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Abstract: The use of graph theory for solving labyrinths and mazes is well known, understanding
the possible paths as the connections between the nodes that represent the corners or bifurcations.
This work presents a new idea: minimizing the length of the optimal path formulated as a topology
optimization problem. The maze is mapped with finite elements, and then, through the eigenvalues
of the Laplacian matrix of the graph, a constraint is imposed over the connectivity between the
input and the output. Several 2D examples are provided to support this approach, allowing for
unequivocally finding the shortest path in mazes with multiple connections between entrance and
exit, resulting in an nonheuristic algorithm.
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1. Introduction

A maze is a network of paths, typically designed as a puzzle or game, where the
solution consists of reaching the destination point from the starting point, following the
shortest route [1]. Techniques for solving mazes has been developed in scientific literature
due to their versatile applications across diverse domains in real-world problems, such
as autonomous navigation [2,3] or search and rescue using drones [4]. Efficient maze-
solving skills have wide-ranging implications for problem solving, not only in physical
environments but also in virtual ones. This can be analogized to the task of finding routes
with weighted constraints, for instance, in logistics, optimization of road networks, or
energetic issues [2,5].

In recent decades, advancements in graph theory and discrete mathematics have
enabled the solution of labyrinths and mazes of different complexities and structures. A
graph is basically a set of nodes, some (or possibly all) of which are connected by edges,
also called links or lines. The way to proceed is to map the maze with nodes which have
assigned a numerical value. Pathways are numerically represented as 1, whereas walls are
denoted by 0. This leads to the maze being understood as a black and white design. The
shortest path is understood as the one that uses fewer black squares. The concept involves
converting the matrix of zeros and ones into an undirected simple graph [6], where an edge
of weight 1 will connect nodes i and j if the value at position (i, j) of the matrix is 1.
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Spectral theory of graphs studies its properties in relation to the eigenvalues or eigen-
vectors of matrices associated with them [6]. For instance, a graph is connected if there
is a path linking any two of its vertices. In graph theory, there is a well-known result
linking connectivity to an invariant within one of the matrices associated with a graph: the
Laplacian matrix. M. Fiedler [7,8] showed that the multiplicity of zero eigenvalue of the
Laplacian matrix is equal to the number of connected components in the graph. Then, a
graph will be connected if and only if the second smallest Laplacian eigenvalue is positive.
Based on this theory, the work of Steinenberger [9] proposes an algorithm for discovering
one of the shortest paths in a simple, connected graph.

Previous works have already demonstrated the capabilities to solve shortest path
problems through topology optimization. Works [10,11] employ a quite similar approach
to find the optimal trajectory of the movement of a robot in the presence of different
obstacles. Both works take advantage of the analogy between this trajectory problem and a
heat transfer one, whereby manipulating the conductivity of materials—using insulators
for obstacles and thermal conductors for free paths—the route with minimal thermal
compliance between a heat source and a sink is found. Both articles also use mazes
as benchmark examples for the developed methodologies. Other physics branches also
offer solutions to shortest path problems, with many scholarly works focusing on fluid
dynamics [12,13].

Some authors have showed interest in maximizing the weighted algebraic connectivity
in different communications networks [14–16]. Several studies have focused on the con-
straints of algebraic connectivity in relation to other graph properties [17]. The Laplacian
matrix and its associated eigenvalue (or Fiedler eigenvalue) have generated interest among
several authors for it many applications, particularly in the partitioning of meshes for
parallel computing [18,19].

The aim of this work is to propose a new method to find the shortest path inside a
maze. This builds on prior research which integrates spectral graph theory and topological
optimization [20,21], demonstrating the potential to manipulate physical connectivity in
structural components.

The optimization problem is formulated in terms of a topology optimization problem.
The maze is mapped with finite elements and a constraint is imposed over the connectivity
between the input and the output through the eigenvalues of the Laplacian matrix of the
graph. The minimum number of elements needed is determined when the shortest route
that connects both ends of the maze is found.

The manuscript is organized as follows: in Section 2, concepts about algebraic connec-
tivity of graphs are discussed. Section 3 relates graphs to mazes, detailing and solving the
topological optimization problem. Numerical verification with different sizes of the maze
and numbers of cells are shown in Section 4. Finally, the conclusions are summarized in
Section 5.

2. Algebraic Connectivity of Graphs

Graph theory is a branch of mathematics concerned with networks of points connected
by lines, also called nodes and edges, respectively [6]. The classical definition of a graph is
a mathematical structure used to model pairwise relations between components. Graph
theory provides a framework for analyzing and solving problems related with different
applications: computer science, social systems, biological systems, etc.

There are many types of graphs, which allow for the creation of really complex
structures able to model the applications commented in the previous paragraphs. This
work is focused in graphs without loops and multiple lines, and undirected. The latter
means that the connection between two nodes have no orientation. An example of an
undirected graph is shown in Figure 1 (left). A numerical value, called weight, can be
assigned to each link. This parameter may represent the distance between both nodes,
the cost, the capacity of the line, or any variable depending of the edge. An example of a
weighted graph is depicted in Figure 1 (right).



Mathematics 2024, 12, 2305 3 of 13

ba c

d

e

ba c

d

e

wad

wab

wbc

wbe

Figure 1. Example of a simple graph (left) and a simple weighted graph (right).

From a graph, several matrices can be obtained that provide useful information about
its structure and properties. From now on, bold will be used to represent vectors and
matrices. The most intuitive matrix is the adjacency matrix A, which stores the weighted
(or not) connection between nodes. For the graph presented in Figure 1 (right), a number is
assigned to each node (1 for a, 2 for b, ...) to relate the rows and the columns. The adjacency
matrix A is defined as:

A =




0 wab 0 wad 0
wab 0 wbc 0 wbe

0 wbc 0 0 0
wad 0 0 0 0

0 wbe 0 0 0




.

The next one is the degree matrix D. It stores in the diagonal the connections of each edge.
D for the graph presented before is defined as follows:

D =




wab + wad 0 0 0 0
0 wab + wbc + wbe 0 0 0
0 0 wbc 0 0
0 0 0 wad 0
0 0 0 0 wbe




.

The last matrix used in this work is the Laplacian matrix L. This matrix is specially
important in spectral graph theory. The eigenvalues of this matrix provide information
about the global connectivity of the graph. L is computed as the difference between D
and A:

L = D −A =




wab + wad −wab 0 −wad 0
−wab wab + wbc + wbe −wbc 0 −wbe

0 −wbc wbc 0 0
−wad 0 0 wad 0

0 −wbe 0 0 wbe




(1)

A graph is considered to be connected when a path can be found between any two of
its nodes. There exists a classical result of spectral graph theory [6] that relates an invariant
of the Laplacian matrix with its own connectivity. This result is presented in [7,8] for
nonweighted and weighted graphs, respectively. The number of zero eigenvalues of L
indicates how many disconnected parts exist in the graph. This means that for a connected
graph, the second smallest eigenvalue of L (the Fiedler’s eigenvalue) is positive and this
is called the algebraic connectivity of the graph. The introduction of this invariant as a
constraint in an optimization problem is the main point of this work.
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3. Discretization of the Maze and Problem Formulation

The idea of finding the shortest path using graph theory has been studied widely in
the literature [1,2,22–24]. Most of the proposed methods have an heuristic nature. The
novelty of this paper is the use of the spectral properties of the Laplacian matrix L of the
graph associated to the maze to achieve the goal of finding the optimal route.

The idea has been implemented with good results within a mechanical [20] and
electrode design [21] context.

The first step is the discretization of the maze, since the graph can be considered a
discrete structure. The walls and the pathways are divided into square elements, as shown
in Figure 2.

A

B

C

D E

I

H

G

F

J

Figure 2. Discretization of a maze.

A maze is solved when there exists a path between the entrance (cyan color) and the
exit (magenta color). For this simple case, the solution is shown in Figure 3 (left). The
different squares that form this route can be considered as a connected graph as represented
in Figure 3 (right).

A

B

C

D E F

G

H

I J

Figure 3. Solution of the maze (left) and graph of the solution path (right).

The Laplacian matrix of this graph (L ∈ M10×10) is computed with Equation (1). The
squares are ordered alphabetically: the first row and column are related with the square A,
the second pair with B, and so on, for all the nodes:

L =




1 −1 0 . . . 0
−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1




.

The two first eigenvalues of L are λ1 = 0 and λ2 = 0.1, meaning that the graph is
made up of a single joined element. All the weights wij are set to 1. The example shown in
Figures 2 and 3 highlights that if the maze is understood as a graph, Fiedler’s eigenvalue of
the solution is positive.

Once the solution is found, it can be interpreted as a connected graph whose Laplacian
matrix has the second eigenvalue positive. The point here is how to obtain the path from
all the possibilities when the maze is not solved. A new example is presented in Figure 4
discretized with a mesh of 11 × 11 elements. The entrance and exit are cyan and magenta,
respectively, and the adjacent squares to both of them are orange.
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Figure 4. Discretized unsolved maze.

A new variable φ ∈ {0, 1} is assigned to each square, representing whether this node
belongs to the path (φi = 1) or not (φi = 0). The nodes are numbered by columns (including
the walls), from left to right, and then φ2 = 1 and φ120 = 1. Wall squares cannot be included
in the solution path. Naming S the set of nodes fixed as walls, it implies φ|S = 0.

In order to determine if two adjacent nodes belong to the path, the weight of the link
between both of them can be defined as

wij = φi φj,

an expression that measures connectivity between squares. The idea of the method is to
determine the set of squares P that connects the entrance with the exit of the maze.

A trivial solution can be found by fixing the variable to φi = 1 in all the elements.
The way to find the optimal path is through an optimization problem, where the amount
of squares with φi = 1 is minimized (the shortest path), while λ2 is positive (a unique
connected path). The problem can be formulated as follows [20,21]:

min
φ∈{0,1}

: 1Tφ

s.t. :





(L(φ)− λkM(φ))Φk = 0, k = 1, . . . , m (auxiliary eigenproblem)

ΦT
k M(φ)Φk = 1 (M − orthonormalization)

λ2 > 0 (connectivity constraint),

(2)

where 1T is a vector of ones and L and M stand, respectively, for the Laplacian matrix and
global (lumped) mass matrix that stores in its diagonal the value of the design variable
φ. λk and Φk are the eigenvalues and the associated eigenvectors, respectively, of the
eigenproblem proposed: (L(φ)− λkM(φ))Φk = 0. The number of eigenvalues computed,
m, needs to be large enough due to the algebraic multiplicity of the second eigenvalue. It is
important to remark that for this example, the L and M ∈ M121×121. This is because both
matrices include all the elements in which the maze has been discretized, including the
walls, unlike the previous case.

The initial optimization problem is formulated in terms of the integer variable φ.
With the aim of writing Equation (2) within the framework of the topology optimization
method [25], φ ∈ {0, 1} is relaxed into the density variable ρ ∈ [0, 1]. The conic filter [26–28]
with the Heaviside projection [29,30] is used to avoid the appearance of gray areas, resulting
in the next formulation of the problem:

min
ρ∈[0,1]

: 1T ρ̄

s.t. :





(L(ρ̄)− λkM(ρ̄))Φk = 0, k = 1, . . . , m (auxiliary eigenproblem)

ΦT
k M(ρ̄)Φk = 1 (M − orthonormalization)

λ2 > 0 (connectivity constraint),

(3)
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where the projected density ρ̄ is computed as follows:

ρ̄e =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1 − η)
,

where the parameters β and η define the sharpness and the threshold of the projection. The
filtered density ρ̃ is obtained from the initial variable ρ:

ρ̃e =

ne

∑
i

de(xi)ρi

ne

∑
i

de(xi)

.

The weighting function d is given by the cone-shape function:

de(xi) = max{R f − ∥xi − xe∥, 0},

where R f is the filter radius and xi is the centroid of each finite element. The filtered density
ρ̃ takes the value of the weighted average of ρ in the neighborhood defined by the filter
radius. The Figure 5 shows a representation of the density filter, in such a way that only the
elements whose centroid are within the circle of radius R f are considered.

Rf

i − th

Figure 5. Density filter.

The filtering technique together with the projection approach ensure mesh indepen-
dence [25] and 0-1 designs [29]. During the optimization process, intermediate densities
may appear. The next interpolation scheme is used for computing the weights of the
Laplacian matrix:

wij = (ρiρj)
p + wmin,

where p is the penalization exponent and wmin is the minimum value of the weight, imposed
to avoid singularities. Note that the difference with Equation (3) is the use of the power
law. When the variable only takes two values, the weight clearly indicates if both nodes are
linked or not. This connection is not clear for intermediate densities, and then, with a value
of p = 6, only squares with ρ close to 1 are considered to be connected.

The optimization problem is solved by using the method of moving asymptotes
(MMA) [31]. This algorithm needs the objective function values and the constraints, and the
derivatives of both of them. The differentiation of the problem is straightforward, and it has
not been included here for the sake of brevity. The interested reader is referred to [32,33].

A summary of the process is shown in Table 1.
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Table 1. Algorithm and computational implementation.

Set Geometry of the maze and mesh
Set Optimization parameters
Define initialization ρ
Set Optimization method tolerance tol
While e > tol

Filtering and projection ρ → ρ̃ → ρ̄
Assembly of global matrices L(ρ̄) and M(ρ̄)
Compute λk and Φk
Compute objective function c = 1T ρ̄
Calculate derivatives
Update variables with MMA (ρ∗)
Define convergence variable e = ||ρ∗ − ρ||

end

4. Examples of Mazes

This section is devoted to the resolution of several mazes with different meshes and
configurations.

4.1. Coarse Mesh with Single Solution

For the first example, a maze with only one solution is generated with [34]. The maze
is discretized with a regular mesh of 21 × 21 square elements as shown in Figure 6. The
cyan and magenta lines represent the entrance and the exit, respectively, whose squares are
painted in orange. They are introduced in the problem as passive areas with ρi = 1.

Figure 6. The maze (left) and the mesh discretization (right).

The parameters of the filter and the projection are set to R f = 1.1 elements, η = 0.5
and β = 2 at the beginning of the iterative process (it doubles its value each 50 iterations
up to βmax = 16). The maximum number of iterations is 1000. The minimum weight of
the connections of the graph is wmin = 10−5. The walls are introduced in the optimization
problem as passive areas with ρi = 0. This means that a path cannot go through the wall,
because the squares cannot be connected. For this first maze, the solution is presented in
Figure 7.

This maze has only one path that connects, in an efficient way, the entrance and the
exit, and this is the solution obtained. The second eigenvalue of the problem is close to
0, but positive: λ2 = 0.05. The value of the objective function is not interesting in this
problem, but it can be computed as the number of orange squares.

The evolution of the objective function is shown in Figure 8.
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Figure 7. Solution of the first maze.
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Figure 8. Convergence history.

4.2. Fine Mesh with Single Solution

The same maze is proposed for the second example. In this case, the domain is
discretized with a mesh of 105 × 105 square elements. The main difference with the
previous example is that the width of every path and wall is more than one element, as
shown in Figure 9.

Figure 9. Fine discretization of the maze.
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Only the filter radius changes for this example, which is set to R f = 5.6 elements, the
rest of the parameters remain constants. The solution for this case study is depicted in
Figure 10, where the color orange symbolizes the optimal path.

Figure 10. Solution of the first maze discretized with a fine mesh.

It is interesting to remark that, in this case, the path is narrower than the corridors.
Every time the solution turns a corner, it takes the inside part of the turn, since the length of
the path is being minimized. This parameter, the width of the optimal route, can be partially
controlled with the conic filter and the projection. For a total control of the minimum length
scale, the robust approach presented in [30] can be implemented.

4.3. Fine Mesh with Various Solutions

The previous examples show the solution of a maze when only one path can connect
the entrance with the exit. For the following example, a maze with more than one solution
is proposed. In Figure 11 (left) is presented the new example, and two possible solutions
are painted with the orange line in Figure 11 (right). It is important to remark that when
moving in a straight line, both paths have the same length. It is easy to find more solutions
with a longer connection.

Figure 11. Maze proposed (left) and two admissible solutions (right).

Keeping all parameters constant, including the mesh, the optimal solution is plotted
with orange in Figure 12.
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Figure 12. Solution to the second maze.

Even when both paths seem to have the same length, the one that has more corners
is shorter. The optimal path obtained has 14 corners, while the other shown in Figure 11
(right) has only 10. This is due to the objective function, that minimizes the number of
orange squares that link the entrance with the exit. Just as happened in the other examples,
the second eigenvalue of the problem is positive.

4.4. Forcing the Path

In this case study, the same maze is solved again, but forcing the solution through
a new point. The new conditions for the maze are shown in Figure 13 (left), where the
optimal path is forced to pass through a point that was not included in the shortest path.
The solution is represented in Figure 13 (right).

Figure 13. Configuration of the maze (left) and optimal solution (right).

4.5. Three-Dimensional Maze with Single Solution

For this example, we have created a 3D maze by using a hypermatrix. The maze is
discretized with a regular mesh of 14 × 14 × 14 elements, as shown in Figure 14 (left). The
cyan and magenta squares denote the entrance and the exit, respectively. This maze has a
single path that efficiently connects the entrance and exit, and this is the obtained solution.
The optimal solution is plotted in orange in Figure 14 (right).
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Figure 14. Three-dimensional maze proposed (left) and optimal solution (right).

5. Conclusions

In this work, the resolution of a maze is proposed from a mathematical point of view
that involves the use of spectral graph theory. The strategy used consists of studying the
connectivity between the entrance and the exit. The second eigenvalue of the Laplacian
matrix of the graph is imposed to be positive, while the length of the path is minimized.
Several examples with different meshes thoroughly corroborates the results. Furthermore,
this method also allows for an optimal solution (the shortest way) to be found, even when
multiple paths linking the entrance with the exit are present. An extension of the approach
is also presented, where the optimal path is forced to pass through one point.

The results are shown qualitatively since the value of the objective function is not
representative of the optimal path. Regarding the constraint, it is enough that the second
eigenvalue is positive. This work can be extended to labyrinths, a particular case of a maze,
without loss of generality.

The objective function has been defined as the sum of the design variables, but it can
be adapted to problems of different nature. The increase in computing time is justified by
the flexibility of the algorithm. With this approach, the connectivity of the graph and the
objective function are completely independent, allowing to model problems of different
nature. In addition, this approach may include as design parameter the width of the path,
which can be useful to design trajectories. The approach is focused in the two-dimensional
and three-dimensional cases.
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