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Abstract: The Averaged One-Dependence Estimators (AODE) is a popular and effective method
of Bayesian classification. In AODE, selecting the optimal sub-model based on a cross-validated
risk minimization strategy can further enhance classification performance. However, existing cross-
validation risk minimization strategies do not consider the differences in attributes in classification
decisions. Consequently, this paper introduces an algorithm for Model Selection-based Weighted
AODE (SWAODE). To express the differences in attributes in classification decisions, the ODE
corresponding to attributes are weighted, with mutual information commonly used in the field of
machine learning adopted as weights. Then, these weighted sub-models are evaluated and selected
using leave-one-out cross-validation (LOOCV) to determine the best model. The new method
can improve the accuracy and robustness of the model and better adapt to different data features,
thereby enhancing the performance of the classification algorithm. Experimental results indicate
that the algorithm merges the benefits of weighting with model selection, markedly enhancing the
classification efficiency of the AODE algorithm.

Keywords: Bayesian network classification; AODE; leave-one-out cross-validation; model selection;
mutual information

MSC: 68T01

1. Introduction

Naive Bayes, within the realm of Bayesian network classifiers, has garnered significant
interest and ranks among the top ten traditional algorithms in data mining [1–4]. Naive
Bayes assumes that the attributes of a given category are independent of each other. This
assumption simplifies the computation of the likelihood function and makes it easy to
predict the sample category by maximizing the posterior probability. Given a test sample x
with vector ⟨x1, . . . , xd⟩, Naive Bayes predicts the class of the given test sample as follows:

y(x) = arg max
yϵY

P(y)
d

∏
j=1

P(xj|y) (1)

where d is the number of attributes, xj(j = 1, 2, ...., d) is the attribute value of the jth
attribute, y is a specific value in random variable Y, and y(x) is the class label of x predicted
by the Bayesian network classifier.

Despite its popularity, the Naive Bayes algorithm often fails to consider the correlation
between features, resulting in inaccurate classification. In response to the limitations of
the Naive Bayes algorithm, the AODE (Averaged One-Dependence Estimators) algorithm
emerged [5]. The AODE algorithm is built upon the Bayesian network, which considers
the relationship between features when constructing the model. Unlike the Naive indepen-
dence assumption, AODE does not assume independence between features. In order to
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consider dependencies between attributes in a limited scope while keeping the network
structure simple, AODE allows dependencies between attributes and assumes that they all
depend on a common parent attribute, forming a One-Dependence Estimator (ODE) [6].
Then, by rotating all attributes as parent attributes, the average of the posterior probabilities
is used to predict the class of the sample, thus it achieves good results in classification tasks.

In AODE, to enhance both the performance and robustness of classification algo-
rithms, some researchers have proposed cross-validation risk minimization strategies,
among which the leave-one-out cross-validation (LOOCV) technique [7] is a commonly
used method for cross-validation risk minimization. For example, Chen et al. [8] pointed
out that the performance of classification algorithms can be evaluated more accurately by a
cross-risk minimization strategy to avoid overfitting of training data. The cross-validation
risk minimization strategy is a technique used for evaluating and selecting models by
estimating the generalization error of the model using cross-validation during model train-
ing to select the optimal model. By introducing the cross-validation risk minimization
strategy, the AODE algorithm can better adapt to the characteristics of different datasets
and improve the generalization ability of the classifier. However, existing cross-validation
risk minimization strategies do not consider the differences in attributes in classification
decisions, so this paper proposes a Model Selection-based Weighted AODE (SWAODE)
algorithm. The SWAODE algorithm adopts the mutual information as the weights for
each ODE and evaluates and selects these weighted sub-models using a leave-one-out
cross-validation (LOOCV) technique to determine the best model. The AODE algorithm’s
classification efficiency is greatly enhanced by this technique, which also boasts strong
robustness and broad applicability.

The main contributions of this paper are as follows:
1. The variability between ODEs and between sub-models is fully taken into account

by weighting each ODE and selecting the sub-models in this paper. In this way, the quality
of each ODE can be evaluated more finely, and the optimal set of models can be selected,
which provides a new perspective for the optimization of the AODE algorithm.

2. We propose a new Model Selection-based Weighted AODE (SWAODE) algorithm,
which effectively combines the advantages of weighting and model selection. The goal
of the SWAODE algorithm is to enhance the performance and robustness of the AODE
classification algorithm. The SWAODE algorithm is able to classify data more accurately
and improve the model’s ability to generalize by integrating weighting and model selec-
tion strategies.

3. This paper compares the SWAODE algorithm with other advanced algorithms
using 70 datasets from the UCI repository [9], along with conducting ablation experi-
ments. Experimental results indicate the superiority of the SWAODE algorithm over other
advanced algorithms.

The sections of this paper are structured as follows: In Section 1, we introduce relevant
research focused on improving AODE. Section 2 discusses AODE and the process of model
selection. The SWAODE algorithm is outlined in Section 3. In Section 4, we provide a
detailed description of the experimental setup and its results. Finally, our conclusions are
presented in Section 5.

2. Related Work

In recent years, various strategies have been suggested to alleviate the effects of
assumptions about attribute independence. Current research can be generally divided into
three types: attribute weighting, attribute selection, and structure extension.

2.1. Attribute Weighting

Jiang and Zhang [10] first proposed the idea of assigning different weights to each
attribute in AODE. Jiang et al. [11] then argued that it is not reasonable to have the same
weight for every One-Dependence Estimator (ODE) in AODE, so in their paper, they
proposed the classification model WAODE that assigned different weights to different
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ODEs. Wu et al. [12] introduced an adaptive SPODE named SODE, which leveraged the
principles of immunity from the artificial immune system to autonomously and flexibly
determine the weights of each SPODE.

2.2. Attribute Selection

Zheng et al. [13] introduced attribute selection methods for AODE, including Back-
ward Sequential Elimination (BSE) and Forward Sequential Selection (FSS), but these
techniques are not very practical for large datasets. Meanwhile, Yang et al. [14,15] con-
ducted a comparison of attribute selection and weighting techniques in AODE. Chen
et al. [16] introduced an innovative method for selecting attributes, suitable for extensive
model space searches with just a single extra training dataset. The experimental results
indicated that the novel technique markedly diminished the bias of AODE, but the training
time was slightly increased. This low bias and efficient computation made it suitable for
big data learning, but the article did not mention the effect of model selection.

2.3. Structure Extension to NB

Friedman et al. [17] introduced the Tree-Augmented Naive Bayes (TAN) method
as an enhancement to Naive Bayes (NB), incorporating a tree structure to mitigate the
independence assumptions of NB. TAN mandates that the class variables lack parent nodes,
with each attribute containing the class variable and at most one other attribute as parent
nodes. This one-traversal algorithm acquires the necessary probability distributions from
the training samples during one-traversal learning to construct the network structure and
conditional probability tables.

The K-dependent Bayesian classifier (KDB) [18] is a method to improve Naive Bayes
(NB). It relaxes the independence assumption of Naive Bayes by allowing each attribute
to possess a maximum of k parent attributes. As a result, NB can be viewed as a zero-
dependent Bayesian classifier, whereas KDB can include a higher degree of attribute
dependence by increasing the value of k. KDB can construct classifiers at any value of k,
retaining most of the computational properties of NB and selecting for each attribute a
network structure with up to k parent attributes for each attribute.

Another notable enhancement to NB is AODE [5], which relaxes the independence
assumption of Naive Bayes by allowing some degree of dependence between features.
AODE constructs multiple One-Dependence Estimators by considering the relationship
between each feature and category, and then averages them to obtain the final classification
result. This approach can more effectively utilize the correlation between features and
ultimately improve classification accuracy.

3. AODE and Model Selection Analysis

We discuss the Averaged One-Dependence Estimators (AODE) algorithm and its
model selection process in this section.

In order to make the paper more readable, we summarize all the symbols that are
defined in the paper in Table 1 for quick reference and understanding by the reader.
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Table 1. Tables of symbols.

Symbols Definition

D Set of training data
n Number of training samples
X, Xi Variable representing the attribute
x, xi Value of attribute variable X or Xi
vi, vj Number of values of attribute Xi or Xj
x = ⟨x1, . . . , xd⟩ Vector representing a sample
xi ith sample
xi,j jth value of the ith attribute
Y Variable representing the category
y A specific value in random variable Y
yi True category of the ith sample
c Number of categories
d Number of attributes
m Smoothing parameter
r Number of attributes as parent attributes
s Number of attributes as child attributes
wj Weight of the jth (j = 1, 2, ..., d) ODE
m′ Threshold

3.1. Constructing the AODE Model

AODE only allows one dependence between attributes; attribute Xi can only depend
on some attribute Xj and category Y, where Xj is called the parent attribute of Xi. At the
same time, in order to keep the computation simple, it is assumed that all attributes
depend on a common parent attribute Xj which constitutes a Bayesian network called
One-Dependence Estimator (ODE) [6]. Based on this ODE, the joint probability p(y, x) can
be estimated as:

PODE(y, x) = P(y, xj)
d

∏
i=1

P(xi|y, xj) (2)

To eliminate the bias introduced by the selection of the parent attribute, it is allowed
that all the attributes can be used as the parent attribute in turn, thus obtaining d ODEs,
and finally, the posteriori probabilities estimated from these d ODE are averaged to obtain
the posterior probability estimate of the sample. Thus, the AODE algorithm calculates the
joint probability as:

PAODE(y, x) =
∑d

j=1 P(y, xj)∏d
i=1 P(xi|y, xj)

d
(3)

where P(xi|y, xj) can be obtained from the ratio of P(xi, y, xj) and P(y, xj), so only the basic
probabilities P(y, xj) and P(xi, y, xj) need to be estimated, which can be obtained by an
M-estimation:

P̂(y, xj) =
F(y, xj) +

m
c ∗ vi

n + m
(4)

P̂(xi, y, xj) =

F(xi, xj, y) +
m

c ∗ vi ∗ vj

n + m
(5)

where F(•) is the frequency of occurrence of the parameter item in the training dataset. vi is
the number of values of attribute Xi, c is the number of categories, and m is the smoothing
parameter in the M-estimation, which is a commonly used parameter estimation method.
By introducing the smoothing parameter m, the M-estimation can prevent the probability
estimates from being zero and improves the robustness of the estimates.
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The frequency F containing class labels and attribute values can be realized in a
three-dimensional table in practical implementation, where the first and second dimensions
represent the values taken for the first and second attributes. The third dimension represents
the values taken for the category, and the values in the table record the frequency values
on the values of that dimension. Assuming that there are two attributes X1, X2 and two
categories class1, class2 where X1 has two attribute values, X2 has three attribute values,
the frequency table is shown in Table 2.

Table 2. Frequency table with two attributes and two class variables.

Class1 Class2

X2 x2,1
X1 x1,1
X1 x1,2

X2 x2,2
X1 x1,1
X1 x1,2

X2 x2,3
X1 x1,1
X1 x1,2

The training process of AODE is described by Algorithm 1.

Algorithm 1 AODE training process

Require: Set of training data D
Ensure: Frequency table F containing a combination of category labels and two attributes

1: All frequencies in the frequency table F are initialized to zero
2: for each training sample x from D do
3: Obtain the class label y for sample x and set i and j to zero
4: while i < d do
5: Read the value xi of attribute Xi in sample x
6: while j < i do
7: Read the value xj of attribute Xj in sample x
8: Find the frequency at positions xi, xj, y in the frequency table F and increase

by one
9: j = j + 1

10: end while
11: i = i + 1
12: end while
13: end for
14: return the finally calculated frequency table F

Algorithm 1 reveals that the AODE training process’s time complexity is influenced by
the quantity of samples and attributes, where there are d parent and child attributes, so the
total time complexity of the AODE training process is O(nd2), where d denotes the number
of attributes, and n denotes the number of samples for each attribute. AODE typically
exhibits a marginally greater time complexity compared to NB, as AODE represents a
singular attribute dependency, aligning more closely with the real data. Therefore, the
classification performance is significantly improved compared with NB.

3.2. Model Selection-Based AODE

To fully present the Model Selection-based AODE(SAODE) algorithm in this section,
the model space is first constructed here. Then, the attributes are ranked based on mutual
information. Finally, the best model is selected using the leave-one-out cross-validation error.

3.2.1. Building the Model Space

When constructing the AODE model space, we introduce the threshold m′. When a
particular value xj of the parent attribute in the training data occurs more often than or
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as often as a threshold m′, the ODE model corresponding to that value is included in the
computation of the AODE model. If we choose the former r attributes as parent attributes
and the former s attributes as child attributes, where 1 ≤ r, s ≤ d, the AODE model is
approximated by:

PAODE(y, x)r,s =
∑j:1≤j≤r∧F(xj)≥m′ P(y, xj)∏s

i=1 P(xi | y, xj)

|{j : 1 ≤ j ≤ r ∧ F(xj) ≥ m′}|
(6)

where F(xj) is the frequency of xj, and m′ is the minimum frequency that takes the value xj.
The AODE algorithm with the inclusion of a threshold m′ improves the overall performance
and prediction accuracy of the model by ensuring that the number of samples for the parent
attribute is sufficient, avoiding the problems of high variance and unreliable conditional
probability estimation caused by data sparsity. This mechanism enables AODE to maintain
high predictive stability and reliability in the face of uneven data distribution. When both r
and s are equal to d, it can be seen from the formula that when calculating PAODE(y, x)d,d,
at most d2 subsets of attributes are created as sub-models.

All these approximate AODE models are just a small extension of the previous model.
For example, PAODE(y, x)1,2 is obtained by adding the child attribute x2 to PAODE(y, x)1,1.
All of these models can be applied to test instances in a single nested computation. Thus,
all models can be evaluated efficiently.

3.2.2. Attribute Sorting

Constructing a model of the later attributes depends on the model of the earlier
attributes when constructing the AODE model space. Therefore, this method of nesting
models depends on the order of the attributes. Thus, here, the mutual information is used
to sort the attributes. The mutual information is calculated as:

MI(X, Y) = H(X)− H(X|Y)

= ∑
y∈Y

∑
x∈X

P(x, y) log2
P(x, y)

P(x)P(y)
(7)

where H(X) is the entropy of X, H(X|Y) is the conditional entropy, p(x, y) is the joint
probability of x and y, and p(x) and p(y) are the probabilities of x and y, respectively.
Therefore, the MI is used as an indicator of the correlation between attribute X and category
Y. The larger the value of the MI, the stronger the correlation between attribute X and
category Y is indicated.

An advantage of employing the MI is its ability to efficiently compute the MI between
attributes and classes within a single training session. While the MI can identify the
discriminative power of individual attributes, it cannot directly assess the discriminative
power of combinations of attributes. However, this shortcoming is compensated for the
fact that the ranking based on MI can be searched in a wide model space.

3.2.3. Model Selection

For evaluating the distinctiveness of different models and preventing overfitting, leave-
one-out cross-validation errors are employed. Through gradual cross-validation, the impact
of the absent sample in each fold is deducted from the frequency table to create a model
excluding that sample. The technique offers a lower bias estimate of the generalization
error and assesses the model using a single training dataset.

In addition, as shown in Equation (6), these models are nested together, with each
model being a straightforward extension of another, providing an effective means of
evaluating them. That is, these models can be evaluated simultaneously during their
construction for the training samples missed in each fold.

Among the more common methods used to evaluate the model selection are the 0–1
loss, Root-Mean-Square Error (RMSE), LogLoss, and AUC value. For example, Chen [19]
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proposed the RMSE as a criterion for model evaluation, where a lower RMSE indicated a
better model. Therefore, we also use the RMSE as a criterion for model evaluation as a way
to select the optimal model in Section 3.

4. Model Selection-Based Weighted AODE

In this section, our focus is on the weighting strategy for AODE and the methodology
for model selection on the weighted AODE model, given that we have already described
the construction methodology of the AODE model in detail in Section 2.

4.1. Weighting the AODE Model

The contribution of each ODE to the final classification result may be different in the
AODE algorithm, and certain sub-models may discriminate more accurately for specific
categories while others may perform weakly. Therefore, weighting each sub-model can
more accurately reflect its importance in the overall classification process, thus improving
the overall model performance [11].

The classification ability of ODEs composed of different parent attributes Xj is dif-
ferent, so different weights can be applied to different ODEs [11]. Thus, the formula
transforms into:

PWAODE(y, x) =
∑d

j=1 wjP(y, xj)∏d
i=1 P(xi|y, xj)

d
(8)

where wj is the weight of the jth (j = 1, 2, ..., d) ODE, where the weights are obtained by
calculating the MI through Equation (8). When attribute X and category Y are completely
independent, the MI is 0, indicating that there is no information sharing or dependency
between them.

Weighting each ODE can better improve the performance and robustness of the overall
model, thus enhancing the reliability and validity of the model in practical applications.

4.2. Model Selection for WAODE

We first construct the model space of WAODE in this subsection. Then, the attributes
are ranked according to the MI. Finally, we use the RMSE as the cross-validation error and
select the optimal sub-model by minimizing the RMSE.

4.2.1. Building the Model Space

As shown in Equation (6), for the WAODE algorithm, where we also introduce the
threshold m′, the joint probability is given by:

PWAODE(y, x)r,s =
∑j:1≤j≤r∧F(xj)≥m′ wjP(y, xj)∏s

i=1 P(xi | y, xj)

|{j : 1 ≤ j ≤ r ∧ F(xj) ≥ m′}|
(9)

Similar to the AODE model’s construction in Section 2, all of these approximate
WAODE models constitute the model space depicted in Table 3, since each model is simply
a small extension of the previous one. Thus, every model is capable of being assessed
with efficiency.

Table 3. Space of approximate models of WAODE with d attributes.

Parent
Children

x1 . . . xs . . . xd

x1 PWAODE(y, x)1,1 . . . PWAODE(y, x)1,s . . . PWAODE(y, x)1,d
. . . . . . . . . . . . . . . . . .
xr PWAODE(y, x)r,1 . . . PWAODE(y, x)r,s . . . PWAODE(y, x)r,d
. . . . . . . . . . . . . . . . . .
xd PWAODE(y, x)d,1 . . . PWAODE(y, x)d,s . . . PWAODE(y, x)d,d
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4.2.2. Attribute Sorting

In constructing the WAODE model space, the model for later attributes is dependent
on the model for earlier attributes, as shown in Table 3. This approach of nested models is
influenced by the order in which the attributes are considered. To address this, we utilize
the MI to rank the attributes. Additionally, we observe that the sorting process also involves
selecting attributes, and by sorting first, we can more easily identify the attributes that have
a significant impact on categorization. To calculate the MI, we use Equation (8).

4.2.3. Model Selection

We used a 10-fold CV in our experiments to make the results more objective, and we
used the LOOCV error as a criterion for model selection. Figure 1 describes the relation-
ship between LOOCV and 10-fold CV. The test set in the 10-fold CV loops through the
10 folds of samples. At the same time, the test instance in LOOCV loops through all the
LOOCV instances.

Figure 1. The relationship between LOOCV and 10-fold CV.

LOOCV errors were used to evaluate model distinctiveness and prevent overfitting by
excluding one sample at a time from the training data and assessing the model without it.
This method provides a lower bias estimate of the generalization error and evaluates the
model using nearly all available data for training.

The 0–1 loss (ZOL) and the Root-Mean-Square Error (RMSE) are the most common
evaluation criteria used as model selection. The 0–1 loss simply assigns “0” to correct
classifications and “1” to misclassifications, considering all misclassifications as equally
undesirable. However, the RMSE is more sensitive to the severity of misclassification, so it
is able to make more fine-grained probabilistic predictions. The RMSE can be expressed as:

RMSE =

√
1
n

n

∑
i=1

(1 − P(y(xi) = yi | xi))
2 (10)

where yi is the true class of sample xi. The smaller the RMSE, the smaller the discrepancy
between the model’s predictions and the true labels. Compared to the 0–1 loss, the RMSE is
able to assess model uncertainty on a continuous basis rather than simply telling us whether
the model is classified correctly or not. Meanwhile, the RMSE penalizes model uncertainty
more strictly, so it provides a more fine-grained calibration metric for probability estimation.
Consequently, the RMSE was employed to assess potential models in our study.
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Therefore, the process of choosing the best model can be framed as the following
optimization problem:

⟨r, s⟩∗ = argmin
⟨r,s⟩

√
1
n

n

∑
i=1

(
1 − PLOO

WAODE(y(xi) = yi | xi)r,s
)2 (11)

where PLOO
WAODE(y | xi)r,s can be computed by first estimating PLOO

WAODE(y, xi)r,s from training
set (D − {⟨yi, xi⟩}) as in Equation (9), and then normalizing across all possible y’s.

4.3. Algorithm Description

Utilizing the aforementioned method, we formulated a training algorithm for the
Selection-based Weighted AODE (SWAODE) model, as shown in Algorithm 2.

Algorithm 2 Training algorithm for Model Selection-based Weighted AODE (SWAODE)

1: First pass: Form the table of joint frequencies of all combinations of x attribute values
and the class label as in Algorithm 1

2: Compute the mutual information
3: Weighting each ODE and rank the attributes
4: Second pass: Perform LOOCV on the sample set
5: for sample x ∈ D do
6: Remove sample x from the frequency table
7: Obtain category for sample x and set i and j to zero
8: Build d2 models for AODE
9: for j < d do

10: for i < d do
11: Predict sample x using all models in Equation (9)
12: Accumulate the squared error for each model
13: i = i + 1
14: end for
15: j = j + 1
16: end for
17: Add sample x back to the frequency table
18: end for
19: Compute the root-mean-square error for each model
20: Select the model with the lowest RMSE

The SWAODE algorithm for weighting and model selection needs to consider the
time complexity involved in computing the MI and LOOCV, respectively, where the total
time complexity of calculating the MI in the WAODE-MI algorithm is O(cd2), and the time
complexity of model selection with LOOCV is O(cnd2), so the total time complexity of the
SWAODE algorithm is O(cnd2) + O(cd2), which is almost similar to the time complexity
of the SAODE algorithm, where d is the number of attributes, n is the number of samples,
and c is the number of categories.

5. Experiments and Discussion

We ran the above algorithm on 70 datasets from the UCI repository [9]. The com-
prehensive features of the datasets are presented in Table 4, arranged in an increasing
sequence based on the count of instances. The experiments were carried out based on the
high-performance computing platform of Nanjing Audit University, the computing node
CPU was an Intel E5, the amount of memory was 188 G, and the operating system was
CentOS7.9-x64. The algorithms were based on the Petal Machine Learning Platform [19] im-
plemented in C++. Compared to the well-known machine learning experimental platform
Weka [20], the Petal platform has one significant difference: missing values are viewed as a
single value in Petal, whereas the Weka system employs means (numerical attributes) or
modes (discrete attributes) instead.



Mathematics 2024, 12, 2306 10 of 19

Table 4. Datasets.

No. Name Inst Att Class

1 contact-lenses 24 4 3
2 lung-cancer 32 56 3
3 labor-negotiations 57 16 2
4 post-operative 90 8 3
5 zoo 101 16 7
6 promoters 106 57 2
7 echocardiogram 131 6 2
8 lymphography 148 18 4
9 iris 150 4 3

10 teaching-ae 151 5 3
11 hepatitis 155 19 2
12 wine 178 13 3
13 autos 205 25 7
14 sonar 208 60 2
15 glass-id 214 9 3
16 new-thyroid 215 5 3
17 audio 226 69 24
18 hungarian 294 13 2
19 heart-disease-c 303 13 2
20 haberman 306 3 2
21 primary-tumor 339 17 22
22 ionosphere 351 34 2
23 dermatology 366 34 6
24 horse-colic 368 21 2
25 house-votes-84 435 16 2
26 cylinder-bands 540 39 2
27 chess 551 39 2
28 syncon 600 60 6
29 balance-scale 625 4 3
30 soybean 683 35 19
31 credit-a 690 15 2
32 breast-cancer-w 699 9 2
33 pima-ind-diabetes 768 8 2
34 vehicle 846 18 4
35 anneal 898 38 6
36 tic-tac-toe 958 9 2
37 vowel 990 13 11
38 german 1000 20 2
39 led 1000 7 10
40 contraceptive-mc 1473 9 3
41 yeast 1484 8 10
42 volcanoes 1520 3 4
43 car 1728 6 4
44 segment 2310 19 7
45 hypothyroid 3163 25 2
46 splice-c4.5 3177 60 3
47 kr-vs-kp 3196 36 2
48 abalone 4177 8 3
49 spambase 4601 57 2
50 phoneme 5438 7 50
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Table 4. Cont.

No. Name Inst Att Class

51 wall-following 5456 24 4
52 page-blocks 5473 10 5
53 optdigits 5620 64 10
54 satellite 6435 36 6
55 musk2 6598 166 2
56 mushrooms 8124 22 2
57 thyroid 9169 29 20
58 pendigits 10,992 16 10
59 sign 12,546 8 3
60 nursery 12,960 8 5
61 magic 19,020 10 2
62 letter-recog 20,000 16 26
63 adult 48,842 14 2
64 shuttle 58,000 9 7
65 connect-4 67,557 42 3
66 waveform 100,000 21 3
67 localization 164,860 5 11
68 census-income 299,285 41 2
69 poker-hand 1,025,010 10 10
70 donation 5,749,132 11 2

5.1. Comparison on ZOL

In this experiment, in order to verify the performance of the SWAODE algorithm, we
compared it with classical algorithms such as NB [1], KDB (k = 1) [18], AODE [5], WAODE-
MI [11], WAODE-KL [21], and so on. We adopted ZOL as the evaluation index, where the
loss was one when the sample was misclassified and zero when it was correctly classified,
and then we calculated the percentage of total loss in the total number of test samples in
order to comprehensively assess the performance of different algorithms in the classification
task. The W/D/L metrics tracked the number of wins, draws, and losses for each algorithm
across multiple datasets, allowing for a comparison of their performance on the same
dataset. For instance, SWAODE demonstrated strong performance with 52 wins, 5 draws,
and 13 losses when compared to NB, providing an objective assessment of the algorithms’
respective strengths and weaknesses. Through this professional evaluation method, we can
more comprehensively and objectively assess the advantages of the SWAODE algorithm
over other algorithms and provide a scientific basis for its performance evaluation, as shown
in Table 5. Meanwhile, in order to facilitate the observation of SWAODE’s experimental
data, we bolded the row where SWAODE is located in all subsequent tables and presents
the experimental data for each dataset in Appendix Table A1.

Table 5. Win/draw/loss of ZOL for SWAODE.

NB KDB AODE WAODE-MI WAODE-KL SAODE

SWAODE 52/5/13 52/2/16 39/8/23 34/12/24 32/14/24 27/22/21
NB 24/2/44 15/4/51 14/3/53 15/3/52 14/3/53

KDB 21/3/46 21/1/48 20/2/48 15/3/52
AODE 20/15/35 20/13/37 21/8/41

WAODE-MI 9/51/10 25/8/37
WAODE-KL 26/7/37

The analysis in Table 5 reveals that the SWAODE algorithm outperformed other
advanced algorithms. Compared to the AODE algorithm, the SWAODE algorithm achieved
39 wins, 8 draws, and 23 losses, representing a significant improvement. Additionally,
the weighted AODE classification algorithm also showed improvement when different
weights were assigned. The WAODE-KL algorithm, which uses KL divergence as weights,
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achieved 37 wins, 13 draws, and 20 losses compared to the AODE algorithm, demonstrating
a clear advantage. However, even the excellent WAODE-KL algorithm did not surpass our
new algorithm, the SWAODE algorithm. In comparison, the SWAODE algorithm achieved
32 wins, 13 draws, and 24 losses, showing a clear advantage. Overall, our SWAODE
algorithm demonstrated strong performance and brought significant improvement to the
classification task.

We also represented the scatter plot of SWAODE with respect to WAODE-MI in terms
of ZOL in Figure 2. Points above the diagonal represent datasets whose ZOL values are
lower than those of WAODE-MI. It can be found that SWAODE consistently provided
better predictions than the regular WAODE-MI in a statistically significant way.

Figure 2. Scatter plot of ZOL.

5.2. Comparison on LogLoss

When assessing the effectiveness of the SWAODE algorithm, it is common to use
LogLoss as an evaluation metric. LogLoss is a widely used metric for evaluating the
predictive accuracy of a classification model. It measures the deviation between the model’s
predicted probability for each sample and the actual label. To compare the SWAODE
algorithm with other advanced algorithms, their LogLoss values on a test dataset can be
calculated and visualized. Additionally, the W/D/L (win/draw/loss) metric can be used
to analyze the strengths and weaknesses of different algorithms in the experimental results.
By comparing the LogLoss values of the SWAODE algorithm with those of other algorithms,
the strengths and weaknesses on different datasets can be determined, as shown in Table 6.
Meanwhile, we also show the experimental data in detail in Appendix Table A2.

Table 6. Win/draw/loss of LogLoss for SWAODE.

NB KDB AODE WAODE-MI WAODE-KL SAODE

SWAODE 60/0/10 56/0/14 48/1/21 42/7/21 42/6/22 40/4/26
NB 28/0/42 11/0/59 11/0/59 11/0/59 10/0/60

KDB 18/0/52 18/0/52 18/0/52 12/0/58
AODE 25/1/44 22/1/47 17/2/51

WAODE-MI 19/28/23 24/0/46
WAODE-KL 26/0/44
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According to the data analysis in Table 6, the SWAODE algorithm presented excellent
performance on LogLoss. In the comparison with AODE, it achieved 48 wins/1 draw/21 losses.
In addition, the SWAODE algorithm also performed outstandingly compared to the
weighted AODE algorithm. The SWAODE algorithm beat the WAODE-MI algorithm
and the WAODE-KL algorithm on 42 of the 70 datasets, respectively. These results show
that the SWAODE algorithm is adaptable to various datasets and outperforms other algo-
rithms in most cases. Therefore, the SWAODE algorithm is a very efficient algorithm for
AODE improvement.

Meanwhile, we also represented the scatter plot of SWAODE with respect to WAODE-
MI in terms of LogLoss in Figure 3. It can be found that SWAODE consistently provided
better predictions than the regular WAODE-MI algorithm in a statistically significant way.

Figure 3. Scatter plot of LogLoss.

5.3. Ablation Studies

To delve deeper into the necessity of weighting and model selection for the AODE
classification algorithm, we conducted two ablation study experiments to validate its impact
in this section, again using W/D/L (win/draw/loss) as the measure. These experiments
aimed to dissect the performance of the SWAODE algorithm in the absence of weighting
and model selection, thus highlighting the crucial role of weighting and model selection in
improving the classification performance of SWAODE. In our experiments, we implemented
the WAODE-MI algorithm, which uses MI as a weight, and the SAODE algorithm, which
performs model selection on AODE. The SWAODE algorithm was compared with these
two algorithms in terms of ZOL and LogLoss metrics.

According to Table 7, the SWAODE algorithm achieved 34 wins/12 draws/24 losses and
42 wins/7 draws/21 losses in the two comparisons with the WAODE-MI algorithm. It also
performed well in the comparison with SAODE, achieving 27 wins/22 draws/21 losses and
40 wins/4 draws/26 losses, respectively. Therefore, we can conclude that both weighting
and model selection are necessary and indispensable in the SWAODE algorithm, and the
algorithm is able to fully draw on the advantages of weighting and model selection to
greatly improve the classification performance of the AODE algorithm.
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Table 7. Ablation Studies.

WAODE-MI SAODE

ZOL SWAODE 34/12/24 27/22/21
WAODE-MI 25/8/37

LogLoss SWAODE 42/7/21 40/4/26
WAODE-MI 24/0/46

6. Conclusions

This study proposed a new AODE classification algorithm, the SWAODE algorithm,
which aimed to solve the problem of existing cross-validation risk minimization strategies
not considering the difference in attributes in classification decisions. The core idea of
the algorithm lay in first weighting each ODE in the AODE which used the MI values
as the weights. Subsequently, a leave-one-out cross-validation (LOOCV) method was
used to perform model selection on these weighted sub-models in order to select the
optimal model. Experimental results indicated the SWAODE algorithm markedly surpassed
other well-known popular classification algorithms on multiple datasets, exhibiting higher
classification efficiency and generalization ability.

However, we recognize that this is only one aspect of model selection and that many
potential extensions deserve further exploration. The next step of our work will focus
on exploring the extension of attribute-weighted AODE classification models. Overall,
further exploration of attribute-weighted AODE classification models is a challenging but
promising research direction. By delving into this area, we hope to bring innovative ideas
and tools to research related to machine learning and data mining.
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Appendix A

Detailed results for 0–1 loss and LogLoss ± standard deviation are shown in Tables A1 and A2.

Table A1. ZOL.

Data Set SWAODE NB KDB AODE WAODE-MI WAODE-KL SAODE

contact-lenses 0.3750+/−0.3425 0.3750+/−0.3425 0.2917+/−0.3543 0.4167+/−0.3574 0.3333+/−0.3581 0.3333+/−0.3581 0.3750+/−0.3425
lung-cancer 0.3750+/−0.3113 0.4375+/−0.2684 0.5938+/−0.3082 0.4688+/−0.2885 0.4688+/−0.2885 0.4688+/−0.2885 0.3750+/−0.3113

labor-negotiations 0.0702+/−0.0966 0.0351+/−0.0422 0.1053+/−0.1146 0.0526+/−0.0675 0.0702+/−0.0966 0.0877+/−0.1269 0.0702+/−0.0966
post-operative 0.2889+/−0.1741 0.3444+/−0.1966 0.3444+/−0.1748 0.3444+/−0.1882 0.3333+/−0.1401 0.3333+/−0.1401 0.2889+/−0.1741

zoo 0.0297+/−0.0600 0.0297+/−0.0477 0.0495+/−0.0614 0.0198+/−0.0384 0.0198+/−0.0384 0.0198+/−0.0384 0.0198+/−0.0384
promoters 0.0472+/−0.0748 0.0755+/−0.0617 0.1321+/−0.0891 0.1038+/−0.0648 0.0849+/−0.0656 0.0849+/−0.0656 0.0660+/−0.0992

echocardiogram 0.3511+/−0.1129 0.2748+/−0.1347 0.3664+/−0.1511 0.3435+/−0.1143 0.3359+/−0.1120 0.3282+/−0.1152 0.3664+/−0.1073
lymphography 0.1554+/−0.1129 0.1486+/−0.0979 0.1757+/−0.0791 0.1486+/−0.0991 0.1351+/−0.1056 0.1419+/−0.1026 0.1554+/−0.1183

iris 0.0600+/−0.0655 0.0733+/−0.0693 0.0733+/−0.0505 0.0600+/−0.0655 0.0600+/−0.0655 0.0600+/−0.0655 0.0600+/−0.0655
teaching-ae 0.4636+/−0.0918 0.5298+/−0.1579 0.4834+/−0.1079 0.4834+/−0.1179 0.4702+/−0.1214 0.4636+/−0.1186 0.4636+/−0.0918

hepatitis 0.2000+/−0.1144 0.1613+/−0.1151 0.2194+/−0.1205 0.1935+/−0.1244 0.1871+/−0.1201 0.1871+/−0.1201 0.2129+/−0.1244
wine 0.0281+/−0.0404 0.0225+/−0.0347 0.0674+/−0.0633 0.0281+/−0.0404 0.0281+/−0.0404 0.0281+/−0.0404 0.0225+/−0.0332
autos 0.1756+/−0.1420 0.3902+/−0.1648 0.2293+/−0.1374 0.2537+/−0.1104 0.2537+/−0.1216 0.2585+/−0.1207 0.1854+/−0.1376
sonar 0.1731+/−0.0978 0.2452+/−0.0889 0.2548+/−0.0914 0.1394+/−0.0888 0.1587+/−0.0849 0.1346+/−0.0918 0.1490+/−0.1027

glass-id 0.1869+/−0.0575 0.2570+/−0.1019 0.2383+/−0.0720 0.1589+/−0.0576 0.1636+/−0.0664 0.1636+/−0.0664 0.1776+/−0.0580
new-thyroid 0.0651+/−0.0410 0.0419+/−0.0487 0.0651+/−0.0454 0.0512+/−0.0544 0.0512+/−0.0468 0.0512+/−0.0468 0.0698+/−0.0492

audio 0.2301+/−0.0817 0.2389+/−0.0548 0.3097+/−0.1054 0.2301+/−0.0649 0.2345+/−0.0701 0.2434+/−0.0671 0.2345+/−0.0805
hungarian 0.1667+/−0.0520 0.1565+/−0.0698 0.2075+/−0.0625 0.1429+/−0.0676 0.1565+/−0.0773 0.1565+/−0.0773 0.1667+/−0.0667

heart-disease-c 0.1848+/−0.1062 0.1683+/−0.0803 0.2178+/−0.1428 0.1848+/−0.1067 0.1848+/−0.1022 0.1848+/−0.1022 0.1848+/−0.1054
haberman 0.2549+/−0.1070 0.2647+/−0.1285 0.2778+/−0.1024 0.2712+/−0.1188 0.2941+/−0.1152 0.2941+/−0.1152 0.2386+/−0.1068

primary-tumor 0.5221+/−0.1028 0.5162+/−0.0883 0.5841+/−0.1119 0.5162+/−0.0984 0.5251+/−0.0914 0.5251+/−0.0914 0.5133+/−0.1031
ionosphere 0.0798+/−0.0399 0.1197+/−0.0854 0.0684+/−0.0441 0.0826+/−0.0405 0.0826+/−0.0405 0.0826+/−0.0405 0.0798+/−0.0497

dermatology 0.0191+/−0.0310 0.0191+/−0.0242 0.0301+/−0.0258 0.0219+/−0.0275 0.0191+/−0.0282 0.0191+/−0.0282 0.0246+/−0.0318
horse-colic 0.1522+/−0.0627 0.2065+/−0.0928 0.2120+/−0.0615 0.2038+/−0.0590 0.1984+/−0.0591 0.1984+/−0.0591 0.1603+/−0.0596

house-votes-84 0.0552+/−0.0435 0.0943+/−0.0256 0.0690+/−0.0353 0.0529+/−0.0346 0.0506+/−0.0358 0.0506+/−0.0358 0.0552+/−0.0435
cylinder-bands 0.2167+/−0.0355 0.2093+/−0.0326 0.2074+/−0.0575 0.1611+/−0.0421 0.1574+/−0.0409 0.1574+/−0.0429 0.2167+/−0.0355

chess 0.0907+/−0.0500 0.1125+/−0.0551 0.0998+/−0.0354 0.1053+/−0.0631 0.1053+/−0.0598 0.0998+/−0.0613 0.0889+/−0.0515
syncon 0.0200+/−0.0136 0.0483+/−0.0398 0.0200+/−0.0156 0.0200+/−0.0163 0.0200+/−0.0163 0.0200+/−0.0163 0.0200+/−0.0136

balance-scale 0.1168+/−0.0119 0.0832+/−0.0207 0.1424+/−0.0307 0.1120+/−0.0159 0.1168+/−0.0119 0.1168+/−0.0119 0.1184+/−0.0174
soybean 0.0556+/−0.0191 0.0893+/−0.0244 0.0644+/−0.0205 0.0542+/−0.0184 0.0542+/−0.0184 0.0542+/−0.0184 0.0556+/−0.0191
credit-a 0.1217+/−0.0309 0.1449+/−0.0303 0.1696+/−0.0417 0.1261+/−0.0210 0.1203+/−0.0251 0.1203+/−0.0251 0.1261+/−0.0292

breast-cancer-w 0.0386+/−0.0275 0.0258+/−0.0223 0.0486+/−0.0181 0.0386+/−0.0248 0.0372+/−0.0235 0.0372+/−0.0235 0.0401+/−0.0274
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Table A1. Cont.

Data Set SWAODE NB KDB AODE WAODE-MI WAODE-KL SAODE

pima-ind-diabetes 0.2461+/−0.0655 0.2591+/−0.0707 0.2578+/−0.0583 0.2513+/−0.0636 0.2539+/−0.0663 0.2539+/−0.0663 0.2409+/−0.0584
vehicle 0.3132+/−0.0533 0.4090+/−0.0477 0.3026+/−0.0627 0.3132+/−0.0563 0.3156+/−0.0577 0.3156+/−0.0577 0.3109+/−0.0565
anneal 0.0601+/−0.0262 0.0891+/−0.0261 0.0445+/−0.0156 0.0735+/−0.0232 0.0646+/−0.0242 0.0646+/−0.0242 0.0512+/−0.0250

tic-tac-toe 0.2724+/−0.0406 0.3069+/−0.0427 0.2463+/−0.0382 0.2683+/−0.0432 0.2724+/−0.0406 0.2724+/−0.0406 0.2683+/−0.0432
vowel 0.1131+/−0.0274 0.4061+/−0.0557 0.2162+/−0.0272 0.0808+/−0.0296 0.1131+/−0.0274 0.1131+/−0.0274 0.0778+/−0.0283

german 0.2520+/−0.0451 0.2520+/−0.0325 0.2660+/−0.0634 0.2410+/−0.0535 0.2490+/−0.0474 0.2490+/−0.0474 0.2450+/−0.0515
led 0.2690+/−0.0621 0.2670+/−0.0622 0.2640+/−0.0603 0.2700+/−0.0604 0.2700+/−0.0604 0.2700+/−0.0604 0.2700+/−0.0630

contraceptive-mc 0.4691+/−0.0453 0.4949+/−0.0534 0.4684+/−0.0276 0.4671+/−0.0455 0.4596+/−0.0394 0.4582+/−0.0404 0.4684+/−0.0439
yeast 0.4239+/−0.0370 0.4245+/−0.0504 0.4394+/−0.0326 0.4205+/−0.0402 0.4218+/−0.0385 0.4225+/−0.0378 0.4245+/−0.0400

volcanoes 0.3362+/−0.0287 0.3421+/−0.0278 0.3520+/−0.0258 0.3539+/−0.0331 0.3539+/−0.0340 0.3539+/−0.0340 0.3467+/−0.0292
car 0.1053+/−0.0244 0.1400+/−0.0255 0.0567+/−0.0182 0.0845+/−0.0193 0.0909+/−0.0183 0.0920+/−0.0173 0.0793+/−0.0181

segment 0.0515+/−0.0084 0.1476+/−0.0245 0.0567+/−0.0158 0.0563+/−0.0091 0.0550+/−0.0078 0.0550+/−0.0078 0.0519+/−0.0079
hypothyroid 0.0278+/−0.0105 0.0360+/−0.0112 0.0338+/−0.0137 0.0348+/−0.0118 0.0294+/−0.0104 0.0297+/−0.0102 0.0278+/−0.0105

splice-c4.5 0.0318+/−0.0072 0.0444+/−0.0112 0.0482+/−0.0152 0.0375+/−0.0087 0.0387+/−0.0101 0.0387+/−0.0101 0.0334+/−0.0102
kr-vs-kp 0.0569+/−0.0125 0.1214+/−0.0217 0.0544+/−0.0171 0.0854+/−0.0187 0.0582+/−0.0115 0.0582+/−0.0115 0.0573+/−0.0109
abalone 0.4556+/−0.0206 0.4893+/−0.0249 0.4656+/−0.0237 0.4551+/−0.0214 0.4549+/−0.0212 0.4549+/−0.0212 0.4558+/−0.0208

spambase 0.0602+/−0.0115 0.1050+/−0.0149 0.0702+/−0.0121 0.0635+/−0.0114 0.0606+/−0.0112 0.0602+/−0.0115 0.0646+/−0.0138
phoneme 0.1843+/−0.0177 0.2615+/−0.0129 0.2120+/−0.0123 0.2100+/−0.0144 0.2008+/−0.0139 0.2010+/−0.0145 0.1863+/−0.0155

wall-following 0.0843+/−0.0099 0.1743+/−0.0149 0.1043+/−0.0094 0.1514+/−0.0101 0.1503+/−0.0099 0.1503+/−0.0099 0.0845+/−0.0097
page-blocks 0.0479+/−0.0075 0.1376+/−0.0126 0.0590+/−0.0102 0.0502+/−0.0066 0.0495+/−0.0062 0.0495+/−0.0062 0.0477+/−0.0077

optdigits 0.0274+/−0.0083 0.0861+/−0.0124 0.0454+/−0.0070 0.0283+/−0.0095 0.0285+/−0.0093 0.0286+/−0.0093 0.0281+/−0.0087
satellite 0.1175+/−0.0104 0.2022+/−0.0168 0.1392+/−0.0135 0.1301+/−0.0131 0.1298+/−0.0125 0.1298+/−0.0125 0.1175+/−0.0106
musk2 0.1115+/−0.0138 0.2496+/−0.0101 0.0867+/−0.0097 0.1511+/−0.0101 0.1520+/−0.0095 0.1514+/−0.0098 0.1097+/−0.0138

mushrooms 0.0000+/−0.0000 0.0196+/−0.0036 0.0006+/−0.0009 0.0002+/−0.0005 0.0000+/−0.0000 0.0000+/−0.0000 0.0001+/−0.0004
thyroid 0.2211+/−0.0126 0.2754+/−0.0152 0.2319+/−0.0146 0.2421+/−0.0136 0.2333+/−0.0129 0.2332+/−0.0128 0.2213+/−0.0104

pendigits 0.0252+/−0.0029 0.1447+/−0.0112 0.0529+/−0.0066 0.0254+/−0.0029 0.0251+/−0.0029 0.0251+/−0.0029 0.0253+/−0.0029
sign 0.2957+/−0.0083 0.3851+/−0.0114 0.3055+/−0.0140 0.2960+/−0.0119 0.2977+/−0.0090 0.2977+/−0.0090 0.2936+/−0.0110

nursery 0.0713+/−0.0063 0.0973+/−0.0066 0.0654+/−0.0061 0.0733+/−0.0059 0.0708+/−0.0065 0.0708+/−0.0065 0.0707+/−0.0058
magic 0.1825+/−0.0081 0.2478+/−0.0118 0.1759+/−0.0107 0.1726+/−0.0084 0.1825+/−0.0081 0.1825+/−0.0081 0.1721+/−0.0082

letter-recog 0.1439+/−0.0107 0.3226+/−0.0110 0.1920+/−0.0112 0.1514+/−0.0089 0.1440+/−0.0105 0.1440+/−0.0105 0.1452+/−0.0089
adult 0.1631+/−0.0047 0.1809+/−0.0050 0.1638+/−0.0044 0.1679+/−0.0032 0.1640+/−0.0048 0.1640+/−0.0047 0.1631+/−0.0050

shuttle 0.0095+/−0.0012 0.0311+/−0.0022 0.0163+/−0.0012 0.0101+/−0.0010 0.0093+/−0.0010 0.0093+/−0.0010 0.0095+/−0.0012
connect-4 0.2407+/−0.0039 0.2783+/−0.0059 0.2406+/−0.0030 0.2422+/−0.0047 0.2408+/−0.0039 0.2407+/−0.0039 0.2421+/−0.0048
waveform 0.0339+/−0.0009 0.0432+/−0.0018 0.0396+/−0.0021 0.0343+/−0.0008 0.0343+/−0.0009 0.0343+/−0.0009 0.0338+/−0.0009

localization 0.4556+/−0.0033 0.5449+/−0.0026 0.4642+/−0.0040 0.4333+/−0.0027 0.4314+/−0.0036 0.4314+/−0.0036 0.4556+/−0.0033
census-income 0.0555+/−0.0010 0.2410+/−0.0017 0.0667+/−0.0014 0.1106+/−0.0015 0.0990+/−0.0018 0.0990+/−0.0018 0.0555+/−0.0009

poker-hand 0.3302+/−0.0022 0.4988+/−0.0018 0.3291+/−0.0012 0.4812+/−0.0028 0.1758+/−0.0079 0.1757+/−0.0078 0.3302+/−0.0022
donation 0.0002+/−0.0000 0.0002+/−0.0000 0.0001+/−0.0000 0.0002+/−0.0000 0.0002+/−0.0000 0.0002+/−0.0000 0.0002+/−0.0000
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Table A2. LogLoss.

Data Set SWAODE NB KDB AODE WAODE-MI WAODE-KL SAODE

contact−lenses 0.8874+/−0.8460 1.0171+/−0.8353 1.0277+/−0.7003 1.1270+/−0.8317 1.0118+/−0.8291 1.0015+/−0.8196 0.9293+/−0.8631
lung−cancer 1.9531+/−1.6732 4.6187+/−7.0330 6.7035+/−4.9708 4.5050+/−6.5417 4.5673+/−6.4765 4.5719+/−6.4657 1.9683+/−1.6907

labor−negotiations 0.2764+/−0.3196 0.1463+/−0.1563 0.5502+/−0.4565 0.2172+/−0.2491 0.2435+/−0.2799 0.2528+/−0.2913 0.2402+/−0.2765
post−operative 1.1787+/−0.5878 1.2723+/−0.8020 1.2896+/−0.6286 1.2278+/−0.6653 1.2174+/−0.6698 1.2142+/−0.6689 1.1865+/−0.5906

zoo 0.0801+/−0.0913 0.1111+/−0.0854 0.1624+/−0.1633 0.0803+/−0.0823 0.0746+/−0.0781 0.0753+/−0.0785 0.0803+/−0.0922
promoters 0.1944+/−0.2149 0.3347+/−0.3033 0.9880+/−1.3047 0.3969+/−0.2083 0.4091+/−0.2738 0.4097+/−0.2736 0.1970+/−0.2263

echocardiogram 0.9884+/−0.1735 0.9687+/−0.4870 1.5034+/−1.0267 1.0943+/−0.6294 1.1142+/−0.6790 1.1137+/−0.6767 0.9764+/−0.1816
lymphography 0.6838+/−0.5628 0.6465+/−0.6171 0.8154+/−0.4996 0.5657+/−0.5303 0.5665+/−0.5147 0.5651+/−0.5117 0.6847+/−0.5765

iris 0.2284+/−0.1885 0.3460+/−0.3011 0.2454+/−0.2043 0.2319+/−0.1996 0.2296+/−0.1926 0.2297+/−0.1927 0.2306+/−0.1897
teaching−ae 2.1672+/−0.6669 2.1000+/−0.6756 2.1076+/−0.6395 1.9223+/−0.5151 1.9909+/−0.5181 1.9754+/−0.5172 2.1666+/−0.6675

hepatitis 0.7173+/−0.5595 0.9701+/−0.8161 0.9867+/−0.6371 0.7285+/−0.5726 0.7432+/−0.6007 0.7414+/−0.6012 0.7980+/−0.6568
wine 0.1567+/−0.1901 0.1304+/−0.1976 0.2670+/−0.2300 0.1314+/−0.1795 0.1325+/−0.1774 0.1327+/−0.1776 0.1204+/−0.1321
autos 1.4860+/−1.9171 4.2030+/−2.7437 4.8262+/−4.2331 3.2524+/−3.2344 3.2625+/−3.2916 3.2552+/−3.2922 1.5943+/−1.8917
sonar 1.1577+/−0.7019 1.6809+/−1.1193 1.8069+/−0.7765 1.0254+/−0.7477 1.2091+/−0.8276 1.0368+/−0.7248 1.1754+/−0.7230

glass−id 0.7369+/−0.3984 1.0000+/−0.3915 0.9401+/−0.3718 0.6229+/−0.2004 0.6192+/−0.1978 0.6193+/−0.1975 0.7352+/−0.4003
new−thyroid 0.3004+/−0.2133 0.2465+/−0.2526 0.3084+/−0.2155 0.2648+/−0.1762 0.2620+/−0.1801 0.2619+/−0.1799 0.3019+/−0.2100

audio 2.2635+/−1.4149 3.9563+/−2.6628 5.3522+/−2.3274 3.9528+/−2.6879 3.9795+/−2.6823 3.9806+/−2.6828 2.2886+/−1.4082
hungarian 0.5854+/−0.2865 0.8202+/−0.4467 0.7913+/−0.4361 0.6276+/−0.3111 0.5994+/−0.2900 0.5995+/−0.2902 0.6182+/−0.2790

heart−disease−c 0.6624+/−0.2799 0.7119+/−0.3646 0.9289+/−0.4819 0.6468+/−0.3014 0.6434+/−0.2982 0.6433+/−0.2981 0.6548+/−0.2812
haberman 0.7724+/−0.2210 0.7815+/−0.2614 0.8572+/−0.2611 0.8325+/−0.2585 0.8348+/−0.2658 0.8349+/−0.2659 0.7700+/−0.2192

primary−tumor 2.8134+/−0.5805 2.9163+/−0.6153 3.3812+/−0.7186 2.8284+/−0.5753 2.8250+/−0.5777 2.8249+/−0.5776 2.8192+/−0.5803
ionosphere 0.7014+/−0.4000 1.5528+/−0.9964 0.7280+/−0.6498 0.9810+/−0.5568 0.9590+/−0.5437 0.9591+/−0.5439 0.6841+/−0.3761

dermatology 0.0762+/−0.0778 0.0588+/−0.0654 0.1170+/−0.0991 0.0624+/−0.0689 0.0615+/−0.0694 0.0616+/−0.0694 0.0890+/−0.0782
horse−colic 0.6230+/−0.1680 1.2551+/−0.4164 1.2111+/−0.4258 0.8826+/−0.3060 0.8699+/−0.2724 0.8696+/−0.2718 0.6366+/−0.1638

house−votes−84 0.2481+/−0.2320 0.9110+/−0.4323 0.2866+/−0.2091 0.2513+/−0.2617 0.2402+/−0.2647 0.2402+/−0.2648 0.2500+/−0.2268
cylinder−bands 1.9149+/−0.8050 1.6171+/−0.2745 2.9088+/−0.8703 1.1335+/−0.3156 1.1736+/−0.3168 1.1321+/−0.3167 1.9137+/−0.8063

chess 0.3455+/−0.0948 0.4057+/−0.1043 0.3380+/−0.0931 0.3843+/−0.0956 0.3612+/−0.0857 0.3581+/−0.0841 0.3397+/−0.0791
syncon 0.0911+/−0.0780 0.4910+/−0.4111 0.1593+/−0.1696 0.0907+/−0.0663 0.0888+/−0.0657 0.0888+/−0.0656 0.0908+/−0.0803

balance−scale 0.8296+/−0.0975 0.7287+/−0.0691 0.8618+/−0.0978 0.8271+/−0.0987 0.8296+/−0.0975 0.8296+/−0.0975 0.8321+/−0.0948
soybean 0.1860+/−0.0681 1.0345+/−0.5277 0.2515+/−0.1666 0.2741+/−0.0997 0.2596+/−0.0907 0.2596+/−0.0907 0.1860+/−0.0681
credit−a 0.5354+/−0.1861 0.6433+/−0.2210 0.7901+/−0.2521 0.5482+/−0.1860 0.5379+/−0.1793 0.5377+/−0.1795 0.5231+/−0.1862

breast−cancer−w 0.2096+/−0.1981 0.4577+/−0.4431 0.2955+/−0.2811 0.2209+/−0.2063 0.2183+/−0.2007 0.2181+/−0.2005 0.2141+/−0.1975
pima−ind−diabetes 0.7112+/−0.1365 0.7868+/−0.1729 0.7983+/−0.2034 0.7293+/−0.1559 0.7312+/−0.1482 0.7311+/−0.1482 0.7065+/−0.1371

vehicle 0.9724+/−0.1347 3.1607+/−0.6142 0.9929+/−0.1886 1.0031+/−0.1559 1.0077+/−0.1587 1.0076+/−0.1586 0.9761+/−0.1338
anneal 0.2316+/−0.1124 0.5108+/−0.1970 0.1882+/−0.0953 0.2794+/−0.1146 0.2450+/−0.1127 0.2446+/−0.1126 0.2183+/−0.1098
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Table A2. Cont.

Data Set SWAODE NB KDB AODE WAODE-MI WAODE-KL SAODE

tic−tac−toe 0.7191+/−0.0543 0.7854+/−0.0616 0.7077+/−0.0680 0.6953+/−0.0542 0.7191+/−0.0543 0.7191+/−0.0543 0.6953+/−0.0542
vowel 0.4498+/−0.1249 1.5849+/−0.1954 1.0296+/−0.1684 0.3227+/−0.1028 0.4498+/−0.1247 0.4504+/−0.1247 0.3176+/−0.1226

german 0.7635+/−0.1002 0.7690+/−0.1040 0.8958+/−0.1954 0.7613+/−0.0983 0.7632+/−0.0980 0.7632+/−0.0981 0.7509+/−0.0999
led 1.1813+/−0.1834 1.1759+/−0.1870 1.2015+/−0.1877 1.1806+/−0.1839 1.1805+/−0.1832 1.1805+/−0.1832 1.1816+/−0.1841

contraceptive−mc 1.4203+/−0.0854 1.5016+/−0.1295 1.4185+/−0.0813 1.4044+/−0.0890 1.3988+/−0.0860 1.3988+/−0.0860 1.4233+/−0.0885
yeast 1.6929+/−0.1452 1.7185+/−0.1370 1.8312+/−0.1735 1.6864+/−0.1362 1.6899+/−0.1411 1.6901+/−0.1412 1.6889+/−0.1430

volcanoes 1.1081+/−0.0618 1.1167+/−0.0756 1.1341+/−0.0726 1.1177+/−0.0731 1.1353+/−0.0822 1.1353+/−0.0821 1.1170+/−0.0623
car 0.3879+/−0.0277 0.4640+/−0.0340 0.2661+/−0.0321 0.3988+/−0.0323 0.3854+/−0.0299 0.3857+/−0.0299 0.3720+/−0.0310

segment 0.2568+/−0.0566 1.0099+/−0.2586 0.2876+/−0.0707 0.2620+/−0.0599 0.2630+/−0.0554 0.2630+/−0.0554 0.2577+/−0.0570
hypothyroid 0.0901+/−0.0263 0.1892+/−0.0525 0.1110+/−0.0393 0.1297+/−0.0377 0.0975+/−0.0302 0.0976+/−0.0302 0.0901+/−0.0263
splice−c4.5 0.1661+/−0.0350 0.2111+/−0.0613 0.2206+/−0.0575 0.1687+/−0.0395 0.1684+/−0.0385 0.1684+/−0.0385 0.1676+/−0.0367
kr−vs−kp 0.2394+/−0.0229 0.4199+/−0.0339 0.2386+/−0.0457 0.3463+/−0.0291 0.2899+/−0.0225 0.2897+/−0.0225 0.2400+/−0.0225

abalone 1.2628+/−0.0378 2.6815+/−0.2753 1.2791+/−0.0392 1.2643+/−0.0381 1.2629+/−0.0377 1.2629+/−0.0377 1.2642+/−0.0382
spambase 0.3326+/−0.0927 0.8490+/−0.1867 0.3938+/−0.1151 0.3535+/−0.0958 0.3663+/−0.1143 0.3328+/−0.0927 0.3527+/−0.1057
phoneme 0.9483+/−0.1088 1.4351+/−0.0936 1.3346+/−0.1252 1.1686+/−0.0663 1.1014+/−0.0690 1.1008+/−0.0691 0.9509+/−0.1096

wall−following 0.2769+/−0.0238 1.6069+/−0.1649 0.5949+/−0.0691 1.1436+/−0.1329 1.1227+/−0.1329 1.1228+/−0.1329 0.2782+/−0.0238
page−blocks 0.1968+/−0.0417 0.7670+/−0.0913 0.2991+/−0.0834 0.2219+/−0.0471 0.2179+/−0.0462 0.2179+/−0.0462 0.1967+/−0.0417

optdigits 0.1853+/−0.0759 0.9326+/−0.1575 0.3560+/−0.1081 0.1942+/−0.0772 0.1917+/−0.0779 0.1917+/−0.0779 0.1865+/−0.0763
satellite 0.6644+/−0.0841 5.3687+/−0.5379 1.0206+/−0.1639 0.8222+/−0.1142 0.8188+/−0.1139 0.8189+/−0.1139 0.6674+/−0.0853
musk2 0.3730+/−0.0301 6.9568+/−0.4979 1.5495+/−0.2119 3.9347+/−0.4082 3.7331+/−0.3837 3.9152+/−0.4121 0.3723+/−0.0298

mushrooms 0.0003+/−0.0004 0.0913+/−0.0229 0.0019+/−0.0036 0.0005+/−0.0009 0.0003+/−0.0004 0.0003+/−0.0004 0.0004+/−0.0007
thyroid 0.7717+/−0.0436 1.7390+/−0.1826 0.8803+/−0.0753 0.8960+/−0.0608 0.8424+/−0.0583 0.8423+/−0.0583 0.7733+/−0.0435

pendigits 0.1204+/−0.0152 1.1452+/−0.0962 0.2674+/−0.0439 0.1204+/−0.0152 0.1203+/−0.0152 0.1203+/−0.0152 0.1205+/−0.0152
sign 0.9674+/−0.0183 1.2576+/−0.0242 1.0335+/−0.0342 0.9621+/−0.0185 0.9674+/−0.0184 0.9674+/−0.0184 0.9560+/−0.0193

nursery 0.3096+/−0.0111 0.3766+/−0.0121 0.2274+/−0.0120 0.3136+/−0.0096 0.3104+/−0.0109 0.3104+/−0.0109 0.2765+/−0.0108
magic 0.5786+/−0.0248 0.7345+/−0.0296 0.5755+/−0.0201 0.5624+/−0.0244 0.5786+/−0.0248 0.5786+/−0.0248 0.5609+/−0.0234

letter−recog 0.6486+/−0.0327 1.9090+/−0.0682 1.0277+/−0.0508 0.6935+/−0.0358 0.6486+/−0.0328 0.6486+/−0.0328 0.6521+/−0.0342
adult 0.5264+/−0.0144 0.6728+/−0.0200 0.5035+/−0.0125 0.5614+/−0.0123 0.5407+/−0.0115 0.5407+/−0.0115 0.5281+/−0.0136

shuttle 0.0506+/−0.0036 0.1404+/−0.0051 0.0592+/−0.0051 0.0540+/−0.0037 0.0496+/−0.0035 0.0496+/−0.0035 0.0512+/−0.0036
connect−4 0.8693+/−0.0059 0.9840+/−0.0102 0.8600+/−0.0081 0.8766+/−0.0056 0.8694+/−0.0059 0.8694+/−0.0059 0.8753+/−0.0056
waveform 0.0993+/−0.0023 0.5733+/−0.0223 0.1312+/−0.0111 0.1015+/−0.0027 0.1012+/−0.0027 0.1012+/−0.0027 0.0992+/−0.0022

localization 1.8528+/−0.0098 2.1440+/−0.0054 1.8267+/−0.0107 1.7891+/−0.0083 1.7824+/−0.0094 1.7824+/−0.0094 1.8528+/−0.0098
census−income 0.2131+/−0.0027 1.9789+/−0.0172 0.2467+/−0.0058 0.4898+/−0.0062 0.4086+/−0.0050 0.4086+/−0.0050 0.2132+/−0.0027

poker−hand 1.0977+/−0.0048 1.4158+/−0.0048 1.0821+/−0.0027 1.2089+/−0.0034 1.0865+/−0.0031 1.0865+/−0.0030 1.0977+/−0.0048
donation 0.0006+/−0.0001 0.0009+/−0.0001 0.0004+/−0.0001 0.0007+/−0.0001 0.0007+/−0.0001 0.0007+/−0.0001 0.0005+/−0.0001
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