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Abstract: Currently, the decision boundary of the multi-class anomaly detection algorithm based on
deep learning does not sufficiently capture the positive class region, posing a risk of abnormal sample
features falling into the domain of normal sample features and potentially leading to misleading
outcomes in practical applications. In response to the above problems, this paper proposes a new
method called multi-class hypersphere anomaly detection (MMHAD) based on the edge outlier
exposure set and margin. The method aims to utilize convolutional neural networks for joint
training of all normal object classes, identifying a shared set of outlier exposures, learning compact
identification features, and setting appropriate edge parameters to guide the model in mapping
outliers outside the hypersphere. This approach enables more comprehensive detection of various
types of exceptions. The experiments demonstrate that the algorithm is superior to the most advanced
baseline method, with an improvement of 26.0%, 8.2%, and 20.1% on CIFAR-10 and 14.8%, 12.0%,
and 20.1% on FMNIST in the cases of (2/8), (5/5), and (9,1), respectively. Furthermore, we investigate
the challenging (2/18) case on CIFAR-100, where our method achieves approximately 17.4% AUROC
gain. Lastly, for a recycling waste dataset with the (4/1) case, our MMHAD yields a notable 22%
enhancement in performance. Experimental results show the effectiveness of the proposed model in
multi-classification anomaly detection.

Keywords: deep learning; multi-class anomaly detection; outlier exposure; convolutional neural
network

MSC: 68T10

1. Introduction

Anomaly detection (AD), i.e., the task of identifying irregular or unexpected patterns
in data, is a complex challenge in many applications, including autonomous driving [1],
safety monitoring [2], and industrial detection [3]. In an open-world environment, new
class distributions may emerge during testing, necessitating the development of classifiers
capable of detecting new class sample examples while maintaining high classification
accuracy for known class distributions. Given the wide range of anomalies, a common ap-
proach involves modeling the distribution of normal samples and subsequently identifying
abnormal samples through outlier detection [4,5]. However, to date, there is no practical
AD framework directly applicable to real-world image data [6–8]. Real-world datasets often
exhibit high dimensionality, noise, and heterogeneity, making it challenging to accurately
identify anomalies across multiple classes. Multi-class AD remains one of the most intricate
challenges within this domain. In multi-class AD, the distribution of data points across
classes is often highly imbalanced, with normal instances far outnumbering anomalous
ones and some anomalous classes being significantly rarer than others. Current multi-class
exception detection techniques often rely on individual models tailored to distinct object
classes [9,10]. Nevertheless, as the diversity of classes expands, this approach becomes
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increasingly resource-demanding and may significantly hinder computational efficiency.
The primary reasons for this limitation stem from the inherent flaws in the design of these
detectors. Firstly, the decision surface fails to align closely with the boundary of the positive
class region, leading to suboptimal detection performance, especially on datasets with
extensive variance. Secondly, the absence of an effective mechanism to discern samples
belonging to different classes often results in false-positive predictions [11–13], indicating
their inability to focus on the specific normal features that differentiate each class from
the rest.

Obtaining labeled data for anomalous classes can be expensive and time-consuming,
especially when dealing with rare or emerging anomalies. Unsupervised or semi-supervised
learning techniques are often employed, but they struggle to accurately differentiate be-
tween multiple anomalous classes. Hence, there lies a significant risk of abnormal sample
features being mistakenly classified as normal, particularly when the initial spatial configu-
rations of abnormal samples overlap with those of normal ones. Addressing this urgent
issue, a plethora of solutions have been devised and will be thoroughly examined in the
upcoming chapter. Notably, research by Hendricks et al. [14] underscores the substantial
enhancement in AD performance that can be achieved through the utilization of outlier
exposure (OE). To mitigate this hazard, it is indispensable to consider incorporating an
OE set, which effectively constrains outliers and modulates the boundary of the positive
feature space.

To address these issues, this paper proposes a novel deep multi-class hypersphere
AD algorithm (MMHAD) based on an edge OE set. It constructs a compact sphere that
encompasses the multi-class feature region and a parallel sphere that extends the outlier
exposure region outwards, maximizing the distance between the two parallel spheres. The
algorithm learns compact and discriminative features that encompass multiple normal
object categories embedded across multiple datasets. It minimizes the closed hypersphere
that encompasses multiple positive sample feature regions and controls the optimized
outlier exposure set features that lie outside this closed hypersphere. The framework
diagram of the algorithm is illustrated in Figure 1. The main contributions of this paper are
as follows:

• We design an innovative multi-class AD method, the multi-class hypersphere algo-
rithm grounded in edge OE sets and margin optimization. In the proposed model, we
use neural networks to learn the distribution changes of normal class and edge OE
sets, alleviate the problem of inter-class boundary overlap, and greatly improve the
performance of the classifier on typical databases.

• In addition, we use data enhancement to constrain outliers or control the boundaries
of positive feature regions, and we summarize a set of innovative steps to construct
and optimize OE sets in open set identification or AD, reduce the risk of existing AD
methods mapping abnormal sample features into normal sample feature domains,
and improve the generalization ability of anomaly detectors.

• By setting margin parameters to create a clear boundary between representations of
different categories, the model is motivated to map outliers or potential data points
that do not meet expectations far enough from the center of the category to improve
classification performance.

• We propose new extreme values for decision making. The decision threshold of most
other AD methods is artificially set according to experience.

The remaining sections of this paper are structured as follows: Section 2 outlines the
integration of common AD methods with data enhancement algorithms. In Section 3, a
comprehensive explanation of the proposed model, MMHAD, is provided. To validate the
efficiency and stability of the proposed algorithm, simulation tests on various datasets are
conducted in Section 4. In Section 5, the limitations of the algorithm are analyzed. Finally,
Section 6 presents the conclusions drawn from this study.
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Figure 1. The block diagram depicts a multi-class AD frame diagram, where green, blue, and
orange respectively represent normal samples of different categories, while red represents abnormal
samples. The proposed model learns a neural network transformation ϕ(·; W) from input space X
to output space F , aiming to minimize the closed hypersphere containing the feature region of the
positive sample while controlling the optimized anomalous exposure set feature outside the closed
hypersphere.

2. Related Work
2.1. AD

Previous methods for data description primarily relied on kernel-based approaches,
transforming data into high-dimensional feature spaces to capture intricate patterns and
nonlinear relationships [15–17]. However, when confronted with data stemming from
multiple distributions, each occupying a distinct niche in the feature space, a solitary hyper-
plane or hypersphere proves inadequate for comprehensively describing all distributions.
The representation learning ability of deep neural networks (DNNs) surpasses that of
kernel functions, making them a preferred choice for addressing the challenges posed by
large-scale and complex data distributions. Ruff et al. [18,19] extended the classic support
vector data description (SVDD) paradigm to deep SVDD, harnessing DNNs instead of
kernel methods to efficiently encapsulate the normality of high-dimensional data and learn
a latent representation that maps the normal class into a minimum-volume hypersphere.
Nevertheless, this advancement is not without its limitations [20,21]. It fails to ascertain
whether the derived features retain the crucial information of the data’s inherent structure,
thereby rendering it less suitable for intricate and dynamic datasets.

To address the challenges of processing large-scale datasets, Ghafoori et al. [22] intro-
duced deep multi-sphere SVDD (DMSVDD). Similarly, Goyal et al. [23] proposed deep
robust one-class classification (DROCC), leveraging a projection ascent technique centered
on the normal class to identify the most illustrative outliers and bolster the model’s ro-
bustness. Moreover, the essence of most AD techniques [24–28] lies in training individual
models tailored to distinct classes of objects. You et al. [29] introduced the unified model
for multi-class AD (UniAD), which leverages multiple one-class anomaly detectors jointly
to tackle the challenge of multi-class AD. However, as the number of classes proliferates,
relying on individual models for each object class becomes prohibitively resource-intensive,
placing a significant strain on computational resources and impeding direct applicability
to intricate real-world image scenarios. To alleviate this issue, Singh et al. [30] introduced
deep multi-class AD (Deep MAD), an innovative method that learns concise and discrimi-
native features across multiple normal object classes, thereby augmenting the efficacy of
multi-class AD while mitigating computational overheads.

The above algorithm alternately trains the neural network model and the traditional
classification model so that the parameters of the neural network are constantly updated in
the direction of improving the classification performance of the traditional classification
model, which gives full play to the representation learning ability of DNNs. Nonetheless,
these models, by solely focusing on training normal sample models, risk inadvertently
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admitting abnormal sample features into the normal sample feature space, which can ad-
versely affect classification accuracy and model performance. Our approach distinguishes
itself through its adept utilization of neural networks for intricate feature extraction, its
inventive strategy for assessing and refining model limitations via class-specific acceptance
regions, and its versatility in addressing a wide array of open-image datasets.

2.2. Integrated with Data Augmentation

The cornerstone of generative AD technology revolves around crafting abnormal
samples from target data and integrating them into classifier training to bolster the precision
of detecting anomalous class samples. However, the validity of the generated abnormal
samples remains a significant concern. A commonly adopted approach for learning the
distribution of normal class relies on image (or feature) reconstruction [31–35]. This method
assumes that a well-trained model consistently produces normal samples, disregarding any
imperfections in the input, which frequently results in a significant reconstruction error for
abnormal samples, thus posing challenges in distinguishing them from normal ones.

OE performs admirably when employed as an auxiliary abnormal dataset for train-
ing anomaly detectors with large-scale photos, garnering significant attention from both
academic and industrial researchers due to its broad applicability. Currently, numerous
scholars have delved into this realm of research. Liznerski et al. [36] introduced the fully
convolutional data description (FCDD) network, leveraging random samples from an aux-
iliary out-of-distribution (OOD) dataset to detect abnormal images and extract additional
semantic insights. However, the performance of FCDD is intimately tied to the diversity
and quality of its training data, with biases or shortcomings in the data potentially under-
mining the model’s generalization capabilities. Expanding on this, Ruff et al. [37] examined
the influence of OE data diversity on detection outcomes, emphasizing that OE techniques’
exceptional performance often hinges on their ability to access a vast and comprehen-
sive collection of auxiliary anomalous data. Kirchheim et al. [38] proposed multi-class
hypersphere AD (MCHAD), extending existing hypersphere learning methodologies to
accommodate the inclusion of example anomalies in the training process. Yet, MCHAD’s in-
tricate structure necessitates meticulous parameter tuning. Cevikalp et al. [39] introduced
the deep compact hypersphere (DCHS), utilizing random OE dataset samples as anomalous
data to demonstrate the enhanced robustness of their algorithm. Nonetheless, DCHS’s
training and inference processes demand substantial computational resources and time.
The selection of an exposure set presents a formidable challenge, as the appropriateness of
the exposure can significantly impact the accuracy of the AD algorithm. If the OE is not
representative, the AD algorithm may produce misleading results in practical applications.
If the distribution of the selected samples is similar to that of the normal class, it is easy for
the network to fail to train, or if the distribution characteristics of the normal samples are
not considered, it is easy to overfit, and the detection effect cannot be guaranteed.

3. Proposed Model

This section presents a comprehensive introduction to the proposed MMHAD model,
which aims to accurately and effectively perform multi-class AD on hyperspheres. First,
we provide a concise overview of DMSVDD, followed by an extensive description of the
proposed detectors and their theoretical properties.

3.1. DMSVDD

Deep-SVDD is not able to classify input samples into multiple classes given in training
data because it only focuses on detecting novel samples (or outliers) and does not utilize
class labels at all, so it cannot be directly applied to real, serious image scenes. Similar to
DSVDD, DMSVDD generates useful and discriminative features by embedding the normal
class with a multi-modal distribution into multiple data-enclosing hyperspheres with
minimum volume. Hence, the feature representations of the normal class are distributed
inside the hypersphere, while those of the anomalous data are distributed outside. Different
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from DSVDD, which uses a single hypersphere, DMSVDD allows multiple hyperspheres
to adapt to complex data distributions.

Let ϕ(·;W) be a DNN with the set of network parameters W = {W1, . . . , WL} and
the spherical boundary for class K be specified by its center C = {c1, · · · , cK} and radius
R = {R1, · · · , RK}. Given N training samples from K different classes, the loss function
expression is as follows:

min
W,R,c

1
K

K

∑
k=1

R2
k +

1
vn

n

∑
i=1

max
(

0,
∥∥ϕ(xi;W)− cj

∥∥2 − R2
j

)
+

λ

2

L

∑
l=1

∥∥∥W l
∥∥∥2

F
(1)

where cj is the cluster center assigned to ϕ(xj; W) using NPR, Rj > 0 is its corresponding
radius, ∥·∥2

F represents the Frobenius norm, v ∈ (0, 1] represents the weight parameter
that controls the proportion of outliers, and λ represents the weight parameter of the
regularization term. The first term minimizes the volume of hyperspheres, while the
second term penalizes for mapping points outside of the hyperspheres and is controlled
by parameter v. This parameter allows a fraction of points to be mapped outside the
hyperspheres to compensate for noisy instances or unknown anomalies in the training
data X.

3.2. Our Model

The increase in the number of classes has led to the use of separate models for different
object classes to solve multi-class AD tasks, which has become resource-intensive and
significantly impacts computing power. Therefore, our proposed method aims to identify
the common OE set of N normal classes, recognize shared anomaly characteristics among
different normal classes, and enhance computing efficiency and resource utilization. The
model simplified structure of MMHAD is illustrated in Figure 2.

Figure 2. Single hypersphere simplified structure of class y.
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Given training data X = {X1 ∪ X2∪, . . . ,∪Xk}, we first find the appropriate com-
mon exception exposure set DOE

out =
{

xq | q = 1, . . . , NOE
}

for K class, such that U =
{1, 2, . . . , k,∧} represents the normal classes K (1 to k) and a set of all exceptions labeled
as ∧. A general classifier assigns a probability to the probability P(u|x) that an image x
belongs to a set of u classes, where U ∈ 2u.

P(∧|x) = 1
N ∑

¬{1}∩¬{2}∩,...,∩¬{k}=∧

k

∏
i=1

Pi(¬i|x) (2)

which simplifies to

P(∧|x) = 1
N

k

∏
i=1

Pi(¬i|x) (3)

K = 1 − ∑
u1∩u2,∩...,∩uk

k

∏
i=1

Pi(ui|x) (4)

The training data of all k classes are combined and treated as a class, and our objective
function is as follows:

min
W,r,c

1
K

K

∑
k=1

R2
j +

1
N

N

∑
k=1

(
1

N − 1 ∑
k ̸=j,1≤k≤N

(
1

vnk
max

{
0,
∥∥∥ϕ
(

xk
i ;W

)
− cj

∥∥∥2
− R2

j

}))

+
1
N

N

∑
j=1

(
1

µNOE

NOE

∑
q=1

max
{

0,
(

Rj + mj
)2 −

∥∥ϕ
(
xq;W

)
− cj

∥∥2
})

+
λ

2

L

∑
l=1

∥Wl∥2
F

s.t
∥∥∥ϕ
(

xk
i ;W

)
− cj

∥∥∥2
≤ R2

j

s.t
∥∥ϕ
(

xq;W
)
− cj

∥∥2 ≥ Rj + mj
2

(5)

where N = |X1|+ |X2|+, . . . ,+|Xk| is the total number of normal class samples and is the
number of normal class i samples. 1

N R2
j is all j hypersphere volumes, the third term tries

to find a common set of anomalous exposures for N classes, the second term expects to
maximize the distance between normal classes, the exposure set radius is Rj + mj, and in
the inference process for class j, the point of distance is rejected.

Furthermore, the algorithm uses the nearest neighbor algorithm, where j = arg min∥∥ϕ(x;W)− cj
∥∥2 to assign the anomaly scores. Note that our proposed model finds the

optimal decision threshold if it is greater than the normal class, otherwise it is the abnormal
class. Any sample that falls outside the boundary hypersphere of this estimate is considered
an anomaly.

s(x) = Rj
2 −

∥∥∥ϕ
(

xi
k;W

)
− cj

∥∥∥2
(6)

For the backpropagation algorithm used in objective function optimization, the deep
network architecture can be set as a feed-forward neural network. Given a set of normal
samples (xi, y+) for 1 ≤ i ≤ N and a set of negative samples (xj, y−) for 1 ≤ j ≤ NOE as M,
the output target feed-forward neural network uses ϕ(x; W). The optimization formula can
be expressed as follows:

J(W, R, c) = J1(W, R, c) + J2(W, R, c) + J3(W, R, c) (7)

We define J1, J2, J3 as the follow formula:

J1(W, R, c) =
1
N

N

∑
j=1

R2
j +

λ

2

L

∑
l=1

∥ W l ∥2
F (8)
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J2(W, R, c) =
1
N

N

∑
k=1

1
N − 1 ∑

k ̸=j,1≤k≤N

1
vnk

max
{

0,
∥∥∥ϕ
(

xk
i ;W

)
− cj

∥∥∥2
− R2

j

}
(9)

J3(W, R, c) =
1
N

N

∑
j=1

1
µNOE

NOE

∑
q=1

max
{

0,
(

Rj + mj
)2 −

∥∥ϕ
(
xq;W

)
− cj

∥∥2
}

(10)

If we set Lin(W, R, c) = ∥ ϕ(xi; w) ∥2 − R2, we get

J2(W, R, c) =
1

vnj

N

∑
i=1

Lin(W, R, c, xnj , y+) (11)

J3(W, R, c) = − 1
µmq

NOE

∑
i=1

Lin(W, R, c, xmq , y−) (12)

where n1, n2, . . . , nj stands for N positive sample indices for which the function
Lin(W, R, c, x, y+) > 0, and m1, m2, . . . , m′

q is the index of N′
OE negative samples for which

the function Lout(W, R, c, x, y−) < 0. To minimize the objective function, we employ the
gradient descent method and update specific parameters as follows:

W l = W l − α
∂J(W, R, c)

∂W l = W l − α

(
1

vnk

nk

∑
i=1

∂Lin(W, R, c, xni , y+)
∂W l

+
1

µNOE

NOE

∑
q=1

∂Lout(W, R, c, xmq , y−)
∂W l

)
. (13)

Rl = Rl − α
∂J(W, R, c)

∂Rl = Rl − α

(
2R +

1
vnk

nk

∑
i=1

∂Lin(W, R, c, xnj , y+)

∂Rl

+
1

µNOE

NOE

∑
q=1

∂Lout(W, R, c, xmq , y−)
∂Rl

)
. (14)

cl = cl − α
∂J(W, R, c)

∂cl = cl − α

(
1

vnk

nk

∑
i=1

∂Lin(W, R, c, xnj , y+)

∂cl

− 1
µNOE

NOE

∑
q=1

∂Lout(W, R, c, xmq , y−)
∂cl

)
. (15)

During the model training procedure, we used the validation and repeated iteration
approach. We observed that setting mq =

√
d produces favorable outcomes in our ex-

periments, where d represents the dimensionality of the output space. Specifically, lower
margin values result in a more compact hypersphere and a more sensitive model to anoma-
lous samples, but they may also increase the false-positive rates. Conversely, a higher
margin value may decrease the false-positive rate but at the expense of some reduced
sensitivity to anomalous samples. Consequently, introducing a margin of mj around each
hypersphere with radius Rj serves to encourage the model to map anomalies to a distance
≥
√

d from all class centers; details of the experiment are given in the next section.

Theorem 1 (Influence theorem for common OE set). We assume that both the AD model based
on DSVDD and the AD model based on MMHAD have been successfully trained and achieved
an ideal state. Given that the positive class is uniformly distributed with training samples within
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a constrained region, the outlier exposure set is uniformly sampled from training samples in the
outlier distribution and the overlap region. Theoretically, the AD error rate of DSVDD is more than
twice that of MMHAD.

Proof. Assuming there are N positive test samples, NOE anomalous test samples, and 2nj
test samples in the overlap region, DSVDD may misclassify half or more of these samples
as anomalous (since they are uniformly distributed and the hypersphere of DSVDD may
not perfectly encompass the normal class). Therefore, the AD error rate of DSVDD is at

least
2nj

N+NOE
. In contrast, the AD error rate of MMHAD will be solely determined by the

number of anomalous samples it incorrectly classifies as normal. Thus, the error rate of
MMHAD does not exceed

nj
N+NOE

.

In summary, under ideal conditions, the error rate of the AD modeling method with
abnormal exposure set participation is lower than that of the AD modeling method without
abnormal exposure set participation. Furthermore, we summarize an innovative set of
steps to optimize OE sets in open set identification or AD as follows.

Step 1. First, we add 1/3 noise samples to the positive sample set to achieve positive
sample set enhancement.

Step 2. Second, we increase the image with 2/3 noise of each positive sample image
to enhance the negative class sample set. The negative class sample set can be enhanced by
increasing the upper, lower, left, and right 2/5 images of each positive sample image (corre-
sponding to the lower, upper, right, and left 3/5 images, respectively).

Step 3. In addition, owing to the complex image background environment of the
CIFAR-10 dataset, not all samples are suitable for this operation. For instance, the sample
of birds is relatively small.

Step 4. Finally, we increase the tightly packed point set of the positive class sample set
(using the tightly packed point set to learn the generation algorithm and alternate training
algorithm) to enhance the negative class samples.

4. Experiment
4.1. Datasets

We performed experiments utilizing benchmark datasets, namely, FMNIST [40],
CIFAR-10 [41], CIFAR-100 [41], and RECYCLE [42]. The characteristics of each dataset
are outlined as follows: (1) The FMNIST dataset comprises 70,000 grayscale images, each
with dimensions of 28 × 28 pixels. It encompasses 10 distinct commodity categories, with
60,000 images allocated to the training set and 10,000 images reserved for testing. (2) The
CIFAR-10 dataset features 10 distinct object classes, totaling 60,000 color images, each with
dimensions of 32 × 32 pixels. Of these, 50,000 images belong to the training set, while the
remaining 10,000 images constitute the test set. (3) Analogous to CIFAR-10, CIFAR-100
also contains 60,000 color images, each measuring 32 × 32 pixels, but across 100 different
categories. Notably, each image in CIFAR-100 is associated with both a coarse-grained label
and a fine-grained label, with the coarse-grained tag encompassing 20 superclasses. (4) The
RECYCLE dataset comprises 11,500 color images of 32 × 32 pixels across five categories,
with 2300 images in each category. Among them, 10,000 images are used for training and
1500 images are reserved for testing.

4.2. Evaluation Metrics

Most ADs only use the AUROC (area under receiver operating characteristic curve)
as an evaluation index, which cannot objectively evaluate the difference between known
instances and outliers. To comprehensively evaluate the overall classification of the model,
this section considers multiple indicators FPR95, AUPR, and ACCURACY to reveal the
accuracy of the model in different aspects.
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4.3. Benchmark Model

We conducted a comparative analysis to assess the performance of five algorithms:
DROCC, DROCC (m), DeepSVDD, DeepSVDD (m), and DeepMAD. For each dataset,
images corresponding to classes 2, 5, and 9 in CIFAR-10 and FMNIST were designated
as normal classes, whereas images belonging to the remaining classes were categorized
as abnormal classes. For all DROCC experiments, we utilized the following parameters:
radius r = 8, µ = 1, learning rate lr = 0.001, ascent step t = 0.001, and the Adam optimizer.
The parameter settings for DeepSVDD included η = 1, learning rate lr = 0.0001, and also
employed the Adam optimizer. Similar to previous experiments, MMHAD used the Adam
optimizer to train the model for 100 epochs while dynamically adjusting the learning rate
at each milestone using a learning rate scheduler. At each milestone, the learning rate
was multiplied by a factor of γ = 0.1 to gradually decrease it and facilitate more stable
convergence in later stages of training. Specifically, in the case of (2/8) scenarios, there
exist 45 combinations; for (5/5) scenarios, there are 252 combinations; and in the case
of (9/1) scenarios, there are 10 combinations. Regarding CIFAR-100, our focus was on
studying scenarios encompassing 20 superclasses with a ratio of (2/18). Section 4.5 presents
a comprehensive evaluation of the AUROC performance of various algorithms across
diverse datasets, emphasizing the results achieved by the top-performing algorithms. It is
worth mentioning that the benchmark dataset results have been sourced from [Deep MAD].
During the training phase, only the normal class from the original training set and the edge
OE set were utilized to train various AD methods. Subsequently, during the testing phase,
test sets derived from each original dataset were employed to assess the performance of
the trained AD methods.

4.4. Environment and Configuration

On a server with two Intel Xeon E5-2630 v3 2.40 GHz CPUs, 188 GB memory, GTX1660
Ti with 6 GB GPU memory, and CentOS Linux 7 (Core) operating systems, Python 3.8.13,
Pytorch 1.11.0, NVIA-SMI 460.84, Driver Version: 460.84, CUDA Version 11.2, etc., were
used for category quantitative analysis and ablation experiments.

4.5. Results and Analysis

Tables 1–3 present observations on the AUROC values achieved by five algorithms
across CIFAR-10, FMNIST, CIFAR-100, and RECYCLE datasets. (1) Evidently, the AUROC
value of the combined training across all categories typically surpasses that of training on a
single category alone, indicating that multi-category training enhances the model’s gen-
eralization capability and recognition accuracy. (2) A close examination of Tables 1 and 2
reveals that among all tested algorithms, the MMHAD algorithm emerges as the top per-
former in various scenarios. Specifically, in instances such as (2/8), (5/5), and (9/1), the
algorithm boasts improvements of approximately 26.0%, 8.2%, and 20.1% on the CIFAR-10
dataset and similar gains of 14.8%, 12.0%, and 20.1% on FMNIST, respectively. These
remarkable enhancements not only substantiate the efficacy of the MMHAD algorithm in
handling unbalanced datasets but also showcase its potent feature extraction and classifica-
tion capabilities. (3) From Table 3, it is evident that our algorithm achieves a remarkable
improvement of approximately 17.4% in AUC value on the CIFAR-100 dataset compared
to other algorithms. This accomplishment stands out particularly as CIFAR-100, a complex
image recognition benchmark comprising 100 categories, poses a significantly higher classi-
fication challenge than the commonly used CIFAR-10 dataset. This demonstrates the robust
discriminative capability of MMHAD when dealing with images featuring a large number
of categories and highly similar characteristics. Furthermore, the staggering 22% increase
in AUC value on the RECYCLE dataset underscores the superiority of our algorithm in
tackling tasks within specific domains, such as recycling item recognition. The RECYCLE
dataset, focused on recycling items, presents a unique challenge with substantial variations
in appearance, shape, and color among these items, yet it also harbors numerous subtle
similarities that complicate the recognition process. Our algorithm’s ability to accurately
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discern these minute differences underscores its excellence in handling the intricacies of
specialized domains.

Table 1. AUROC range for CIFAR-10 (10 repetitions for each).

Methods Two in, Eight out Five in, Five out Nine in, One out

DROCC 0.4728 ± 0.0119 ↔ 0.7252 ± 0.0081 0.4316 ± 0.0257 ↔ 0.7219 ± 0.0039 0.4107 ± 0.0454 ↔ 0.7146 ± 0.0079
Mean 0.5990 0.5753 0.5627

DROCC (m) 0.4216 ± 0.0424 ↔ 0.6912 ± 0.0188 0.3806 ± 0.0047 ↔ 0.7023 ± 0.0648 0.3439 ± 0.1034 ↔ 0.6896 ± 0.0453
Mean 0.5564 0.5415 0.5168

DSVDD 0.4216 ± 0.0424 ↔ 0.6912 ± 0.0188 0.3806 ± 0.0047 ↔ 0.7023 ± 0.0648 0.3439 ± 0.0134 ↔ 0.6896 ± 0.0453
Mean 0.5990 0.5753 0.5627

DSVDD (m) 0.4147 ± 0.0129 ↔ 0.7516 ± 0.0093 0.3482 ± 0.0123 ↔ 0.6909 ± 0.0133 0.3580 ± 0.0166 ↔ 0.5864 ± 0.0167
Mean 0.5832 0.5196 0.4722

DMAD 0.5396 ± 0.0031 ↔ 0.7647 ± 0.0014 0.4929 ± 0.0046 ↔ 0.7738 ± 0.0022 0.5437 ± 0.0028 ↔ 0.7230 ± 0.0084
Mean 0.6522 0.6334 0.6359
Ours 0.8384 ± 0.0139 ↔ 0.9863 ± 0.0104 0.5020 ± 0.0081 ↔ 0.9291 ± 0.0194 0.8049 ± 0.0128 ↔ 0.8687 ± 0.0075
Mean 0.9124 0.7156 0.8368

Table 2. AUROC range for F-MNIST (10 repetitions for each).

Methods Two in, Eight out Five in, Five out Nine in, One out

DROCC 0.6873 ± 0.0937 ↔ 0.9774 ± 0.0049 0.5738 ± 0.0397 ↔ 0.9260 ± 0.0307 0.5408 ± 0.0961 ↔ 0.8247 ± 0.0507
Mean 0.8161 0.7448 0.6992

DSVDD 0.6622 ± 0.0502 ↔ 0.9871 ± 0.0033 0.5438 ± 0.0274 ↔ 0.9279 ± 0.0325 0.4551 ± 0.0285 ↔ 0.8825 ± 0.0137
Mean 0.8538 0.7269 0.6523

DMAD 0.6434 ± 0.0640 ↔ 0.9714 ± 0.0011 0.5732 ± 0.0485 ↔ 0.8832 ± 0.0137 0.4860 ± 0.0267 ↔ 0.9395 ± 0.3466
Mean 0.8329 0.7739 0.7613
Ours 0.9651 ± 0.0030 ↔ 0.9993 ± 0.0004 0.7955 ± 0.0179 ↔ 0.9914 ± 0.0009 0.9510 ± 0.0175 ↔ 0.9896 ± 0.0071
Mean 0.9807 0.8935 0.9703

Table 3. AUROC range for CIFAR-100 and RECYCLE (10 repetitions for each).

CIFAR-100 RECYCLE

Method Two in, Eighteen out Four in, One out

DROCC 0.3548 ± 0.0006 ↔ 0.7325 ± 0.0971 0.4447 ± 0.0176 ↔ 0.7997 ± 0.0719
Mean 0.5638 0.6128

DSVDD 0.4192 ± 0.0077 ↔ 0.7185 ± 0.0180 0.3703 ± 0.0207 ↔ 0.8728 ± 0.0079
Mean 0.5559 0.5791

DMAD 0.5384 ± 0.0018 ↔ 0.8213 ± 0.0012 0.5906 ± 0.0035 ↔ 0.8283 ± 0.0073
Mean 0.6580 6966

MMHAD 0.7366 ± 0.0125 ↔ 0.9279 ± 0.0106 0.8897 ± 0.0163 ↔ 0.9441 ± 0.0036
Mean 0.8323 0.9169

The AUROC objectively assesses the difference between known and abnormal in-
stances but ignores the accuracy of correctly identifying known categories. The same
experimental settings were used to evaluate the detection performance, including AUPR,
FPR95, and ACCURACY indexes as shown in Table 4. Three other performance indicators
for different combinations of normal classes are presented. MMHAD shows similar overall
performance in CIFAR-10 and FMNIST. When there are only 2 normal classes, the classifier
can more easily distinguish between them, leading to optimal overall classification perfor-
mance. When there are only two normal classes, the classifier can distinguish them more
easily, resulting in the best overall classification performance. However, when there are five
normal classes, the complexity of the model makes it difficult for the classifier to accurately
distinguish between them, leading to a decrease in accuracy. With nine normal classes,
although there is a slight decrease in performance indicators such as AUROC, AUPR, and
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FPR95 due to increased model complexity, the accuracy remains high as most samples can
be correctly classified. Since CIFAR-100 contains more classes, the model’s performance,
especially FPR95, declines compared to CIFAR-10, but it still maintains a high AUPR and
accuracy. The performance on the RECYCLE dataset is between CIFAR-10 and CIFAR-100,
with fluctuations in AUPR, FPR95, and accuracy, but the overall performance is good.

Table 4. AUPR, FPR95, and accuracy range for CIFAR-10, FMNIST, CIFAR-100 and RECYCLE
(10 repetitions for each).

Datasets Case AUPR FPR95 ACCURACY

CIFAR-10 2/8 0.9508 ↔ 0.9962 0.5642 ↔ 0.6410 0.8348 ↔ 0.9610
5/5 0.5047 ↔ 0.9069 0.9358 ↔ 0.4392 0.5002 ↔ 0.8705
9/1 0.5518 ↔ 0.6243 0.4100 ↔ 0.3440 0.8997 ↔ 0.9313

F-MNIST 2/8 0.9883 ↔ 0.9998 0.1941 ↔ 0.2600 0.9327 ↔ 0.9914
5/5 0.7832 ↔ 0.9869 0.6912 ↔ 0.0286 0.4999 ↔ 0.9620
9/1 0.7002 ↔ 0.9440 0.3040 ↔ 0.6300 0.9227 ↔ 0.9773

CIFAR-100 2/18 0.9538 ↔ 0.9884 0.7793 ↔ 0.4130 0.9046 ↔ 0.9459

RECYCLE 4/1 0.8666 ↔ 0.6887 0.5167 ↔ 0.2433 0.8360 ↔ 0.9187

Table 5 presents the results of the Friedman test, comparing and analyzing the perfor-
mance of four different methods in this study in the case of (2/8) on CIFAR-10. Specifically,
the median response rates for DROCC and DSVDD were relatively low at 0.595 and 0.573,
respectively, suggesting similar and relatively weak performance under test conditions.
In contrast, the median response rate for DMAD increased to 0.669, indicating some im-
provement in performance but with limited impact. The MMHAD method exhibited the
highest median response rate at 0.897 with a small standard deviation (0.039), signifying
significantly better performance compared to the other three methods with stable results.
Cohen’s F-number, serving as a measure of effect size, quantitatively indicates differences
between methods. In this study, it was calculated as 1.902; this number is considered
significant when exceeding 0.4 according to general belief.

Table 5. Analysis results of Friedman test in 2-in, 8-out case on CIFAR-10.

Methods Total Median Standard Statistic p Cohen’s f

DROCC 45 0.595 0.080

122.947 0.000 *** 1.902DSVDD 45 0.573 0.093
DMAD 45 0.669 0.050

MMHAD 45 0.897 0.039
Note: *** represent significance levels of 1%.

4.6. Category Quantity Analysis

When addressing class imbalance, it is crucial to ensure that the classifier maintains
high performance even when there is a significant variation in the number of samples
from different classes. Imbalanced classification tends to result in the classifier favoring the
prediction of the class with a larger sample size. This section provides a detailed discussion
of the ability of the MMHAD algorithm to address class imbalance.

Figure 3 presents a scatter plot depicting all 45 combinations of five algorithms under
normal category conditions. The observed combination of different categories can have
a substantial impact on classifier performance when sorted from smallest to largest. Par-
ticularly when one category has significantly more samples than others, there may be a
bias toward predicting the category with more samples. Compared with the benchmark
algorithm, MMHAD can reach or exceed the AUROC value of 0.8 under most category
combinations, which indicates that it has higher accuracy and reliability in classification
tasks. MMHAD notably diminishes the influence of normal class combinations on AUROC
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values. Figure 4 illustrates AUROC values for both the top and bottom 10 cases under
normal conditions for all five categories. It was observed that our algorithm showed sig-
nificant advantages. In particular, the AUROC values of our algorithm exhibit extremely
low variance, more effectively suppressing the effects of noise and outliers. It can maintain
stable performance under different category combinations and can adapt to different data
distributions and category combinations. Our algorithm indicates its capability to learn
robust recognition features, map the inner points to the low-dimensional output space, and
reduce the computational complexity.

Figure 3. Two-in and eight-out case on CIFAR-10.

Figure 4. Five-in and five-out case on CIFAR-10.

Due to considerable variations in the time costs of different methods, we take loga-
rithms of the training results to ensure consistent visualization in a single plot. Figure 5
illustrates that, from a temporal perspective, the proposed method demonstrates higher
computational efficiency when dealing with a small number of categories. However, as the
number of categories increases, there is a significant rise in training time due to the model’s
need to acquire more internal representations and boundaries for handling numerous target
categories, thereby increasing the computational load. In all three scenarios, test times
were relatively short (ranging from 0.556 to 1.578 s) and did not exhibit substantial growth
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with an increase in classes. This can be attributed to the fact that testing primarily involves
forward propagation, which is significantly less computationally intensive compared to
backpropagation and parameter updating during training, thus affirming that the model
can swiftly classify new samples or detect anomalies post-training.

Figure 5. The training and testing times of different cases on CIFAR-10.

4.7. Ablation Experiment

To demonstrate the influence of hyperparameters on our AD approach, we conducted
ablation studies on the CIFAR-100 dataset, specifically focusing on the validation of the
edge OE set and margin parameters. The first two rows of Table 6 show the significant
enhancement of the detection performance metrics after the inclusion of the edge OE set.
AUROC increased by 10.42%, AUPR increased by 5.12%, FPR95 decreased by 32.33%,
and ACCURACY increased by 1.89%. Notably, FPR95 experienced a substantial decline,
indicating a reduction in false positives during m AD tasks. Furthermore, the adjustment
of the margin parameters is aimed at optimizing the decision boundary of the model to
better distinguish between normal and abnormal samples. It can be observed that AUROC
increased by 4.82%, AUPR increased by 0.94%, FPR95 increased by 1.01%, and ACCURACY
increased by 0.58%. FPR95 is an indicator measured at a specific TPR (typically 95%) that
can be very sensitive to small changes in the model’s decision boundaries. Therefore,
even if the adjustment of margin parameters brings about an improvement in the overall
performance of the model, FPR95 may show a different trend from other indicators because
of this sensitivity.

Table 6. Ablation was performed on CIFAR-100 (10 repetitions for each).

µ m AUROC AUPR FPR95 ACCURACY

× × 0.5384 ↔ 0.8213 0.8805 ↔ 0.9405 0.9411 ↔ 0.8777 0.9000 ↔ 0.9008
✓ × 0.6613 ↔ 0.9068 0.9397 ↔ 0.9837 0.6913 ↔ 0.4808 0.9001 ↔ 0.9388
✓ ✓ 0.7366 ↔ 0.9279 0.9538 ↔ 0.9884 0.7793 ↔ 0.4130 0.9046 ↔ 0.9459

Note: × indicates that the method was not used in the experiment, ✓ indicates that the method was used in the
experiment.

4.8. Hyperparameter Analysis

Figure 6 demonstrates the influence of different values of the trade-off parameters µ
and m on the MMHAD performance on the CIFAR-10 dataset. Note that the algorithm
selects the mean of the 9/1 case, with each experiment repeated 10 times. To compre-
hensively investigate the impact of parameters u and m while keeping other parameters
constant, we systematically varied each variable within a predetermined range, often based
on experience or cross validation.
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Figure 6. Sensitivity analysis with µ, m in terms of AUROC, AUPR, FPR95, and ACCURACY on
CIFAR-10. (a) The effect of different values of µ; (b) The effect of different values of m.

µ controls the loss contribution of anomalous (or outlier) samples. The shape of the
enclosing sphere tightens as µ decreases. As observed in Figure 6a, choosing an excessively
small value for µ can lead to overfitting, where some normal samples are mistakenly
classified as anomalous, increasing the error rate. When µ is set to an optimal value,
MMHAD achieves the best test results across almost all evaluation metrics. The impact
of different values of the trade-off parameter m on MMHAD’s performance is shown in
Figure 6b. m defines the safety margin between the hypersphere for normal samples and
the potential anomaly region. The margin m is a key parameter balancing sensitivity to
anomalies and the risk of false positives. When m is set to its optimal value, all metrics
achieve the best performance. A smaller margin value makes the hypersphere more
compact, making the model more sensitive to outlier samples but potentially increasing the
false-positive rate. Conversely, a larger margin value can reduce the false-positive rate but
may sacrifice some sensitivity to anomalous samples. By systematically tuning µ and m,
we can gain insight into how these parameters influence the model’s performance and find
optimal values that balance these competing objectives.

5. Discussion

The algorithm demonstrates various advantages, yet it also encounters certain limita-
tions. Firstly, employing convolutional neural networks to train all normal classes collec-
tively enables the learning of compact distinguishing features. However, this approach may
have high computational complexity, particularly when dealing with large-scale datasets
or multi-class tasks. Secondly, while MMHAD focuses on abnormal samples at the class
boundary, it may not effectively detect such samples when encountering new and unknown
classes. In practical applications, significant differences among normal samples from differ-
ent classes could pose challenges for accurately capturing class boundaries. The current
network architecture may not be optimal for handling specific data types or exceptions.
Future work should contemplate the introduction of a dynamic margin, which can flexibly
adjust the boundary position by altering data distribution, and facilitate capturing the
boundary between normal and abnormal samples more precisely, thereby enhancing the
detection accuracy. However, how to maintain the stability of the dynamic margin and
prevent its excessive fluctuation or premature convergence constitutes a key issue. Unstable
margins might result in fluctuations in model performance and impact the final detection
outcome, thereby increasing the complexity and computational cost of the model. All in
all, future studies can ameliorate and optimize these limitations to enhance the model’s
performance, generalization, and practicability.

6. Conclusions

The primary contribution of this paper lies in proposing a novel deep multi-class
hypersphere-based AD method (MMHAD) that incorporates an edge OE set and margin.
This method effectively addresses the issue of traditional multi-class AD algorithms where
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the decision boundary does not closely align with the boundary of the normal sample
region. By studying the embedding of multiple normal object classes into various datasets
under the constraint of an OE set that encompasses class boundaries, MMHAD learns a
discriminative latent space to distinguish between normal and abnormal samples. Normal
samples are tightly clustered within their respective hyperspheres, while abnormal samples
are pushed outside these hyperspheres. Additionally, by introducing a margin parameter,
MMHAD further enhances the model’s ability to reject anomalous values, ensuring that
abnormal samples are effectively mapped outside the hyperspheres, thereby improving
the accuracy and robustness of AD. Experimental results demonstrate that MMHAD
exhibits significant performance improvements across multiple benchmark datasets and
under different class settings, validating its effectiveness and practical value in multi-class
AD tasks.
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