

1

(
c1

δη
∫

B ϱ(x)dµ(x)

)
· c1µ(B). (19)
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According to (16) and (19), we have

∥ χB
δησ

∥φ̃2(δησ) ≤ c1µ(B)φ−1
1

(
c1

δη
∫

B ϱ(x)dµ(x)

)
,

and then, we obtain

φ1

(
1

c1µ(B)
∥ χB

δησ
∥φ̃(δησ)

)
≤ c1

δη
∫

B ϱ(x)dµ(x)
. (20)

In (20), by setting ε4 = δη, we obtain

φ1

(
1

c8µ(B)
|| χB

ε4σ
||φ̃2(ε4σ)

)
≤ c8

ε4
∫

B ϱ(x)dµ(x)
,

where c8 = c1.
(viii) ⇒ (i). For each natural number n, we set

Mn f (x) = sup
1

µ(B)

∫
B
| f (x)|dµ,

where the supremum is taken over all balls B in X, which contains x and rB ≤ n.
For any point x ∈ {x : Mn f (x) > λ}, there is a ball Bx (x ∈ Bx, 0 < rB ≤ n) such that

1
µ(Bx)

∫
Bx

| f (y)|dµ > λ.

According to Lemma 2, from the family F={Bx}, we can choose a sequence of pairwise
disjoint balls {Bi = B(xi, ri)} such that each ball in F is contained in one of the balls
B(xj, arj). Then,

{x : Mn f (x) > λ} ⊂
⋃

i
Bi, ∑

i
χBi ≤ c′,

where χBi is the characteristic function of Bi.
So, we have

φ1(λ)
∫
{x:Mn f (x)>λ}

ϱ(x)dµ(x) ≤ ∑
i=1

∫
Bi

ϱ(x)dµ(x)φ1(λ)

≤ ∑
i=1

∫
Bi

ϱ(x)dµ(x)φ1

(
1

c9µ(Bi)

∫
Bi

c9| f (x)|dµ(x)
)

.

According to the Hölder inequality, we have∫
Bi

c9| f (x)|dµ(x) ≤ 2∥c9 fi(x)∥φ2(εiσ)
· ∥

χBi

εiσ
∥φ̃2(εiσ)

,

where fi(x) = f (x)χBi .
We choose εi such that ∫

X
φ2(c9| fi(x)|)εiσ(x)dµ(x) = 1, (21)

and then, we have ∥c9 fi(x)∥φ2(εiσ)
≤ 1.
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Consequently, using (10) and (21), we can obtain

φ1(λ)
∫
{x:Mn f (x)>λ}

ϱ(x)dµ(x) ≤ ∑
i=1

∫
Bi

ϱ(x)dµ(x)φ1

(
2
c9

1
µ(Bi)

∥
χBi

εiv
∥φ̃2(εiσ)

)
≤ ∑

i=1

c9

2

∫
X

φ2(c9| f (x)χBi |)σ(x)dµ(x)

≤ c′c9

2

∫
X

φ2(c9| f (x)|)σ(x)dµ(x).

Now, let n → ∞; we then obtain

φ1(λ)
∫
{x:M f (x)>λ}

ϱ(x)dµ(x) ≤ c1

∫
X

φ2(c1| f (x)|)σ(x)dµ(x),

where c1 = max{ c′c9
2 , c9}.

In summary, we find that (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (vii) ⇔ (viii).
The proof is complete.

Finally, we present two new equivalent characterization inequalities (i.e., (9) and (10))
for the two-weight, weak-type maximal inequality (6) in Orlicz classes for maximal func-
tions defined on homogeneous spaces. Our future work will focus on the excavation
of the corresponding four-weight extension forms of inequalities (9) and (10) and the
demonstration of corresponding four-weight equivalent characterization inequalities.
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