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Abstract: This paper presents the results concerning a space of invariants for second type almost
geodesic mappings. After discussing the general formulas of invariants for mappings of symmetric
affine connection spaces, based on these formulas, invariants for second type almost geodesic
mappings of symmetric affine connection spaces and Riemannian spaces are obtained, as well as
their mutual connection. Also, one invariant of Thomas type and two invariants of Weyl type for
almost geodesic mappings of the second type were attained.

Keywords: affine connection space; Riemannian space; almost geodesic mappings; invariants

MSC: 53A55, 15A72, 53B05, 53B20

1. Introduction

In this research, invariants for almost geodesic mappings of the second type of a
symmetric affine connection space are obtained. Invariants for second type almost geodesic
mappings of a Riemannian space are obtained as a special case.

This research is based on symmetric affine connection spaces and Riemannian spaces
in the sense of Eisenhart’s definitions [1,2].

Transformations of affine connections of different symmetric affine connection and
Riemannian spaces are studied in [3-9] and in many other scientific papers and mono-
graphs. The authors of [3-5,9-11] have considered a special transformation of a torsion-free
affine connection space known as the second type almost geodesic mapping.

1.1. Symmetric Affine Connection Space in Eisenhart’s Sense

0
An N-dimensional manifold My equipped with torsion-free affine connection V,
whose coefficients are Ly, , Lg, = Lig, is the symmetric affine connection space Ay

(see [2-5]).
There are many authors that deal with symmetric affine connection spaces, as well as
studying torsion-free affine connection spaces [2-5].

0
The covariant derivative of a tensor a% with respect to the affine connection V in the
direction of x7 is defined as [3-5]

agh = a%w + Lg‘la‘g — foﬁaé‘, (1)

for partial derivative d/dx" denoted by comma.
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From the alternation a% one Ricci identity is obtained (for details, see [3,5]).

Blyle W I’
In this way, one curvature tensor of space Ay is defined

0
REoys = Lpys = Lpsy + LpyLes — LpsLey: (2)

0 0
The corresponding Ricci tensor Ry5 = R, ge 18

0
szﬁ = Lzﬁ, aceﬁ +L ﬁLg e ﬁe ®3)
The alternation of the Ricci tensor is
0
R[rxﬁ] =—1¢ ,+ 1% . (4)
we,fp e
After involving the abbreviation Lg”rl 5= L% s L 5LEW Lz 5 LQ‘W Le ﬁ . we obtain
0 €
Riap) = ~Lineip)- 5)

1.2. Riemannian Space in Eisenhart’s Sense

A special kind of symmetric affine connection spaces are referred to as Riemannian
spaces. An N-dimensional manifold My equipped with symmetric metric tensor ¢, whose
components are gug, §ap = Spar det [gaﬁ] # 0, is the Riemannian space Ry (see [1,3,5]).

Because of the regularity of matrix [g,g], the metric tensor with upper indices is defined as

) = [gup]

K
The affine connection coefficients of space Ry are the second kind of Christoffell symbols

1
By = 58"(8psy — 8pys + 8o1)- 6)
The second kind of Christoffell symbols, 1"”‘1, are symmetric by B and <y uniquely

0
generate the torsion-free affine connection V8. With respect to this affine connection, one
kind of covariant derivative of the tensor a% in the direction of x7 is [3,5]

A5y = A, + To,ap — Tpy a5 (7)

The curvature tensor and the Ricci tensor of space Ry are

0
Rg%’ré - ngé - @7 /57 e~ zérew (8)

0
RSy = Top - a€ﬁ+r€ﬁr4 r;irie, )

0
The Ricci tensor R$,g is symmetric by a and S, i.e., it holds the equation

0
R85 = 0. (10)

1.3. Almost Geodesic Mappings

In an attempt to generalize the concept of geodesics, N. S. Sinyukov defined the almost
geodesic curve of a space Ay as a curve ¢ = /(t) which satisfies the next system of partial
differential equations [3-5,9-13]
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VRV _
Ay = a(OAY (AT, My = AgAP, Ay = Ay pAP, (11)

where A = d//dt is tangential vector to ¢, and a(t) and b(t) are functions of ¢.
A curve £ = {(t) is an almost geodesic line of Riemannian space Ry if the following
system of partial differential equations is satisfied

Aty = a(DAS +b(DAY), Al = AfgpA AP, Ay = A‘(Xl)‘gﬁ/\ﬁ. (12)

A mapping f : Ay — Ay which any geodesic line of the space Ay transforms to an
almost geodesic line of the space Ay is the almost geodesic mapping of Ay.

A mapping f : Ry — Ry which any geodesic line of the space Ry transforms to an
almost geodesic line of the space Ry is the almost geodesic mapping of Ry.

It is proved [5,9-11,13] that a mapping f: Ay — Ay is almost geodesic if and only
if in the common coordinate system x1, ..., xN, the deformation tensor Pg,y = Lg - Lg,y

satisfies identically with respect to xl ..., xNand AL, ..., AN the conditions

(Pgyjs + PepPys) APATA® = bPE APAY +a™. (13)

In this equation, A, AN are components of some vector, and 4 and b are invariants
depending on x, .., xNand AL, .., AN,
The expressions of invariant b as

bupA®AP - bupy A*APAY

— 22 —
b=badt b= o AT T o ATAY

(14)

correspond to three types of almost geodesic mappings of space Ay. These types are 71,

7T, and 7T3.
0 0
After reducing the Equation (13) to the case of affine connections V¢ and V$ of

Riemannian spaces Ry and Ry, the necessary and sufficient condition for a mapping
f : Ry — Ry to be almost geodesic is

(ngl|g5 + Pg’éﬁpggi))\ﬁ)ﬂ)\é = bpggi)\ﬁ)\'y 1 aAn, 15)

for the deformation tensor Pg By = F%W %V As in the case of almost geodesic mappings

of symmetric affine Connectlon spaces, there are three types of almost geodesic mappings
of Riemannian spaces as well. These three types are determined with the expressions (14)
of invariant b.
A mapping f : Ay — Ay determined with the following system of partial differen-
tial equations
14 o 43
{ By = Ly + 9105 + ¥po5 + 2;7755 + 205F%, 6)
/5‘7 + F v+ ZUﬁF F§ + 20y FgF§ = vy 0 4+ vp0h + pio Fg + HgFEy,
for 1-forms §n, 0, a, Va, and an affinor Fg, is the second type almost geodesic mapping [3,5,12].

The class of second-type almost geodesic mappings is marked as 71,.
The mapping f has the property of reciprocity if the affinor Fg is an invariant for this

mapping and the inverse mapping f ! is an almost geodesic mapping of the second type.
The basic equations for the second type almost geodesic mapping f, which has the property
of reciprocity, are Equation (16) together with the condition

FyF] =edy, e= =+l (17)
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Almost geodesic mappings of symmetric affine connection space of the second type
are elements of class 71,. The subclass of almost geodesic mappings of the second type,
which have the property of reciprocity, is 75 (e).

1.4. Invariants for Geometric Mappings

Important objects in mathematics are those ones which do not change after transfor-
mations. In differential geometry, several such objects have been determined [3,5,14-18].
After expressing the difference E%v - L%7 as

Ly = Ly = @y — oy (18)

it was obtained (see [17]) that the geometrical objects

0

%l = L"él — wgv, (19)
0 o OU( o 14 € 14 € 14
Brs = Rpys = Wpyls T Wesly T WpyWes — WpsWeq (20)

are invariants for the mapping f : Ay — Ay whose deformation tensor is given by
(18). These invariants are the basic invariants of Thomas and Weyl type for mapping
f, respectively.

In [19,20], two kinds of invariance of geometrical objects under mappings of non-
symmetric affine connection spaces are defined. Non-symmetricity is not of great impor-
tance in the next definition.

Definition 1. Let f be a mapping between two affine connection spaces, both symmetric or non-
symmetric affine connected ones, and let U’Xlgs be a geometrical object of type (p,q), p,q € No.

1-
1. If the transformation f preserves value of the object Ugizz but changes its form to V;i;’; ,
then the invariance for geometrical object Ugizs under transformation f is valued.

2. If the transformation f preserves both the value and the form of geometrical object Ugia” ,

=
=

then the invariance for geometrical object under the transformation f is total.

1.5. Motivation

Invariants for different geometric mappings of symmetric affine connection spaces
and Riemannian spaces have been obtained [21,22].

Scalar curvature 7t of a 2n-dimensional Riemannian manifold is defined in [23]. This
scalar curvature and the corresponding scalar curvature obtained with respect to the
corresponding complex metric are correlated in [23].

In cosmology [24,25], research on this topic starts with the Friedman-Lemaitre—
Robertson-Walker (RLRW) metric

ds? = —a2dn? + a? (dx'” + da?” + dx®?), (21)

where 7 is conformal time, x1, x2, 23 are spatial coordinates, and a = a(#) is the scale factor.

The perturbed FLRW metric is [24]

ds? = —(142A)a’dn® + 2(8iB)a2dxid77

o 22
+ [(1 —2(D+ %5“ (QD1E)) )35 + 2(aiaj5)} dxidy, @)

fori,j,k,1 =1,2,3, and scalar functions A, B, D, E.
The perturbation of metric (21)—(22), § — ¢, induces the perturbation of Christoffell
symbols and components of curvature tensor induced by the FLRW metric. If ¢ = det [g,,],
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u,v=0,1,2,3, is the determinant of the perturbed metric then the corresponding Einstein—

Hilbert action is 1
s= 5 /d4x\/—g(Rg + L), (23)

for the Einstein gravitational constant x = 2.08 x 104N !, scalar curvature R$ obtained
from the perturbed metric, and the term £, describing any matter fields from the theory.
The action S should be invariant under the variation, i.e., it would be [24,25]

0:55:/d4\/?g[1 (5 + X WTS)JF 1 5(\/jgﬁml(5 p

7

RAVCIREVE W FUAINE ST

for variational derivative 6/6¢"". The last relation is equivalent to the equations of motion

1
RS, — ERggﬂ = kT, (24)

for the energy-momentum tensor T),,.
The Weyl conformal curvature tensor with respect to the perturbed metric is [3,5,21]

1 1
Cllve = RE 0 + 5 (REF g — RE7guo + RE 67 — RSy0677) + gRg (67 8o — 05 8uv)- (25)

The traces Cjyq, Cliays Cayy Of the Weyl conformal tensor vanish. That means that it is
not possible to contract the geometrical object CJf,, by 77 and some of the covariant indices,
#, v, 0, to obtain a non-trivial invariant of the form R$,, + D,,,, where Dy, is a tensor of
the type (0,2).

Motivated by the trace-free Weyl conformal tensor, R. Bach proposed a quadratic
action [26]

Sy = / d4XC e C /g, (26)

which is invariant under the conformal group (the group of transformations from the space
to itself that preserve angles). From the last action, the modified equations of motion
are obtained.

With respect to the transformations in cosmology, and the methodology for obtaining

the Einstein tensor RS, — ERg guv, we are motivated to obtain invariants from the transfor-

mation of the curvature tensor under second type almost geodesic mappings. Unlike in the
case of the Weyl conformal tensor, the trace of one of these invariants will not be identically
equal to zero. For this reason, in future work, our results will be applicable for research in
cosmology analogously, as in (26), but for linear cosmological models.

In the next part, the main aims of the paper are presented.

1.  Toreview results about invariants for mappings of symmetric affine connection spaces
obtained in [18].
2. To express the deformation tensor ng of second type almost geodesic mapping

f: Ay — Ay in the form
Py = Y205 + Pp0% + Oy — Ppos

for tensors pgv and pgv symmetric by f and v and obtain the corresponding basic

invariants (19 and 20) for almost geodesic mappings of second type of space Ay.
3.  To obtain the corresponding invariants for second type almost geodesic mappings of
Riemannian space Ry;.

2. Review of Basic and Derived Invariants

Let us consider a mapping f : Ay — Ax whose deformation tensor ng is
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Pgl = P05 + Yoy + pgl — pgi, (27)
for tensors p%i and pgi symmetric by covariant indices. The forthcoming theorem is going
to be proved.

Theorem 1. Let f : Ay — Ay be a mapping of symmetric affine connection space Ay, whose

deformation tensor is given by (18).
The geometrical objects

0 _sz 1 LzS ) o L6 0 o 78

By ~Ppy N+1(( 75~ Pys)9 + (Lgs — Ps) 7)’ (28)
1 0

Wi = R%ws*%w* Ppsly T PyPes — Pl + 7% (Riao) + 0yete)

1
(NH)szi((NH)(LEew Phels + 05 (L —05) ) + </€S<—tp/€Se)(L§§P§§)> 29)

1 i _ ¢ ¢ _
+ (N+1)?2 5 <(N+1)( Bely PE:\V‘FPEJ(Lg_Pg))+(Lf5i_Pgi)(Lﬁ_PLg) ,

are the basic invariants of Thomas and Weyl type for the mapping f.
If pglﬁ% = p%ipgi, for the geometrical objects p%l and ﬁ%l used in the basic Equation (27),

0
) ) "
the invariant VW 29 reduces to

0 1 0
Wihys = Rys = Pals + Opsly + 3719 Riva) T Phrers)

1
TINF12 5y <(N +1) [Lfiew Plels T Pﬁ(sLeg] + L,seLg fsipgi - gip/%l) (30)
+#(5“((N+1)[L€ + ]+L Lé‘. — L5 05, — LS g)
(N+1)2°% el ~ Ppely T PhrLer] T Lpelsg ~ LpePrg — LoePpr )
The derived invariant of Weyl type for the mapping f is the geometrical object

0 N 0 1 0
Wi = R N ‘5ﬁ( o) T Plyels) + Nz 700 Ree + 3z 100 Rels
~ Pyl T Pﬁgw + 05y Oes — Ppsley

o 1 5% o€ + 1 504 e T 1 5% o€ 4 (31)
N —1°0Ppolle [vPpoPec = N —1°0PBePs)e
N
+ Nz 100Pbelel T Nz 100l
If ﬁgvpig = pgvpig, the derived invariant of Weyl type for the mapping f is
1 0 N 1
WW Rﬁw‘ + 7o (R ho] +0he) T 1T [WR/%] — 15[7R5]ﬁ )

N
o o N € N € N €
=Py P~ W7OhPRole T 1%%\6} T N1 ohP el
The invariants for mapping f listed in this theorem are totalled.
Proof. After contracting the Equation (27) by a« and -, one obtains

_ 1
_ ) =0
1/J,B—N+1(Lﬁ§_P@) N—l—l( pﬁé)
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Hence, the Equation (27) transforms to

L, = Ly + by — oy + g0 (E — P30)08 + (T — 7))

(18— 02585+ (L8 — ply) ot >
~ w1 (s =058 + (L5 — 03s)35).
After comparing the Equations (33) with (18), we obtain
1
Wy = Py + 7 (Lhe = 05005 + (Ls — 03)%)- (34)

Hence, the basic invariants of Thomas and Weyl type for mapping [17,18] f are

0 1
b= Ly~ b~ g (B = P05+ (Lo —03) %),

0 1 0
Wiis = Riys = Pyl + sl + PyPes — Ppeter + 7% (Riva) +0less)

(N41r1)25$<(N+1)(ﬁ€|5 Phes PR (LEg = p%) ) + <§e—P§e)(L§g—p§g)>

1
TN 1)25? <(N+ 1>(Lfi€lv ~ Pely +pfﬁ(Lé€_p§£)) + (Le — Pje) (Lgé_"gé))

In the case of p mp et =P mp ¢¢- the basic invariant Wg 5 given by (29) reduces to

1 0
Wﬁ% RWF Pyt Ppoiy T 1% (Riya) + £Fyela))
1
TNt 1)2‘% ((N +1) [ngw P,se\(s + PﬁéLeg] + LﬁeLC ,zepég - &P%ﬁ)

! ¢ ¢ ¢
+ méﬁ%‘ ((N +1) [ngh Ppely T Ppy Eé] + LgeLos = Liepsy — Lgipﬁ)_

0 0
After contracting the difference 0 = Wg,y 5 Wg,y s by @ and B, one obtains the triv-

ial equality.
1 1 0_ [ 0 [ O [
On the other hand, if one contracts the equality 0 = Wﬁ“r s— W Bror for W B and

ng s of the form (29), by a and J, one obtains
9 9 —€ € € =C e G =€ =C e 0
0= (Rgy = Rpy) = (Ojyje) —Phiyle) + (OprPeg — PpaPeg) — (PgPre — PgPie)

_ 1 9
b7+ Plgeln) — g (Rienl T Plgeiy) + (N = DXy,

o

R
N+1
for the corresponding tensor Xg,. If expressing Xz, from the last equality, it becomes

N 9 1

o

Xpy =~ 321 (R ~Rp) - ~z—1 (Rop = Rop)
1 ) 1
N7 PhPe — PaPeg) + x—g (Phcfhe — Phcphe)

N ) N 1
+ N7 Phyle —Phte) — Nz Ohelly — Pbely) — 371 Phells — Oely)-
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Based on this computation, it is proved that is
0
o — o
pro — TPy

for
0

s = R + ﬁ‘sﬁ(ghﬂ + Plyelel) + %‘%ﬁwl 3 1‘5?71%51/5
~Ppais t Ppaly T PEA,PZL(; ~ PpoPey
B ﬁ‘sfw@lle ty 1% pﬁé]peé 1_ 1 [7pﬁép&]e
+ NzL_ I30pels) + %‘%Pfﬂjﬁ'

and the corresponding Wm s 1 P mp e =P mp e the geometrical object Wm 5 reduces to

0 N
Wi = RS, + 1% Riva) +00e1) + ‘5[71%] _1‘5[71%15

o

1 N 1
o 9 € 0 € 0 €
~ Pgyls T Ppsly — N =10 Ppalle T Nz 10 PBelsl T Nz =10 Palel

O 0 0
Using simple calculus, one finds that traces Tﬁ o m 57 Wg 5 Wf% . vanish. That means
0
. . . . LR _ = (4 _
that no one invariant may be obtained after contracting equalities 0 = By ﬁ“Y and
0 0
0= ng s — W5 B by « and any of the covariant indices.

The following equalities hold

0 0 0 0 0 0

Br = Tap Wins = Wasy Whys = ~Wesye

b (35)

0 2
Because the invariants 7'%7 and T%v have the same form, the basic invariant of Thomas
type for the mapping f is total. The basic invariant of Weyl type for the mapping f is
obtained with respect to the functional combination of the basic invariants of Thomas type.
Because this combination does not affect the form of the resulting object, the basic invariant

of Weyl type for the mapping f is total. The derived invariant for the mapping f is obtained
0
by contraction of equality 0 = W%v 5 W%W s by « and 6. For this reason, and because

the basic invariant of Weyl type for the mapping f is total, the derived invariant for the
mapping f is total, too. [

Corollary 1. The geometrical objects
’?’gﬂt —T& & 1 ((1—'(5 _ 0 )5D¢+(1—'5 _ 5)50() (36)
Br = pr TPy T N1 \Uad T Pe) % T s T Pps) Oy )

0 0 1
W6 = R¥bys = Phyiss T Ppojsy + PhyPes — PpoPey + 77 %BPhrelss
1 o € € € 4 ¢
TINT 1)2’57 (N+1) (r@g(s Phejss + Pﬁfs( Peg)> + (Tge = 0je) (T3 — P5¢) (37)

1 . e e V(6. of
(N+1) 0% ((N+1)<r[3e|87 pﬁe\g'y—'—pﬁ’y( Peg)) (T ﬁi_pﬁi) (r%_P%))
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are basic invariants for mapping f : Ry — Ry determined by
(5, = Dhy + 05 + Y505 +Ppy — 0y (38)
5 5 0
If p%lﬁgi = pgj’é@’ the invariant VWS s reduces to

0 0 1
g _ pPsx o Y Y| PN 3
Weys = R¥pys — Pgyjss T Pgsjey + N+ 798P yelso)

1
T (N+ 1)2‘% ((N +1) (Fzﬂga - Pfig\g(s + P/z(srég) + reerg ﬁeP(sg 5eP,§5£)

! 4
* m(sg((N * 1)(F%|3’Y pﬁe\g’Y +p/37 66) + F,Ber r/%ipyg - reepﬁg)

The derived invariant of Weyl type for the mapping f is

1 1
Wg%w - R p10 T [ 1 0BPlyelsa) (Rgﬁ5‘5 ~ RS, 0%)

_ Pﬁlpgg + P@M + plﬁpé - pﬁipﬂ

_ #50‘ € + 1 504 € 4 o 1 50{ e ¢ (39)
N —1°0Pallse T N =1 %0PpolPec T N =1 1vPBelsle
N (4 € 1 (14 €
+ N2 — 15[7’0&\2‘5] + N2 — 15[7pfﬂj\gﬁ’
which reduces to
wes _ Re ! 1 RS 455% — R85 &
B = Répys + Ry 98Plpeisn + 1 (REpody — R 5) w)

1 N 1
= Ppylss T Ppslsy ~ N =1 ﬁf‘#’%ﬂ\ge Nz 100Pelsa) T Nz 00O elspe

in the case OmePeg = ,ompeg
The invariants for mapping f listed in this corollary are total. [

3. Invariants for Second Type Almost Geodesic Mappings of Space Ay

The next theorem will be proved below.

Theorem 2. Let f : Ay — Ay be a second type almost geodesic mapping of a symmetric affine
connection space Ay.
The geometrical objects

1
AgZTﬁW =Ly = Pby ~ N1 [(L5s — Pfﬂs)‘sg + (Lgs — 0s) %) (41)
AQZW,B'}/J Rm(s P%l\,s + ngw N 1 ‘513( [ys] + Pfyqfs])

1
TINT 1)2&; ((N +1) (L%w Pﬁe|5 + PﬁJLeg) + L,seLg L;zep(sg LEeng) (42)

1

« 13 e 1§ € 1¢ e G e ¢
+ ey (N D (g, = By + 0 L) + Lel i — Lier' — Lierfe ).

for p% By = (T,YFﬁ opky, are the basic invariants of Thomas and Weyl type for the mapping f.
The geometrzcal object

1 0 N 1,0
AQZWW RW+ N 1% Riva) +0hels) + =7 Rﬁ<5] + x5z 100 R )

1 N 1
= Phals T Opsly ~ =10 pelle T Nz 100PBelel T Nz =10 Palelp
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for pgv and the corresponding covariant derivatives as in the basic invariants (41) and (42), is the
derived invariant for mapping f.
0

The invariant .AQZTg for mapping f is total.

0
The invariants AGo Wy, 5 and AQZW 5 for mapping f are valued. They are total if and only
if the mapping f has the property of reczproczty

Proof. It is appropriate to assume that geometrical objects §,0g + 1dy and o Fg + 0pFy
in the first of Equation (16) are linearly independent. Otherwise, this mapping reduces to
the geodesic one.

Because the geometrical objects l[er + ¢pd) and py By = (7713 + ogFy are linearly

independent, we obtain the tensor p of type (1,2), whose components are (% By =~ 0% By
From the first of the basic equations from (16), compared with (27), we obtain
p%l = _ﬁ%v = —O'WFE —opFy.
Based on the second of basic Equation (16), the covariant derivative (UBFA‘;‘) B is

(9pF3) s = 0pisFy — OpFsl,, — OposFyFE — opoy FFE
+ 0pV4 85 + 0pVs0Y + oy Fy + oppsEy.
From this expression, one obtains the following
O3yis = —OpleEs + pFSjy + OpOs e + 2050, FiFE
- oy |sFg + oy F5jg + oy o5 Fg FE
— Opvy05 — Opvs05 — Oty By — oppsEy
— 0y Vpd5 — 0405 — Oy pugFy — oy pusFg.

Finally, the next equations hold

*pgj5+pgjlv O'IBH ] +0-'BP[7‘5] +0’50'[ Fg]Fng[,Hé}Fg%»O'th‘”ﬁ
+ 5[ U508 — 0[71/5] 0[7;451—“&] ['er?]Fg'
Pgﬂa = —0p|cF5 + 0psF + 0gFs — 0pFj + 0'[30'51:(5 F; — 0,3051-‘51-‘5
— e|5FE + (T(g‘el:g + U€F§|ﬁ — UgFﬂ
+ (N —1)ogos — gV — OeptpFs + osppgF — a€y5F§ + agyng,
= 4
Plpeis) = —207pleFs) + Tigje)F +2018Fs) — 0pF5)c + 01p0eFy FE
+0eipFs) — OeFipa) — 201gve] — Olpta)F — OpphieEy),
for F = Fy and Fg = Fjg.

In the case of almost geodesic mapping f, it holds pgyp g = pgvpig, which completes
the proof of this theorem. O -

Invariants for rty-Mappings of Space Ry
A mapping f : Ry — Ry determined with basic equations

{ By = Ty + 905 + Ypd% + 204 Fg + 204 F5, )

ﬁ\gw_"F ‘gﬁ-i—ZU,sF Fa+2071:l513 fvyéﬁ—i—vﬁ& +H«7FE+V/3F“/
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for 1-forms VB, O, g, Vg, and affinor Fg, is the second type almost geodesic mapping of
Riemannian space Ry.

The almost geodesic mapping f has the property of reciprocity if its inverse mapping,
f~!: Ry — Ry, is an almost geodesic mapping of second type and affinor Fg is an
invariant for this mapping.

The necessary and sufficient condition for almost geodesic mapping f of space Ry to
have the property of reciprocity is given by (17).

Analogously as above, the validity of the next theorem will be confirmed.

Theorem 3. Let f : Ry — Ry be a second type almost geodesic mapping of a Riemannian
space Ry.
The geometrical objects

9 o [/ o 1 (4
AgZTg;ﬁ =Ty —Ppy — N+1 [( Pw)‘sﬁ + (r,scs Pfi&)‘sw]f (45)

0
AGaWE s = R¥Bys = Oyjes + Pster + N 1‘5;3( R
1
TNt 1)252; <(N +1) (rfgﬂx(s pﬁe|8§ + P/s(srgg) + F/serg FE:P% - Tﬁipég) (46)

1 g Z
* (N+1)z‘5§ (N +1) (Tegey — Ofifsy + By Te) + Tl — Thedys — Tefi ).

for p% By == —oyF ﬁ — ogEy are the basic invariants of Thomas and Weyl type for the mapping f.
The geometrical object

AGaWSS, ;s — RS54 L — (03RS ps + 03RS )

1
80 g&"'
N+1 % [ve[$9] (47)

1 N (AN 1 X €
~Phylss + Pholsy ~ N 1o0PBolice T NT -1 00Phelssl ¥ NT =1 o0Phleip
for p% By and the correspondmg covariant derivatives as in the basic invariants (45) and (46), is the
derived invariant for mapping f.
0
The invariant AGo T4 for mapping f is total.

The invariants Agzwg 8o aAnd Agzwg o for mapping f are valued. They are totalled if
and only if the mapping f has the property of reaproaty O

Proof. Let f : Ry — Ry be an almost geodesic mapping of the second type. The basic
equations of this mapping are given by (44).
From the first of these equations, we recognize that is p% —oyF ﬂ — ogFy. For the

geometrical object ng given in this way, the following equations hold:

—Pyjss T Opsjer = i Es) + OBFY, s +0p01 P FE — 015 F§ + 01 Ffj g

. (48)
+ 61,0510 — 0y V5)0p — Oy pFs) — Ol e FR
p%w(s = —0'/3|85F(5 + 0'/3‘8251: + 0"51:5 - UﬁF§|ge + 0'[30};55 FE — 0'/30'(5P§P§
- e\géFg +05|g€F‘§+a€F§€|gﬁ —(T(SFﬁ (49)
+ (N = 1)op0s — 0gvs) — OepipFs + osppF — oepisFg + ospeFy,
= ¢
Plpelss) = ~20(pjseEs) + Olpisa)F +2016Fs) — o1Ffy s + 01p0eFy FE 50

+ efs|F5) — eFlgysy — 20(v5) — Olpita)F — OlgheFy,

for F = Fy and Fg = Fjep.
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After substituting the expressions (48)—(50) into the Equations (36), (37), (39) and (40),
the proof of this theorem is completed. [

Theorem 4. The geometrical objects QAZT“ and gAzTg ., given by (41) and (45) satisfy the
following equation

1
gAzTﬁ,y = Q.AzT [ 77;37 (73555/3 + Pﬁo 5) (51)

0
The geometrical objects Q.A2W 5 and gAng Bo Siven by (42) and (46) are correlated as

1
o € € 14
+ 7’@@ - 7’@@ N1 5P[ve|g5]
~ S (N 1)(7@% PhiTec +5sPe)
(52)
+ TPy + 5Py + PhePa; — Phebly - Pépgj)
1
S ((N+1)(Pgpe, = Py TE +05,P5)
+ TPl + TPl + PhcPlc — Phebly - Pf;ipgi).
The next equation holds
0 0
Agzwgvé = Agzwggw + ng\gé - Pgé\gv + 73277335 - PE,,—PQ",, + Pé‘hp ;5] - ngpgll
1 lX € (14
N 1% hel T N 1 (‘5[ Péels) — 0%, Phebba) — o Pierlc) )
1 e
5= (05 Pagse — % Pﬁe\gé] + 0, Py (P — 05) — 0, P5c i)
1 1
+ 17 1% Peeel — Nz 1% Palerss
or the geometrical objects .AQZW and Agzwg iven by (43) and (47).
8! ] 6 Bys & Yy

Proof. The difference of L% — 1"%7 in the common reference system is the tensor,

ng = Lg,y 57 Hence, the next equations hold:

Poyls — Ppolss = PesPpy — PpoPey — PrsPper (54)
szﬂe - P@se = P@P@ - Pégpz;(s - Pgipfigf (55)
Plels — Ppelss = —7’,63;5{755 (56)
Plgele) ~ Plpelsa) = O (57)
L,€35|b‘ - rzem‘ = P§e|85 zpﬁﬁreér (58)
LieL§; = Tels; = ThePy + TocPi + PacPiys (59)
R%W - Rg%vo‘ = Pé‘lm P,Bb‘|87 + Pﬁv Pﬁﬂ’?yr (60)
0 0

Rpy = R8py = Phoise = Phejon + PﬁyPeg Pﬁéﬂe, 61)

0 0
Rigy) = R8[py) = ~Plaejs- (62)
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0 0
With respect to the expressions (54)—-(62) substituted in differences ng s — W8 %7 5

0 0
and Wg v~ Ww¢& g - together with the difference Lgl — Fgl = Pgl’ the proof of this theorem
is completed. O

4. Conclusions

In this research, we obtained different invariants for almost geodesic mappings of the
second type defined on symmetric affine connection spaces and on Riemannian spaces,
as well. The achieved results are as follows:

The results about invariants presented in [17] were reviewed. Through this review,
the general formula of invariants for mappings of symmetric affine connection spaces
was accentuated.

The review of results obtained in [17] was completed with the formula of invariants
with respect to mappings whose deformation tensor is expressed in the form (27). Together
with this formula, the definition of two types of invariants was reviewed [20].

One invariant of Thomas type and two invariants of Weyl type were obtained through
areview of results from [17,18]. As the main result of this research, one invariant of Thomas
type (the basic one) and two invariants of Weyl type (the basic and the derived ones) for
second type almost geodesic mappings of the type 71, were obtained.

The obtained invariants of Weyl type for second almost geodesic mappings were
totalled if and only if the mapping had the property of reciprocity. Otherwise, these
mappings were valued. The invariants of Thomas type for second type almost geodesic
mappings were totalled. It was the last result achieved in this research.

Using the difference AG, W8}, — AGy WS e = 0, the variation of Einstein tensor

1 _
Eyy = R&y, — 5 8uR3, 0Eyy = Eyy — Eyy, under the second type almost geodesic mapping

f : Ry — Ry could be obtained.

In this study, the transformation rules of self dual affine connections and the corre-
sponding transformation rules of affine connection coefficients and the corresponding
curvature tensors under second type almost geodesic mappings were analysed. In future
research, the analysis of invariants for second type almost geodesic mappings equipped
with the affine connection V and the corresponding dual affine connection V* defined
in [27,28] are going to be studied.
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