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1. Introduction

Article [1] investigates the Ollivier curvature of random geometric graphs, with a key
step being the estimation of Wasserstein metrics between the empirical probability measure
of n discrete random variables and a continuous uniform one in a d-dimensional ball. The
authors applied results from [2], which are based on the interval [0, 1]d, whereas Ollivier
curvature is built in balls. To address this discrepancy, we aim to refine the proof based on
balls in order to enhance the robustness and accuracy of the process described in [1] and
to make it suitable for our purposes. Furthermore, since [2] requires d > 2, we extended
our upper and lower bounds estimation to include the case d = 2, aligning our research
objectives with the broader scope of the study.

Additionally, lattice methods used in statistical mechanical approaches [3] often in-
volve similar notations and convergence from discrete physical quantities to continuous
ones, suggesting potential connections with convergences from discrete probabilities to con-
tinuous ones. For instance, consider a collection of point charges denoted as Qi, i = 1, · · · , n
and their corresponding locations represented by the independent and uniformly dis-
tributed random variables Xi ∈ Ω, i = 1, · · · , n, where Ω represents a bounded region
within three-dimensional space R3 with its volume defined as |Ω| = 1. Assuming an ideal
scenario in implicit solvation models for biological molecules, it can be postulated that each
charge possesses the value of 1

n , thereby establishing a discrete charge density expressed
as µn = 1

n ∑n
i=1 δXi . On the other hand, we consider a continuum charge density repre-

sented by a uniform measure µ in an ideal scenario. Thus, transitioning from discrete (i.e.,
point) charges to a continuum charge density can be a pathway from a discrete probability
measure to a continuous one in Wasserstein metrics. Consequently, we may contemplate
convergences of the corresponding discrete electrostatic energies and others in terms of
Wasserstein metrics or within Wasserstein spaces.

The authors in [4] have provided estimations for the convergence rate in Wasser-
stein metrics of empirical measures on complex computational cases, involving numerous
asymptotic calculations. Our findings are consistent with their results in corresponding
scenarios. In comparison, our proof primarily relies on estimating the expectations of
optimal matching problems to obtain upper bounds on the expectations of Wasserstein
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metrics. We chose this technique because, as mentioned in [5], (i) the definition of Wasser-
stein metrics makes them convenient for problems involving optimal transports, such as
those arising from partial differential equations; (ii) Wasserstein metrics possess a rich
duality property which is particularly useful when considering (2) (in contrast to bounded
Lipschitz distances), and passing back and forth from the original to the dual definition is
often technically convenient; (iii) being defined by an infimum, it is often relatively straight-
forward to bound Wasserstein metrics from above by constructing couplings between µ1
and µ2; and (iv) Wasserstein metrics incorporate a lot of the geometry of the space. For
instance, the mapping x → δx is an isometric embedding of X into Pp(X ) (Wasserstein
space of order p), but there are much deeper links. This partly explains why a Wasserstein
space of Pp(X ) is often very well adapted to statements that combine weak convergence
and geometry.

Motivated by the virtues of Wasserstein spaces and these inspirations, we aim to bridge
the gap between discrete probabilities and their continuous counterparts using Wasserstein
metrics as measures in our study. Recently, significant advancements have been made in the
research progress concerning the rate of convergence of Wasserstein metrics. For instance,
in [6], the authors investigated the precise rate of convergence of the quadratic Wasserstein
metric between empirical measures and uniform distributions on [0, 1]2 by employing
well-known techniques from partial differential equations. Additionally, in [7], researchers
explored upper bounds for the mean Wasserstein metric between two probabilities on
(−π, π]d, where d ≥ 1, using Fourier transformation, and subsequently applied these
findings to estimate the mean Wasserstein metric between two empirical measures under
certain assumptions. Furthermore, in [8], an author examined upper bounds for the mean
rate within the quadratic Wasserstein metric W2 on a d-dimensional compact Riemannian
manifold where d ≥ 2. Notably, there are also ongoing studies focusing on higher-order
(p-th order) Wasserstein metrics; however, we refrain from listing them here.

2. Preliminary Estimation

Definition 1. Let X1, X2, · · · , Xn, Y1, X2, · · · , Yn be independent and uniformly distributed ran-
dom variables in a d-dimensional ball B(0; 1) = {x ∈ Rd, ∥x∥ ≤ 1}, d ≥ 2, where ∥ · ∥ represents
the Euclidean metric in Rd. The random variable Md

n := inf
σ

∑n
i=1 ∥Xi − Yσ(i)∥ represents the opti-

mal matching between X1, X2, · · · , Xn and Y1, Y2, · · · , Yn, with σ iterating over all permutations
of {1, 2, · · · , n}.

By applying the dual principle [9,10], or referring to the proof process of Lemma 1
in [2], we have

Md
n = sup

f∈L1

n

∑
i=1

( f (Xi)− f (Yi)) = sup
f∈L1

|
n

∑
i=1

( f (Xi)− f (Yi))|,

where the set of Lipschitz functions L1 = { f : B(0; 1) → R; | f (x)− f (y)| ≤ ∥x− y∥, ∀x, y ∈
B(0; 1), f (0) = 0}. It is worth noting that every Lipschitz function in L1 can be extended to
one in

L = { f : Rd → R; | f (x)− f (y)| ≤ ∥x − y∥, ∀x, y ∈ Rd, f (0) = 0, ∥ f ∥L∞ ≤ 1}. (1)

Therefore, we have L1 = L |B(0;1). The following Lemma 1 gives an upper and lower
bound estimation for the expectation E(Md

n).

Lemma 1 (Optimal matching). For the above optimal matching problem, we have

1 − 1
d + 1

≤ lim inf
n→∞

E(Md
n)

n1− 1
d

≤ lim sup
n→∞

E(Md
n)

n1− 1
d

≤ 5 + 2d + 32
√

2,
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in dimension d ≥ 3, and

lim inf
n→∞

E(Md
n)

n
1
2

≥ 2
3

, lim sup
n→∞

E(Md
n)

n
1
2 log2 n

≤ 24

in dimension d = 2.

Proof. We provide a detailed proof, referring to Equation (A1) in Appendix A and
Equation (A3) in Appendix B. The method employed here is essentially based on the
work of [2], with several improvements and modifications made to extend its applicability
to random variables within balls.

3. Main Results and Proofs

The following results present Wasserstein metrics between empirical and uniform
measures in d-dimensional balls. Generally, a Wasserstein metric between two probability
measures µ1, µ2 is defined as follows:

Definition 2. Let µ1 and µ2 be Borel probability measures in a compact metric space (X , ρ) and
let Γ(µ1, µ2) denote the set of all couplings of µ1 and µ2, i.e.,

Γ(µ1, µ2) = {µ : µ is a prabability measure in X ×X , µ(A, X ) = µ1(A), µ(X , A) =
µ2(A), A is a measurable subset o f X .}

A Wasserstein metric is defined as

W(µ1, µ2) = inf
µ∈Γ(µ1,µ2)

∫
X 2

ρ(x, y)dµ(x, y).

By applying the duality principle (Kantorovich Dual Theorem) in Chapter 6, Re-
mark 6.5 of [5], we can express the Wasserstein metric as

W(µ1, µ2) = sup
f∈L1(X )

(∫
X

f (x)dµ1(x)−
∫
X

f (y)dµ2(y)
)

, (2)

where L1(X ) denotes the set of Lipschitz functions based on the metric of X with a
coefficient of 1. From the duality formula, we can further assume that any function
f ∈ L1(X ) satisfying f (0) = 0.

Notice: In all subsequent discussions, we will explicitly specify that the metric being
considered is a Euclidean metric. Additionally, we will adopt the notation an = O(nα)
for a sequence {an}, where α is a constant. This notation implies the existence of positive
constants C such that an ≤ Cnα as n is large enough .

Theorem 1. Let X1, X2, · · · , Xn be independent and uniformly distributed random variables in a
d-dimensional ball B(0; 1). The empirical measure md

n is given by

md
n(A) =

1
n

n

∑
i=1

1A(Xi),

which represents the proportion of points in the sample that lie in a measurable subset A of B(0; 1).
µd demotes the uniform measure in B(0; 1). As the sample size n tends to infinity, it can be shown
that an expected Wasserstein metric between md

n and µd, denoted as E[W(md
n, µd)], decays at a rate

E[W(md
n, µd)] =

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.
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Proof. Now, we consider a Wasserstein metric in B(0; 1) with ρ(x, y) = ∥x − y∥, and then

W(md
n, µd) = inf

µ∈Γ(md
n ,µd)

∫
B(0;1)2

ρ(x, y)dµ(x, y)

= sup
f∈L1(B(0;1))

(∫
B(0;1)

f (x)dmd
n(x)−

∫
B(0;1)

f (y)dµd(y)
)

.

Let Y1, Y2, · · · , Yn be independent uniformly distributed random variables in B(0; 1),
and then ∫

B(0;1)
f (y)dµd(y) = E[ f (Yi)], i = 1, · · · , n.

So

W(md
n, µd) = sup

f∈L1(B(0;1))

(∫
B(0;1)

f (x)dmd
n(x)−

∫
B(0;1)

f (y)dµd(y)
)

=
1
n

sup
f∈L1(B(0;1))

(
∑
i=1

( f (Xi)− E[ f (Yi)])

)

=
1
n

sup
f∈L1(B(0;1))

(
∑
i=1

E[ f (Xi)− f (Yi)|Xi]

)

=
1
n

sup
f∈L1(B(0;1))

E

[
∑
i=1

( f (Xi)− f (Yi))
∣∣X]

≤ 1
n

E

[(
sup

f∈L1(B(0;1))
∑
i=1

( f (Xi)− f (Yi))

)∣∣∣∣X
]

=
1
n

E
[

Md
n|X
]
,

where X = (X1, · · · , Xn), and hence from Lemma 1, it has

E[W(md
n, µd)] ≤ 1

n
E[Md

n] =

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

Next, we consider an empirical measure and a uniform measure in a ball B(0; δ).

Corollary 1. In general, let X1, X2, · · · , Xn be independent and random variables uniformly
distributed in the d-dimensional ball B(0; δ) with radius δ > 0. Consider an empirical measure and
a uniform measure in B(0, δ), where md

n,δ represents the empirical measure defined as

md
n,δ(A) =

1
n

n

∑
i=1

1A(Xi)

for a measurable subset A of B(0, δ), and µd
δ denotes the uniform measure in B(0; δ). Then, it

follows that

E[W(md
n,δ, µd

δ)] = δ

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

Proof. Consider the map φ : B(0; δ) → B(0; 1), defined by φ(x) = 1
δ x, where φ−1(t) = δt.

Thus, md
n,δ ◦ φ−1 and µd

δ ◦ φ−1 correspond to the empirical measure and the uniform mea-
sure in B(0; 1), respectively, which establishes a one-to-one relationship between empirical
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measures in B(0; δ) and those in B(0; 1), as well as between uniform measures in B(0; δ)
and those in B(0; 1). In particular, we can write

W(md
n,δ, µd

δ) = inf
µ∈Γ(md

n,δ ,µd
δ)

∫
B(0;δ)2

ρ(x, y)dµ(x, y)

= inf
µ∈Γ(md

n,δ ,µd
δ)

∫
B(0;1)2

ρ(φ−1(t), φ−1(τ))dµ(φ−1(t), φ−1(τ))

= inf
ν∈Γ(md

n,δ◦φ−1,µd
δ◦φ−1)

∫
B(0;1)2

δρ(t, τ)dν(t, τ)

= δWd(md
n, µd).

Therefore, from Theorem 1 we obtain

E[W(md
n,δ, µd

δ)] =

{
δO(n− 1

2 log2 n), d = 2,
δO(n− 1

d ), d ≥ 3.

We next generalize Theorem 1 to the case where the number of random variables, de-
noted by N, follows a Poisson distribution with a parameter (1 + αn)n and is independent
of these random variables. This case actually corresponds to a specific spacial Poisson
process P in [1] with intensity measure (1 + αn)n

Vd
|B(0;1)| , which describes a spatial configu-

ration of points in the ball B(0; 1). Here, Vd denotes the volume measure in d-dimensional
Euclidean space. Moreover, in [1], it is also stated that N = |P |, representing the number
of random points in B(0; 1), called size, and the parameter (1 + αn)n of the Poisson distri-
bution is equivalent to (1 + αn)n

Vd(B(0;1))
|B(0;1)| , derived from the corresponding Poisson point

process. The notation 0 ≤ αn → 0 represents slight perturbations of n in order to observe
how a expected Wasserstein metric gradually changes as n approaches infinity.

Theorem 2. Let md
N denote the empirical random measure with respect to independent and uni-

formly distributed random variables X1, X2, · · · , XN in B(0; 1), defined as

md
N(A) =

1
N

N

∑
i=1

1A(Xi)

for a measurable subset A of B(0; 1). N follows a Poisson distribution with a parameter (1 + αn)n,
which is independent of random variables X1, X2, · · · , XN . Let µd represent the uniform measure
in the aforementioned ball. Then, it follows that

E[W(md
N , µd)] =

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

Proof. Since the number N follows a Poisson distribution with the mean (1 + αn)n and
X1, X2, · · · , XN are uniformly distributed random variables in B(0; 1), which are indepen-
dent of N, we have

E[W(md
N , µd)] =

∞

∑
k=1

E[W(md
N , µd)

∣∣N = k]P(N = k).

According to Theorem 1, it follows that

E[W(md
N , µd)

∣∣N = k] =

{
O(k−

1
2 log2 k), d = 2,

O(k−
1
d ), d ≥ 3.
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On the other hand, from Lemma 1.2 in [11], one can obtain

P(N > (1 + αn)n + c
√
(1 + αn)n log n)

≤ e
c
√

(1+αn)n log n+
(
(1+αn)n+c

√
(1+αn)n log n

)
log (1+αn)n

(1+αn)n+c
√

(1+αn)n log n

≤ e
− c2(1+αn)n log n

2((1+αn)n+c
√

(1+αn)n log n) = O(n− c2
3 )

where c > 0 is a constant, and

P(N < (1 + αn)n − c
√
(1 + αn)n log n)

≤ e
−c
√

(1+αn)n log n+
(
(1+αn)n−c

√
(1+αn)n log n

)
log (1+αn )n

(1+αn )n−c
√

(1+αn )n log n

= O(n− c2
3 ).

Let us denote
a±n = [(1 + αn)n ± c

√
(1 + αn)n log n].

Then, we obtain an expression for the expected value as follows:

E[W(md
N , µd)]

=
a−n −1

∑
k=1

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k)

+
a+n

∑
k=a−n

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k)

+
∞

∑
k=a+n +1

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k)

:=I1 + I2 + I3.

We further estimate these three terms and find that

I1 =
a−n −1

∑
k=1

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k) ≤ 2P(N < a−n ) = O(n− c2

3 )

and
I3 =

∞

∑
k=a+n +1

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k) ≤ 2P(N > a+n ) = O(n− c2

3 ).

For term I2, it is bounded as follows:

I2 =
a+n

∑
k=a−n

E
[
W(md

N , µd)
∣∣N = k

]
P(N = k)

=

 ∑a+n
k=a−n

O(k−
1
2 log2 k) e−(1+αn)n((1+αn)n)k

k! , d = 2,

∑a+n
k=a−n

O(k−
1
d ) e−(1+αn)n((1+αn)n)k

k! , d ≥ 3,

≤
{

O((a−n )
− 1

2 log2(a+n )), d = 2,
O((a−n )

− 1
d ), d ≥ 3,

=

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.
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Since c was arbitrary, with a suitable adjustment in constant c, we conclude that

E[W(md
N , µd)] =

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

Now, we consider a d-dimensional ball B(x; δ). The number of random variables in
B(x; δ), still denoted as N, follows a Poisson distribution with a parameter (1 + αn)nδd,
and N is independent of these random variables. This actually corresponds to a spatial
Poisson process P with intensity measure (1 + αn)n

Vd
|B(0;1)| in B(x; δ), as discussed in [1],

and the parameter of Poisson distribution is equivalent to (1 + αn)n
Vd(B(x;δ))
|B(0;1)| , derived from

the corresponding Poisson point process.

Corollary 2. Let 0 ≤ αn → 0 and x ∈ Rd. We denote by md
x,δ;N the empirical measure with

respect to independent and uniformly distributed random variables X1, X2, · · · , XN in B(x; δ), i.e.,

md
x,δ;N(A) =

1
N

N

∑
i=1

1A(Xi),

for a measurable subset A of B(x; δ). N follows a Poisson distribution with a parameter (1+ αn)nδd

and is independent of random variables X1, X2, · · · , XN . Let µd
x,δ be the uniform measure in B(x; δ).

Then, we have

E[W(md
x,δ;N , µd

x,δ)] =

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

Proof. Combining the proof in Theorem 2 and Corollary 1, we first note that N follows a
Poisson distribution in B(x; δ) with mean value (1 + αn)nδd. Therefore, we can obtain

E[W(md
x,δ;N , µd

x,δ)] = E[δWd(md
N , µd)]

= δE[Wd(md
N , µd)]

= δ

{
O((nδ2)−

1
2 log2(nδd)), d = 2,

O((nδd)−
1
d ), d ≥ 3.

=

{
O(n− 1

2 log2 n), d = 2,
O(n− 1

d ), d ≥ 3.

4. Conclusions

The result in Corollary 2 can be directly applied to produce Appendix A.3 in [1]. We
have successfully refined the proof based on balls, thereby enhancing the robustness and
accuracy of the process described in [1]. Furthermore, our study has effectively bridged the
gap between discrete probabilities and their continuous counterparts by utilizing Wasser-
stein metrics as approach measures. Moving forward, we aim to apply our methodology to
analyze lattice problems in statistical mechanical approaches that involve similar notation
and convergence from discrete physical quantities to continuous ones, such as electrostatic
approach problems.

We derived the upper bound for the convergence rate of the Wasserstein distance
between a uniform distribution and its empirical distribution when d ≥ 2 using the dual
method. Our result is consistent with the order of convergence rate in [4], but we provide a
specific constant term. Furthermore, we extended this analysis to estimate the convergence
rate of random multinomial empirical distributions towards uniform distributions, yielding
similar results. However, our approach does not apply to the case when d = 1, and we
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did not obtain a lower bound estimation for the convergence rate. In real-world scenarios,
connections between discrete and continuous worlds can be established through random
graphs by extending mathematical concepts from manifolds to graphs. For instance, in [1],
authors generalize the Ollivier graph curvature definition to enhance its versatility and
prove that the Ollivier curvature of random geometric graphs in Riemannian manifolds
converges to the Ricci curvature of the manifold. Additionally, Appendix C3 in [1] also
provides methods for computing Wasserstein metrics through simulations.
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Appendix A. The Lower Bound of E(Md
n)

Since

Md
n = inf

σ

n

∑
i=1

∥Xi − Yσ(i)∥ ≥ inf
σ

n

∑
i=1

min
j≤n

∥Xi − Yj∥ =
n

∑
i=1

min
j≤n

∥Xi − Yj∥,

it follows that

E(Md
n|X) ≥

n

∑
i=1

E(min
j≤n

∥Xi − Yj∥
∣∣X) ≥ n min

x∈B(0;1)
E(min

j≤n
∥x − Yj∥).

Let the set of points B(x, t) = {y ∈ Rd : ∥x − y∥ ≤ t}, and then

|B(x, t) ∩ B(0; 1)|
|B(0; 1)| ≤ min{td, 1}

and
P(min

j≤n
∥x − Yj∥ ≥ t) ≥ (1 − td)n, t < 1.

Thus, we have

E(min
j≤n

∥x − Yj∥) =
∫ ∞

0
P(min

j≤n
∥x − Yj∥ ≥ t)dt ≥

∫ 1

0
(1 − td)ndt t=n−1/du

= n−1/d
∫ n1/d

0
(1 − ud/n)ndu.

Finally, by Fatou’s lemma, one has

lim inf
n→∞

E(Md
n)

n1− 1
d

≥
∫ ∞

0
e−ud ≥ 1 − 1

d + 1
. (A1)

Appendix B. The Upper Bound of E(Md
n)

Let r = n− 1
d , so that r → 0 as n → ∞, and |B(x, r)| = 1

n ωd, where ωd = |B(0; 1)|. Define

u(i, j) =
{

1, if ∥Xi − Yj∥ ≤ r,
0, otherwise.
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Define

b(x) =
|B(x, r) ∩ B(0; 1)|

|B(0; 1)| , (A2)

, and then we have b(x) ≤ 1
n < 1 if n > 1. First decompose ∑i≤n( f (Xi)− f (Yi)), as follows:

∑
i≤n

( f (Xi)− f (Yi))

= ∑
i≤n

f (Xi) ∑
j≤n

u(i, j)− ∑
j≤n

f (Yj) ∑
i≤n

u(i, j) + ∑
i≤n

f (Xi)(1 − ∑
j≤n

u(i, j))− ∑
j≤n

f (Yj)(1 − ∑
i≤n

u(i, j)),

so one has the inequality

| ∑
i≤n

( f (Xi)− f (Yi))|

≤ | ∑
i≤n

f (Xi) ∑
j≤n

u(i, j)− ∑
j≤n

f (Yj) ∑
i≤n

u(i, j)|+ | ∑
i≤n

f (Xi)(1 − ∑
j≤n

u(i, j))− ∑
j≤n

f (Yj)(1 − ∑
i≤n

u(i, j))|

=: I1 + I2.

Further, we will estimate two parts of E sup f∈L1
I1 in Appendix B.1 and E sup f∈L1

I2

in Appendix B.2, respectively. Combining them yields the following bound for the expecta-
tion of Md

n:
E(Md

n) = E sup
f∈L1

| ∑
i≤n

( f (Xi)− f (Yi))|

≤ E sup
f∈L1

I1 + E sup
f∈L1

I2

≤
{

n
1
2 + 4n

1
2 + 4n

1
2 + 24n

1
2 log2 n, d = 2,

n1− 1
d + 2dn1− 1

d + 2(2 + 16
√

2)n1− 1
d , d ≥ 3,

=

{
9n

1
2 + 24n

1
2 log2 n, d = 2,

(5 + 2d + 32
√

2)n1− 1
d , d ≥ 3.

(A3)

Appendix B.1. The Estimation of E sup
f∈L1

I1

I1 = | ∑
i≤n

f (Xi) ∑
j≤n

u(i, j)− ∑
j≤n

f (Yj) ∑
i≤n

u(i, j)|

= | ∑
i≤n

∑
j≤n

u(i, j)( f (Xi)− f (Yj))|

≤ r ∑
i≤n

∑
j≤n

u(i, j).

Since f is Lipschitz, we have

E sup
f∈L1

I1 ≤ r ∑
i≤n

∑
j≤n

Eu(i, j)

= r ∑
i≤n

∑
j≤n

E(E(u(i, j)|Xi))

= r ∑
i≤n

∑
j≤n

E(b(Xi))

≤ r ∑
i≤n

∑
j≤n

1
n

= n1− 1
d .

It should be noted that a more optimized estimation for I1 can be found in [2].
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Appendix B.2. The Estimation of E sup
f∈L1

I2

Decompose I2 as follows:

I2 = | ∑
i≤n

f (Xi)(1 − ∑
j≤n

u(i, j))− ∑
j≤n

f (Yj)(1 − ∑
i≤n

u(i, j))|

≤

∣∣∣∣∣∣∑i≤n
f (Xi)(1 − nb(Xi))− ∑

j≤n
f (Yj)

(
1 − nb(Yj)

)∣∣∣∣∣∣+
∣∣∣∣∣∣∑i≤n

f (Xi)

nb(Xi)− ∑
j≤n

u(i, j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∑j≤n
f (Yj)

(
nb(Yj)− ∑

i≤n
u(i, j)

)∣∣∣∣∣∣
=: I21 + I22 + I23.

We will estimate these three parts separately in the following smaller subsections to obtain

E sup
f∈L1

I2 ≤ E sup
f∈L1

I21 +E sup
f∈L1

I22 +E sup
f∈L1

I23 ≤
{

4n
1
2 + 4n

1
2 + 24n

1
2 log2 n, d = 2,

2dn1− 1
d + 2(2 + 16

√
2)n1− 1

d , d ≥ 3.

Appendix B.2.1. The Estimation of E sup
f∈L1

I21

According to ∥ f ∥L∞ [B(0;1)] ≤ 1 and the value (A2) of b(Xi) in B(0; 1), we have

E sup
f∈L1

(∣∣ ∑
i≤n

f (Xi)
(
1 − nb(Xi)

)∣∣) ≤ E
(

∑
i≤n

∣∣1 − nb(Xi)|
)
= ∑

i≤n
E
(∣∣1 − nb(Xi)|

)
≤ ndr = dn1− 1

d .

Consequently, we can obtain

E sup
f∈L1

I21 = E sup
f∈L1

(∣∣ ∑
i≤n

f (Xi)
(
1 − nb(Xi)

)
− ∑

j≤n
f (Yj)

(
1 − nb(Yj)

)∣∣)
≤ E sup

f∈L1

∣∣ ∑
i≤n

f (Xi)
(
1 − nb(Xi)

)∣∣+ E sup
f∈L1

∣∣ ∑
j≤n

f (Yj)
(
1 − nb(Yj)

)∣∣
≤ 2dn1− 1

d .

Appendix B.2.2. The Estimations of E sup
f∈L1

I22 and E sup
f∈L1

I23

Estimating this part is challenging, and one may employ convolution decomposition
to impose f in small areas. Consequently, the following estimation holds:

E sup
f∈L1

I22 = E sup
f∈L1

I23

= E sup
f∈L1

(∣∣ ∑
i≤n

f (Xi)
(
nb(Xi)− ∑

j≤n
u(i, j)

)∣∣) ≤
{

2n
1
2 + 23n

1
2 log2 n, d = 2,

(2 + 16
√

2)n1− 1
d , d ≥ 3.

Initially, we assume that f represents an indicator function for a set A, where A is a

measurable subset of Rd, and estimate E
(∣∣∑i≤n 1A(Xi)

(
nb(Xi)− ∑j≤n u(i, j)

)∣∣2). Thus,

we have

E

(∣∣ ∑
i≤n

1A(Xi)
(
nb(Xi)− ∑

j≤n
u(i, j)

)∣∣2)

= E

 ∑
i,i′≤n

∑
j,j′≤n

1A(Xi)
(
b(Xi)− u(i, j)

)
1A(Xi′)

(
b(Xi′)− u(i′, j′)

).
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By considering different cases of i, i′ and j, j′, we obtain the inequality

E
(∣∣ ∑

i≤n
∑
j≤n

1A(Xi)
(
b(Xi)− u(i, j)

)∣∣2) ≤ n2(n − 1)
|A|

|B(0; 1)|
1

n2 + n2 |A|
|B(0; 1)|

1
n
≤ 2n

|A|
|B(0; 1)| . (A4)

Furthermore, let us set h(x) = c01A(x). By using Formula (A4), we obtain∫
Rd

E
(∣∣ ∑

i≤n
∑
j≤n

h(Xi − t)
(
b(Xi)− u(i, j)

)∣∣2)dt

= c2
0

∫
Rd

E
(∣∣ ∑

i≤n
∑
j≤n

1A(Xi − t)
(
b(Xi)− u(i, j)

)∣∣2)dt

≤ 2nc2
0|A|.

(A5)

Finally, we decompose f into the sum of some well-defined convolutions to estimate
these components. Since a Lipschitz function f in B(0; 1) ⊂ Rd with f (0) = 0 can be
extended to a Lipschitz function in the entire space Rd with ∥ f ∥L∞ ≤ 1, we consider the
function f ∈ L defined as (1). We then decompose it as follows, f = ∑

q+1
l=1 fl , where

f1 = f − f ∗ h1, f2 = f ∗ h1 − f ∗ h2 ∗ h1, · · · , fq = f ∗ hq−1 ∗ · · · ∗ h1 − f ∗ hq ∗ hq−1 ∗ · · · ∗
h1, fq+1 = f ∗ hq · · · ∗ h1,

hl =

{
|B(0; 1)|−1(2lr)−d, x ∈ B(0, 2lr)
0, otherwise

,

and q denoted by 2qr < 1 ≤ 2q+1r. Therefore, we have

E sup
f∈L1

I22 = E sup
f∈L

I22

= E
(

sup
f∈L

∣∣ ∑
i≤n

q+1

∑
l=1

fl(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

≤
q+1

∑
l=1

E
(

sup
f∈L

∣∣ ∑
i≤n

fl(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣).

For the first expectation mentioned above, we have

E
(

sup
f∈L

∣∣ ∑
i≤n

f1(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

= E
(

sup
f∈L

∣∣ ∑
i≤n

( f − f ∗ h1)(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

≤ 2r ∑
i≤n

E
(∣∣ ∑

j≤n

(
b(Xi)− u(i, j)

)∣∣)
≤ 2nr = 2n1− 1

d ,

(A6)

since ∥ f − f ∗ h1∥L∞ ≤ 2r and E
(∣∣∑j≤n

(
b(Xi)− u(i, j)

)∣∣) ≤ 1.
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For the expectation about fl = ( f − f ∗ hl) ∗ h1 ∗ · · · ∗ hl−1 with 2 ≤ l ≤ q, since
∥ f − f ∗ hl∥L∞ ≤ 2lr, we have

E
(

sup
f∈L

∣∣ ∑
i≤n

fl(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

= E
(

sup
f∈L

∣∣ ∑
i≤n

( f − f ∗ hl) ∗ h1 ∗ · · · ∗ hl−1(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

≤ 2lrE
( ∫

Rd

∣∣ ∑
i≤n

∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣dt
)

,

(A7)

and on the other hand, we have

E
( ∫

Rd

∣∣ ∑
i≤n

∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣dt
)

=
∫

Rd
E
(∣∣ ∑

i≤n
∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣)dt

≤
( ∫

Rd
E(
∣∣ ∑

i≤n
∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣2)dt
) 1

2

×
( ∫

Rd

∫
B(0;1)2n

1∪i≤n(xi−supp(hl−1))
(t)

1
|B(0, 1)|2n dxdydt

) 1
2

≤
(
|B(0; 1 + 2l−1r)|

) 1
2

( ∫
Rn

E
(∣∣ ∑

i≤n
∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣2)dt
) 1

2

.

(A8)

Hence, using (A5) and combining (A7) and (A8), we have

E
(

sup
f∈L

∣∣ ∑
i≤n

fl(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣)

≤ 2lrE
( ∫

Rd

∣∣ ∑
i≤n

∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣dt
)

≤ 2lr
(
|B(0; 1 + 2l−1r)|

) 1
2

( ∫
Rn

E
(∣∣ ∑

i≤n
∑
j≤n

hl−1(Xi − t)
(
b(Xi)− u(i, j)

)∣∣2)dt
) 1

2

≤ 2lr
(
|B(0; 1 + 2l−1r)|

) 1
2

(
2n(|B(0; 1)|−1(2l−1r)−d)2|supp(hl−1)|

) 1
2

= 2lr
√

2n(1 + 2l−1r)
d
2 (2l−1r)−

d
2

≤ 2l(1− d
2 )2d+ 1

2 n1− 1
d .

(A9)

For the last expectation about fq+1 = f ∗ h1 ∗ · · · hq−1 ∗ hq, the above argument still
works. Since ∥ f ∥L∞ ≤ 1 ≤ 2q+1r, we have

E
(

sup
f∈L

∣∣ ∑
i≤n

fq+1(Xi) ∑
j≤n

(
b(Xi)− u(i, j)

)∣∣) ≤ 2(q+1)(1− d
2 )2d+ 1

2 n1− 1
d . (A10)

Summing up these estimations, (A6), (A9) and (A10), yields

E sup
f∈L1

I22 ≤ 2n1− 1
d +

q+1

∑
l=2

2l(1− d
2 )2d+ 1

2 n1− 1
d .
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If d ≥ 3, one has E sup f∈L1
I22 ≤ (2 + 16

√
2)n1− 1

d . If d = 2, we may obtain 1
2 log2 n −

1 ≤ q < 1
2 log2 n, and hence E sup f∈L1

I22 ≤ 2n
1
2 + 23n

1
2 log2 n.
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