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Abstract: In this paper, we propose a discrete Hamilton–Jacobi theory for (discrete) Hamiltonian
dynamics defined on a (discrete) contact manifold. To this end, we first provide a novel geometric
Hamilton–Jacobi theory for continuous contact Hamiltonian dynamics. Then, rooting on the discrete
contact Lagrangian formulation, we obtain the discrete equations for Hamiltonian dynamics by the
discrete Legendre transformation. Based on the discrete contact Hamilton equation, we construct a
discrete Hamilton–Jacobi equation for contact Hamiltonian dynamics. We show how the discrete
Hamilton–Jacobi equation is related to the continuous Hamilton–Jacobi theory presented in this
work. Then, we propose geometric foundations of the discrete Hamilton–Jacobi equations on contact
manifolds in terms of discrete contact flows. At the end of the paper, we provide a numerical example
to test the theory.
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1. Introduction

This work lies at the intersection among the geometric Hamilton–Jacobi (abbreviated as
HJ) theory, discrete dynamics and contact geometry. An HJ theory for discrete Hamiltonian
dynamics on contact manifolds was missing in the literature, which is why our aim in
this work is to fill this gap by introducing a discrete HJ equation for discrete contact
Hamiltonian dynamics. Additionally, we shall examine the geometric foundations of the
discrete HJ equation. Accordingly, we shall propose a geometric discrete HJ theorem in the
contact framework.

The Hamilton–Jacobi equation was first given for classical and continuous Hamiltonian
dynamics on symplectic manifolds [1,2]. More recently, a geometrization of the HJ equation
was established in [3] and later in [4]. Let us stress that by geometrization, we mean
the process of expressing the equation in a coordinate-independent form, which entails
representing the equation by associating it with specific objects and relationships on the
appropriate manifolds.

Long story short, the Hamilton–Jacobi equation (HJ equation) is a formulation of
classical mechanics equivalent to other formulations, such as Newton’s equations, or La-
grangian or Hamiltonian mechanics. Our particular choice of the HJ theory to solve the
dynamics is rooted in its particular use, for the identification of conserved quantities, of a
mechanical system [2], as well as symmetries. The HJ theory is mediated by a generating
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function, which is key to proposing canonical transformations and a connection to quantum
mechanics. Another interesting aspect of the HJ formulation is that generating functions
provide transformations which allow us to inspect the integrability properties of the dy-
namics by using action angle coordinates. Let us take the triple (T∗Q, ω, H), where T∗Q is
our 2n-dimensional phase space, ω is a non-degenerate (0, 2)-skew-symmetric tensor (the
canonical symplectic form) and h plays the role of a Hamilton function on M.

The standard formulation of the Hamilton–Jacobi theory (HJ theory) consists on
finding a function S(t, qi), known as the generating function, such that

∂S
∂t

+ H
(

qi,
∂S
∂qi

)
= 0, (1)

where H = H(qi, pi) is the Hamiltonian function of the system. If the function S is separable
in space and time,

S = W(q1, . . . , qn)− Et (2)

where E is the total energy of the system; Equation (1) can be rewritten as [2,5]

H
(

qi,
∂W
∂qi

)
= E. (3)

Equations (1) and (3) are the so-called t-dependent and time-independent Hamilton–
Jacobi equations, respectively.

The Hamilton–Jacobi equation is a useful instrument to solve the dynamics of the
system. Indeed, solving 

q̇i =
∂h
∂pi

,

ṗj = − ∂h
∂qj .

(4)

is equivalent to solving (3). Indeed, if we find a solution W of (3), then any solution of (4)
gives a solution to the Hamilton equations by taking pi = ∂W/∂qi.

If we aim at formulating the HJ equation from a geometric point of view, the primordial
observation is that if a Hamiltonian vector field XH can be projected into the configuration
manifold by means of a one-form dW, then the integral curves of the projected vector field
XdW

H can be transformed into integral curves of XH provided that W is a solution of (3) [4,6–8].

E

π

��

XH // TE

Tπ

��
N

dW

<<

XdW
H // TN

Depending on the choice of E, we will be constructing different HJ theories on different
types of manifolds. For instance, if E = T∗Q, we retrieve the classical HJ equation on a
symplectic manifold (3). The diagram above can be reformulated on a contact manifold, a
cosymplectic manifold, a discrete symplectic manifold, etc. [9–18]. We refer to two recent
surveys [19,20] (and references therein) for a contemporary view of the current geometric
HJ theory.

In this paper, we will develop an HJ theory for discrete contact mechanics. In the
discrete realm, the formulation could be constructed with the aid of a commutative diagram
like the one above or by finding a generating function that renders the dynamics trivial.
Since the definition of discrete vector fields is not straightforward, not to say very little
studied, we will make use of the second approach.
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Concerning the discrete formulation of mechanics, in recent years, there has been a
growing trend in providing proper discrete analogs of continuous differential equations
and designing numerical methods adapted to the type of discretization pursued, as well as
the type of differential equations that are dealt with. Numerical methods have shown their
utility in solving equations that cannot be managed analytically [21,22].

Discretizing a Hamilton–Jacobi formulation is essential for practical computations, es-
pecially in complex systems where analytical solutions are not feasible. It enables numerical
simulations, optimization and control; preserves geometric properties; and facilitates the
study of both classical and quantum systems. Through various discretization techniques,
the Hamilton–Jacobi formulation can be adapted to computational methods, making it a
powerful tool in scientific and engineering applications. For example, many modern con-
trol systems, such as those in robotics, aerospace and automotive applications, use digital
controllers. These controllers operate on discrete-time signals, making the discretization of
continuous-time models necessary.

In the branch of geometric mechanics, we deal with a plethora of geometric structures
that provide different underlying geometric properties to dynamical systems. This is why
when one discretizes a dynamical system, one has to make sure that the discretization
is compatible with the geometric structure and that we are applying specific methods
that preserve the geometric structure. These specific methods are known as geometric
integrators [23,24]. For example, in classical mechanics, there exist numerical methods
that preserve the symplectic structure when one works on a phase space [25,26], and
other methods are energy-preserving numerical methods [27], momentum-preserving
methods [28], etc. Here, we will use very simple numerical integration techniques, as it is
the explicit Euler method. The stiffness of our HJ equations has widely varying timescales
than can lead to numerical instability if the step size is not chosen appropriately, which is
why we carefully chose step sizes in our numerical examples.

Contact geometry is a popular theme in the recent literature, being widely used to
describe mechanical dissipative systems, dissipative field theories and generalizations
of the Hamilton principle [29–35]. Some of the main uses of contact geometry and its
main characteristics can be consulted in [36]. The dissipative character of the formalism
provides an important geometric foundation for irreversible dynamics, especially thermo-
dynamics. Here is an incomplete list of works related to contact mechanics and its role in
thermodynamics [37–42].

To propose a discrete Hamilton–Jacobi theory on a contact manifold as we shall, one
needs to first review the discrete formulation of mechanics on the Lagrangian side [43]. This
leads to the discretization of Lagrangian and Hamiltonian systems, as well as the variational
principles for dynamical systems and principles of critical action on both the tangent and
cotangent bundle [44,45]. Such discretizations have led to discretized versions of Noether’s
theorem, Legendre transformations, infinitesimal symmetries, etc. The discretization of
the Hamiltonian formulation has given rise to optimal control problems by developing
a discrete maximum principle that yields discrete necessary conditions for optimality.
Furthermore, discrete Hamiltonian theories have been particularly useful in distributed
network optimization and derivation of variational integrators [46]. The geometry of the
space is also key to performing better discretizations. For this matter, it is important to
rely on symmetries and invariants of the geometric space [47]. In this work, we preserve
the contact structure under discretization. Some very recent works addressing discrete
Lagrangian and Hamiltonian dynamics on contact settings are [48–52]. In these works, one
can see the discrete generalized Lagrangian (Herglotz) dynamics on the extended tangent
bundle as well as the discrete Hamiltonian dynamics on a contact manifold. Since these
works are fundamental for the present study, we shall give a quick review of the theories in
the main body of the paper.

We refer to [53] for the discrete HJ equation on a symplectic manifold. In [53], the HJ
equation is derived by employing discrete symplectic flows. In the present work, in similar
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fashion, we extend this discussion to contact geometry. The role of the discrete symplectic
flows will be played by discrete contact flows analogously.

More recently, in [11], the geometrization of the discrete HJ equation in [53] has been
established in the symplectic category. In this regard, it is possible to consider the present
work as a continuation or an extension of the works [11,53] to contact geometry and
discrete contact Hamiltonian dynamics. In the present paper, we both derive the discrete
HJ equation on contact manifolds and then proceed with its geometrization.

The main body of this work contains three sections. In the upcoming section, Section 2,
we shall first review the fundamental principles of contact manifolds as well as Lagrangian
and Hamiltonian dynamics on contact manifolds, in order to fix the notation. In Section 2.4,
we shall provide an HJ theorem for contact Hamiltonian dynamics. We shall start Section 3
by presenting discrete Lagrangian and Hamiltonian contact dynamics. In Section 3.3, we
shall present our main result, which is a Hamilton–Jacobi equation for discrete contact
Hamiltonian dynamics. We shall prove this result in terms of discrete contact flows. In
Section 3.4, a geometrization of the HJ is provided. In Section 4, we conclude this work by
proposing a numerical example applied to the well-known parachute equation in contact
dynamics. To avoid mathematical conflict and without loss of generalization, we assume all
objects to be smooth and globally defined unless stated otherwise. Manifolds are connected
and differentiable.

2. Fundamentals of Continuous Contact Dynamics

In this section, we first recall briefly the main definitions and results of the theory of
Lagrangian and Hamiltonian dynamics on contact manifolds following [29,31,32]. Later,
we introduce a geometric Hamilton–Jacobi theory for Hamiltonian dynamics on contact
manifolds. This novel theorem will be the continuous version of the discrete HJ theorem
that will be presented in the upcoming section.

2.1. Contact Manifolds

We call a contact manifold a pair (M, η), where M is an odd-dimensional manifold, say,
(2n + 1)-dimensional, with a contact form η, i.e., a one-form on M such that η ∧ dηn ̸= 0 is
a volume form. This type of manifold has a distinguished vector field, the Reeb vector field
R, which is the unique vector field that satisfies the following two identities:

iRdη = 0, η(R) = 1. (5)

There exists a Darboux coordinate system (q, p, s) = (qi, pi, s) on M (with i ranging from
1 to n) such that the contact one-form reads

η = ds − p · dq. (6)

In these coordinates, we have R = ∇s = ∂/∂s. This local observation provides an example
of a contact manifold as the extended cotangent bundle(

T∗Q ×R, η = ds − θQ
)

(7)

where θQ is the pullback of the tautological one-form of T∗Q.
Musical morphisms. For a contact manifold (M, η), there is a musical isomorphism

♭ : TM −→ T∗M, v 7→ ιvdη + η(v)η. (8)

This mapping takes the Reeb field R to the contact one-form η. We denote the inverse of
this mapping by ♯. Referring to this, we define a bivector field Λ on M as

Λ(α, β) = −dη(♯α, ♯β). (9)
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Then, referring to Λ, we introduce the following musical mapping:

♯Λ : T∗M −→ TM, α 7→ Λ(α, •) = ♯α − α(R)R. (10)

Evidently, the mapping ♯Λ fails to be an isomorphism. Notice that the kernel is spanned by
the contact one-form η.

Legendrian submanifolds. Let (M, η) be a contact manifold. Recall the associated
bivector field Λ defined in (9). Consider a linear subbundle Ξ of the tangent bundle TM
(that is, a distribution on M). We define the contact complement of Ξ as

Ξ⊥ := ♯Λ(Ξo), (11)

where the sharp map on the right-hand side is the one in (10) and Ξo is the annihilator of Ξ.
We say that N is Legendrian if TN⊥ = TN.

Consider the contact manifold T∗Q ×R in (7), and let W be a real valued function on
the base manifold Q. Its first prolongation is

J1W : Q −→ T∗Q ×R, q 7→
(
q, Wq, W(q)

)
, (12)

where Wq = dW(q). The image space of the first prolongation J1W is a Legendrian
submanifold of T∗Q ×R. The converse of this assertion is also true, that is, if the image
space of a section of T∗Q × R → Q is a Legendrian submanifold, then it is the first
prolongation of a function W.

Contact diffeomorphisms. Let (M, η) and (M̂, η̂) be two contact manifolds. A diffeo-
morphism φ from M to M̂ is said to be a contact diffeomorphism (or contactomorphism) if
it preserves the contact structures, that is, Tφ(ker η) = ker η̂. In terms of contact forms, a
contact diffeomorphism φ is the one satisfying

φ∗η̂ = µη. (13)

where µ is a conformal factor. If we additionally impose that the conformal factor µ in
definition (13) has to be equal to one, we arrive at the conservation of the contact form. We
call such a mapping a strict contact diffeomorphism (or quantomorphism).

Consider two contact manifolds (M, η) and (M̂, η̂). A contact product is the product
manifold M̂ × M ×R with a contact one-form τη̂ ⊖ η, where τ is a global coordinate on
R [54]. The operator ⊖ is presented in (15). It is possible to validate that the graph of a
contact diffeomorphism φ is a Legendrian submanifold of the contact product M̂ × M ×
R [54].

Generating functions for Legendrian submanifolds. In particular, consider two
same-dimensional extended cotangent bundles T∗Q × R and T∗Q̂ × R̂ equipped with
Darboux’ coordinates (q, p, s) and (q̂, p̂, ŝ), respectively. Then, we determine the contact
product

(
T∗Q̂ × R̂

)
×

(
T∗Q ×R

)
×R of these two contact manifolds and consider it a fiber

bundle over the product manifold Q̂ × Q ×R given by(
T∗Q̂ × R̂

)
×

(
T∗Q ×R

)
×R −→ Q̂ × Q ×R, (q̂, p̂, ŝ; q, p, s; τ) 7→ (q̂, q, ŝ), (14)

where τ is the coordinate on the extended R. In the contact product manifold, the product
contact one-form is defined to be

τη̂ − η = τ(dŝ − p̂ · dq̂)− (ds − p · dq). (15)

By determining the isomorphism(
T∗Q̂ × R̂

)
×

(
T∗Q ×R

)
×R ≃ T∗(Q̂ × Q ×R)×R, (16)
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we provide Darboux coordinates for the contact product manifold as

(q̂, q, ŝ; π̂, π, π̂; z) = (q̂, q, ŝ; τp̂,−p,−τ;−s). (17)

where (q̂, q, ŝ; π̂, π, π̂) are the bundle coordinates of the cotangent bundle T∗(Q̂ × Q ×R)
induced by the coordinates (q̂, q, ŝ) on Q̂ × Q ×R. This enables us to recast the contact
one-form in (15) in the canonical form given in (6), so that the one-form in (15) turns out to be

τη̂ − η = dz − π̂ · dq̂ − π · dq − π̂dŝ. (18)

On the base manifold Q̂ × Q ×R, we define a smooth function in the form

W(q̂, q, ŝ) = ŝ + S(q̂, q, ŝ). (19)

for a function S, which is the generating function of the discrete contact transformation,
and the relation between the new contact variables and the old ones is given in (21) and
mediated by S. The theory states that the image space of the first jet J1W is a Legendrian sub-
manifold of the contact product manifold in (14). The contact diffeomorphism determined
by the Legendrian submanifold im(J1W) is computed to be

T∗Q ×R −→ T∗Q̂ × R̂, (q, p, s) 7→ (q̂, p̂, ŝ) (20)

where one has the following identifications:

p = D2S(q̂, q, ŝ), s = ŝ + S(q̂, q, ŝ), p̂ = − D1S(q̂, q, ŝ)
1 + D3S(q̂, q, ŝ)

, (21)

where DiS represents the partial derivative of S with respect to its i-th entry.

2.2. Contact Lagrangian Dynamics

Now, we review the Lagrangian picture of contact systems. Although the Hamilton–
Jacobi theory we will develop is based on a discrete contact Hamiltonian, we would like
to start with the revision of contact Lagrangian mechanics from Herglotz’s action giving
rise to Herglotz’s equations. From the Lagrangian picture, we will turn by a Legendre
transformation to the Hamiltonian contact equations, which are also Herglotz’s equations,
in the case where the Lagrangian is regular. Let us see this. In [55], one can find the case of
singular Lagrangians. Let Q be an n-dimensional configuration manifold, and consider the
extended tangent bundle TQ ×R. If q = (qi) is a local coordinate system, then the induced
coordinates on the (2n + 1)-dimensional manifold TQ ×R are (q, q̇, s).

Herglotz’s action and Herglotz’s equation. Consider two points q0 and qT on Q, a
Lagrangian L on the extended tangent bundle TQ×R and the following initial value problem:

ds
dt

= L
(

q,
dq
dt

, s
)

, s(0) = s0, (22)

where q = q(t) is the curve containing q0 and qT as initial and final points, i.e., q(0) = q0
and q(T) = qT , with 0 ≤ t ≤ T. Evidently, the Cauchy problem (22) will be different for
different curves q(t). So, a solution s = s(t) to the problem depends on the curve q(t)
substituted in the Lagrangian function.

Let A∞(Q) be the space of all smooth curves on Q joining q0 and qT . This space
depends on the end points, but we omit this fact in the notation. A∞(Q) is an infinite-
dimensional manifold. According to the Cauchy problem in (22), for every initial value
s(0) = s0, we determine Herglotz’s action as a map from the product space A∞(Q)×R to
the real numbers as follows:

A∞(Q)×R → R, (q, s0) 7→ s(T)− s(0) =
∫ T

0

ds
dt

dt =
∫ T

0
L
(

q,
dq
dt

, s
)

dt. (23)
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The extreme values of the action are the curves q = q(t) solving Herglotz’s (generalized
Euler–Lagrange) equations [34,35,56]

d
dt

Lq̇ − Lq = LsLq̇. (24)

2.3. Contact Hamiltonian Dynamics

Consider a contact manifold (M, η). For a Hamiltonian function H, the contact Hamil-
tonian vector field is defined in terms of the contact one-form η as

ιXH η = −H, ιXH dη = dH −R(H)η, (25)

where R is the Reeb vector field. A direct computation determines that a Hamiltonian flow
does not preserve the contact one-form

LXH η = dιXH η + ιXH dη = −R(H)η. (26)

Notice that according to (26), the flow of a contact Hamiltonian system preserves the contact
structure, which is defined to be the kernel of the contact one-form. XH does not preserve
the Hamiltonian function nor the volume form dηn ∧ η. Instead, we obtain

LXH H = −R(H)H, LXH (dηn ∧ η) = −(n + 1)R(H)dηn ∧ η. (27)

As shown previously, all contact manifolds locally resemble the extended cotangent bundle
T∗Q ×R. In this local view (q, p, s), the Hamiltonian vector field turns out to be

XH = Hp · ∇q −
(

Hq + pHs
)
· ∇p +

(
p · Hp − H

)
∇s, (28)

where ∇q, ∇p and ∇s are the partial derivatives with respect to the coordinates in the
corresponding sub-indices. Thus, an integral curve (q(t), p(t), s(t)) of XH satisfies the
contact Hamilton equations

dq
dt

= Hp,
dp
dt

= −
(

Hq + pHs
)
,

ds
dt

= p · Hp − H. (29)

The Legendre transformation. The fiber derivative FL of a Lagrangian function
L determines a mapping from the extended tangent bundle to the extended cotangent
bundle as

FL : TQ ×R −→ T∗Q ×R, (q, q̇, s) 7→ (q, Lq̇, s). (30)

See that for a regular Lagrangian, FL is a contactomorphism from the contact manifold
TQ ×R equipped with the contact one-form ηL = (FL)∗η to the contact manifold T∗Q ×R
equipped with η in (7). By regular Lagrangian, we mean a Lagrangian such that FL is
a local diffeomorphism. In this situation, we can define the corresponding Hamiltonian
function as

H : T∗Q ×R → R, H = q̇ · Lq̇ − L. (31)

A direct computation proves that the contact Hamilton equations are the Herglotz’s equa-
tions; they coincide for regular Lagrangian functions. For the Legendre transformation of
non-regular cases, we cite [30,55,57].

2.4. A Continuous Geometric Hamilton–Jacobi Theory on Contact Manifolds

We start with the fibration Q 7→ R, whose first jet bundle is the extended cotangent
bundle T∗Q ×R. In this case, the fibration is given by the target map

ρ : T∗Q ×R −→ Q, (z, s) 7→ πQ(z), (32)
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where πQ is the cotangent bundle projection. The first prolongation of a smooth function F
on Q is a section of the projection ρ. We write the first prolongation as

γ = J1F : Q −→ T∗Q ×R, q 7→ (q, Fq, F(q)). (33)

Notice that T∗Q ×R is a contact manifold and the image space of the first prolongation γ
is a Legendrian submanifold of this space.

Consider a section γ in form (33) and a contact Hamiltonian vector field XH given as
in (28). We define a vector field

Xγ
H := Tρ ◦ XH ◦ γ, (34)

on the base manifold Q according to the commutativity of the following diagram:

T∗Q ×R

ρ

��

XH // T(T∗Q ×R)

Tρ

��
Q

γ

>>

Xγ
H // TQ

Tγ

``
(35)

where Tρ is the tangent mapping of the fibration ρ in (32). Next, we recall a geometric
Hamilton–Jacobi theorem for contact Hamiltonian dynamics (see [58]).

Theorem 1. For the first prolongation γ of a function F on Q, the following two conditions are
equivalent:

1. The vector fields XH and Xγ
H are γ-related, that is,

Tγ ◦ Xγ
H = XH ◦ γ (36)

where Tγ : TQ 7→ T(T∗Q ×R) is the tangent mapping of the section γ.
2. The equation

H ◦ γ = 0 (37)

is fulfilled.

Proof. We prove this theorem in local coordinates. The restriction of the Hamiltonian
vector field XH to the image of γ is computed to be

XH ◦ γ(q) =
(

q, Fq, F(q); Hp

∣∣∣
im(γ)

,−Hq

∣∣∣
im(γ)

− HsFq

∣∣∣
im(γ)

, Fq · Hq

∣∣∣
im(γ)

− H
∣∣∣
im(γ)

)
. (38)

By using Tρ, we map this vector field down to the tangent bundle of Q. This is the projected
vector field in (34), that is,

Xγ
H(q) = Hp

∣∣∣
im(γ)

· ∇q. (39)

On the other hand, the tangent mapping of the section γ is computed to be

Tγ(q; q̇) =
(
q, Fq(q), F(q); q̇, Fqq(q)q̇, Fq(q) · q̇

)
, (40)

where the notation Fqq(q)q̇ stands for the multiplication of the Hessian matrix Fqq with
the column vector q̇. Accordingly, the left-hand side of Equation (36) is computed to be

Tγ ◦ Xγ
H(q) =

(
q, Fq(q), F(q); Hp

∣∣∣
im(γ)

, Fqq Hp

∣∣∣
im(γ)

, Fq · Hq

∣∣∣
im(γ)

)
. (41)
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To satisfy (36), the expressions in (38) and (41) must be the same. The first three entries of
these local realizations are the same. The first of the fiber variables (which coincides with
the fourth entries) are also the same. See that the fifth and the sixth entries of (38) and (41)
are not equal. The fifth entries are equal if and only if

Fqq Hp

∣∣∣
im(γ)

+ Hq

∣∣∣
im(γ)

+ HsFq

∣∣∣
im(γ)

= 0. (42)

See that identity (42) can be compactly written as d(H ◦ γ) = 0. This gives that H turns out
to be a constant if it is restricted to the image space of the first prolongation γ. On the other
hand, the sixth entries are the same if and only if H is not only constant, but it also vanishes
on the image space of the first prolongation γ. This is the second condition (37). The inverse
of the assertion is proved by reversing the arguments. This completes the proof.

There exist alternative versions of the geometric HJ theory for contact manifolds where
the base space is considered to be the extended configuration space Q ×R. To check these
versions, we refer to [11,58,59], which include intrinsic proof.

3. Discrete Contact Dynamics

In this section, we first recall discrete Lagrangian and Hamiltonian dynamics on the
contact framework. The definitions and the approach we adopt are the ones displayed
in [48–51]. We also wish to cite [52]. Then, we introduce the HJ theory for discrete
Hamiltonian dynamics. This is the contact version of the approach performed in [53] for
the case of symplectic manifolds. In accordance with this, we state a geometric Hamilton–
Jacobi theory. This is a contact generalization of the one presented in [11]. One could start
with a definition of a discrete contact manifold, but there is no such concept defined so
far. Intuitively, let us say that for us, a discrete contact manifold will be the set of discrete
positions, momenta and discrete external parameter. Let us introduce such notation in the
following paragraphs.

3.1. Discrete Contact Lagrangian Dynamics

In the framework of discrete dynamics, the role of differentiable curves in a config-
uration manifold Q is played by the finite sequences of points in Q. Therefore, we are
interested in the space of sequences consisting of N + 1 points, denoted by SN+1(Q). It is
interesting to note that SN+1(Q) is a manifold isomorphic to the number of copies N + 1 of
Q, denoted by QN+1. We denote such a sequence by a set [q] = {q0, . . . , qN}, which is a
point in QN+1. Here, q0 is the initial point of the sequence, whereas qN is the end point.
We use the sub-index qκ to denote the location of the point in the sequence from κ = 0 to
κ = N. We call [q] a discrete curve.

Herglotz’s action and Herglotz’s equation. A discrete Lagrangian in this framework
is a real valued function Ld defined on the product space Q × Q ×R. Comparing with the
continuous case, we see that in this geometry, the role of the tangent bundle TQ is played
by the pair Q × Q. More technically, the discrete Lagrangian Ld is an approximation of the
exact contact discrete Lagrangian Lex

d , which is defined to be

Lex
d (qκ , qκ+1, sκ) =

∫ tκ+1

tκ

L
(

q,
dq
dt

, sκ

)
dt (43)

where q is a solution of the continuous Herglotz Equation (24) with boundary conditions
q(tκ) = qκ and q(tκ+1) = qκ+1. To each discrete curve [q] and for a fixed initial value
point s0, we introduce the discrete Cauchy problem as

sκ − sκ−1 = Ld(qκ−1, qκ , sκ−1), s0 = s(0), (44)
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where κ runs from 1 to N. We determine the discrete Herglotz’s action as a map from the
product space SN+1(Q)×R to the real numbers, that is,

SN+1(Q)×R −→ R, ([q], s0) 7→ sN − s0 =
N−1

∑
κ=0

Ld(qκ , qκ+1, sκ). (45)

The extreme values of the discrete action in (45) are curves solving the discrete Herglotz’s
(generalized discrete Euler–Lagrange) equations

D1Ld(qκ , qκ+1, sκ) +
(
1 + D3Ld(qκ , qκ+1, sκ)

)
D2Ld(qκ−1, qκ , sκ−1) = 0

sκ − sκ−1 = Ld(qκ−1, qκ , sκ−1), s0 = s(0),
(46)

provided that 1 + D3Ld ̸= 0. Here, DiLd refers to the partial derivative of the discrete
Lagrangian with respect to its i-th entry.

The discrete Legendre transformation. Assume a discrete Lagrangian function Ld
satisfying the condition 1 + D3Ld ̸= 0. We define the following Legendre transformations
from the extended discrete space Q × Q ×R to the extended cotangent bundle T∗Q ×R as

FL+
d : Q × Q ×R −→ T∗Q ×R,

(qκ , qκ+1, sκ) 7→
(
qκ+1, D2Ld(qκ , qκ+1, sκ), sκ + Ld(qκ , qκ+1, sκ)

)
FL−

d : Q × Q ×R −→ T∗Q ×R,

(qκ , qκ+1, sκ) 7→
(

qκ ,− D1Ld(qκ , qκ+1, sκ)

1 + D3Ld(qκ , qκ+1, sκ)
, sκ

)
.

(47)

So, we have two alternative definitions of the momenta given as

p+
κ−1,κ,κ = D2Ld(qκ−1, qκ , sκ), p−

κ,κ+1,κ = − D1Ld(qκ , qκ+1, sκ)

1 + D3Ld(qκ , qκ+1, sκ)
. (48)

In light of the discrete Herglotz’s Equation (46), one can directly establish the momentum
matching equation

FL+
d (qκ , qκ+1, sκ) = FL−

d (qκ+1, qκ+2, sκ+1). (49)

So, in this case, one can define the momenta

pκ := p+
κ−1,κ,κ = p−

κ,κ+1,κ+1. (50)

A discrete Lagrangian Ld is called regular if the Hessian matrix obtained by taking the
partial derivatives of Ld is non-degenerate, that is,

det[D2D2Ld(qκ−1, qκ , sκ)] ̸= 0. (51)

Equivalently, a discrete Lagrangian is a regular Lagrangian if the Legendre transformations
in (47) become invertible.

Diffeomorphisms. Consider a regular discrete Lagrangian function Ld; referring
to the discrete Legendre mappings in (47), one can define a local diffeomorphism on the
extended discrete space as

Φ : Q × Q ×R −→ Q × Q ×R,

(qκ , qκ+1, sκ) 7→ (qκ+1, qκ+2, sκ+1) := (FL−
d )

−1 ◦ FL+
d (qκ , qκ+1, sκ).

(52)

Similarly, one can define a diffeomorphism on the extended cotangent bundle as follows:

Φ̃ := FL+
d ◦ (FL−

d )
−1. (53)
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A direct comparison shows that the diffeomorphism Φ given in (52) and the diffeomor-
phism Φ̃ given in (53) are related by the Legendre transformations

Φ̃ = FL+
d ◦ Φ ◦ (FL+

d )
−1, Φ̃ = FL−

d ◦ Φ ◦ (FL−
d )

−1. (54)

In order to be more specific about the diffeomorphism, we plot the following commuta-
tive diagram.

(qκ , qκ+1, sκ)

FL−d

~~

FL+d

""

Φ // (qκ+1, qκ+2, sκ+1)

FL−d

{{

FL+d

##
(qκ , pκ , sκ)

Φ̃
// (qκ+1, pκ+1, sκ+1)

Φ̃
// (qκ+2, pκ+2, sκ+2)

(55)

See that in this diagram, in the bottom row, we have the flow on the extended cotangent
bundle T∗Q ×R, whereas the top row corresponds to the flow on the extended discrete
space Q × Q ×R. Here, the Legendre transformations establish the equivalency between
the flows.

3.2. Discrete Contact Hamiltonian Dynamics

To derive Hamiltonian dynamics, we use the fact that a discrete contact Lagrangian is
essentially a generating function of type one [1] and that we can apply the defined Legendre
transformations to the discrete Lagrangian to find a discrete Hamiltonian [1,2]. We start
with the definition of momentum pκ+1 and the local inversion operation Ψ in order to
obtain qκ+1 in terms of pκ+1.

pκ+1 = D2Ld(qκ , qκ+1, sκ), qκ+1 = Ψ(qκ , pκ+1, sκ), (56)

provided that the regularity condition holds, i.e., the operator D2D2Ld does not vanish.
Right discrete contact Hamilton equations. Referring to these local identifications,

we introduce the right discrete Hamiltonian function on the extended cotangent bundle as

H+
d (qκ , pκ+1, sκ) = pκ+1 · qκ+1 − Ld(qκ , qκ+1, sκ). (57)

In the above and subsequent expressions, we identify each point in T∗Q ×R with its coor-
dinates. By taking the partial derivatives of the Hamiltonian function H+

d with respect to its
arguments (applying the chain rule referring to (56)), we arrive at the following expressions:

D1H+
d (qκ , pκ+1, sκ) = −D1Ld(qκ , qκ+1, sκ)

D2H+
d (qκ , pκ+1, sκ) = qκ+1

D3H+
d (qκ , pκ+1, sκ) = −D3Ld(qκ , qκ+1, sκ).

(58)

Notice that these equations hold under the identifications in (56). The second equation in
the list determines qκ+1. We substitute the first and third identities in (58) into the discrete
Euler–Lagrange Equation (46), and by using (56), we obtain

pκ =
D1H+

d (qκ , pκ+1, sκ)

1 − D3H+
d (qκ , pκ+1, sκ)

. (59)

Considering the discrete Cauchy problem in (44) as part of the set, we arrive at the following
system of equations, which we call right discrete contact Hamilton equations:
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qκ+1 = D2H+
d (qκ , pκ+1, sκ),

pκ =
D1H+

d (qκ , pκ+1, sκ)

(1 − D3H+
d (qκ , pκ+1, sκ))

,

sκ+1 = sκ + pκ+1 · D2H+
d (qκ , pκ+1, sκ)− H+

d (qκ , pκ+1, sκ).

(60)

Left discrete contact Hamilton equations. The left discrete Hamiltonian function on
the extended cotangent bundle is

H−
d (pκ , qκ+1, sκ+1) = −pκ · qκ − Ld(qκ , qκ+1, sκ+1). (61)

By taking the partial derivatives of the Hamiltonian function H−
d , we arrive at the follow-

ing expressions:

D1H−
d (pκ , qκ+1, sκ+1) = −qκ

D2H−
d (pκ , qκ+1, sκ+1) = pκ+1

D3H+
d (pκ , qκ+1, sκ+1) = −D3Ld(qκ , qκ+1, sκ+1).

(62)

The second equation in the list determines pκ+1.

pκ+1 = D2H−
d (pκ , qκ+1, sκ+1) = −D2Ld(qκ , qκ+1, sκ+1). (63)

Considering the discrete Cauchy problem in (44) as part of the set, we arrive at the following
system of equations, which we call the left discrete contact Hamilton equations:

qκ = −D1H−
d (pκ , qκ+1, sκ+1)

pκ+1 = D2H−
d (pκ , qκ+1, sκ+1)

sκ = sκ+1 − pκ · D1H−
d (pκ , qκ+1, sκ+1) + H−

d (pκ , qκ+1, sκ+1)

(64)

From now on, we shall focus on the right discrete dynamics, since everything can be
reenacted in terms of left discrete approach straightforwardly.

3.3. Discrete Contact Hamilton–Jacobi Theory

How does one derive a discrete contact Hamilton–Jacobi equation? We will follow
the classical steps that one can find in Goldstein’s book [2]. The process for obtaining this
equation is rooted in the derivation of a generating function of a coordinate transformation
that trivializes the dynamics, as in the classical continuous theory [2]. For this, we need
a generating function to introduce a contact diffeomorphism from the contact manifold
T∗Q ×R to the contact manifold T∗Q̂ × R̂, that is,

T∗Q ×R −→ T∗Q̂ × R̂, (qκ , pκ , sκ) → (q̂κ , p̂κ , ŝκ). (65)

Recall from (21) that in Section 2.1, we have obtained a generating function defined
on the product space Q̂ × Q × R̂, realizing the transformation. The main result for the
generating function is described in the next theorem, following the lines of [53] in the
symplectic case.

Theorem 2. Consider the right discrete contact Hamilton Equation (60) and a discrete phase space
(q̂κ , qκ , sκ). Consider also a transformation (65) that satisfies the following:

1. The old and new coordinates are related by a generating function Sκ : Q̂ × Q × R̂ → R of
the type

pκ = D2Sκ(q̂κ , qκ , ŝκ), sκ = ŝκ + Sκ(q̂κ , qκ , ŝκ), p̂κ = − D1Sκ(q̂κ , qκ , ŝκ)

1 + D3Sκ(q̂κ , qκ , ŝκ)
. (66)
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2. The dynamics in the new coordinates (q̂κ , p̂κ , ŝκ) is rendered trivial, i.e.,

(q̂κ , p̂κ , ŝκ) = (q̂κ+1, p̂κ+1, ŝκ+1). (67)

Then, the set of functions {Sκ} satisfies the right discrete contact Hamilton–Jacobi equation

Sκ+1(q̂0, qκ+1, ŝ0)− Sκ(q̂0, qκ , ŝ0)− D2Sκ+1(q̂0, qκ+1, ŝ0) · qκ+1

+ H+
d (qκ , D2Sκ+1(q̂0, qκ+1, ŝ0), ŝ0 + Sκ(q̂0, qκ , ŝ0)) = 0.

(68)

If we prove this theorem, step by step, we will describing the derivation of the discrete
HJ equation.

Proof. We establish the proof in four steps.
Step 1. Consider the right discrete contact Hamilton equations (60) in the new

variables (q̂κ , p̂κ , ŝκ), that is,

q̂κ+1 = D2Ĥ+
d (q̂κ , p̂κ+1, ŝκ),

p̂κ = D1Ĥ+
d (q̂κ , p̂κ+1, ŝκ)/

(
1 − D3Ĥ+

d (q̂κ , p̂κ+1, ŝκ)
)
,

ŝκ+1 = ŝκ + p̂κ+1 · D2Ĥ+
d (q̂κ , p̂κ+1, ŝκ)− Ĥ+

d (q̂κ , p̂κ+1, ŝκ).

(69)

These equations can be recast in the form of a total derivative of the right discrete contact
Hamiltonian in the following way:

dĤ+
d (q̂κ , p̂κ+1, ŝκ) = D1Ĥ+

d (q̂κ , p̂κ+1, ŝκ) · dq̂κ + D2Ĥ+
d (q̂κ , p̂κ+1, ŝκ) · dp̂κ+1

+ D3Ĥ+
d (q̂κ , p̂κ+1, ŝκ)dŝκ

= p̂κ · dq̂κ + q̂κ+1 · dp̂κ+1 + D3Ĥ+
d (q̂κ , p̂κ+1, ŝκ)η̂κ

(70)

where we have employed (69) in the total derivative. More explicitly, we have replaced
D1Ĥ+

d from the second equation in (69). Notice that we have used the following notation
for the discrete contact form:

η̂κ = dŝκ − p̂κ · dq̂κ . (71)

Step 2. Start with the generating function S = Sκ(q̂κ , qκ , ŝκ) satisfying (66). The total
derivative of the generating function is

dSκ(q̂κ , qκ , ŝκ) = D1Sκ(q̂κ , qκ , ŝκ) · dq̂κ + D2Sκ(q̂κ , qκ , ŝκ) · dqκ + D3Sκ(q̂κ , qκ , ŝκ)dŝκ

= −p̂κ · dq̂κ + pκ · dqκ + D3Sκ(q̂κ , qκ , ŝκ)η̂κ

(72)

in which we can introduce D1Sk and D2Sk from (66). We can write the expression for
dSκ+1 as

dSκ+1(q̂κ+1, qκ+1, ŝκ+1) = −p̂κ+1 · dq̂κ+1 + pκ+1 · dqκ+1 + D3Sκ+1(q̂κ+1, qκ+1, ŝκ+1)η̂κ+1 (73)

where η̂κ+1 = dŝκ+1 − p̂κ+1 · dq̂κ+1.
Coming back to the expression of the total derivative of the Hamiltonian in (70), realize

that the second term q̂κ+1 · dp̂κ+1 can be written as d(q̂κ+1 · p̂κ+1)− p̂κ+1 · dq̂κ+1. Then,
we substitute expressions (72) and (73) into the total derivative of the Hamiltonian function.
With these, we can continue the calculation in (70) as follows:
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dĤ+
d (q̂κ ,p̂κ+1, ŝκ) = p̂κ · dq̂κ + q̂κ+1 · dp̂κ+1 + D3Ĥ+

d (q̂κ , p̂κ+1, ŝκ)η̂κ

= p̂κ · dq̂κ − p̂κ+1 · dq̂κ+1 + d(q̂κ+1 · p̂κ+1) + D3Ĥ+
d (q̂κ , p̂κ+1, ŝκ)η̂κ

= pκ · dqκ + D3Sκ(q̂κ , qκ , ŝκ)η̂κ − dSκ(q̂κ , qκ , ŝκ)

−
(
pκ+1 · dqκ+1 + D3Sκ+1(q̂κ+1, qκ+1, ŝκ+1)η̂κ+1 − dSκ+1(q̂κ+1, qκ+1, ŝκ+1)

)
+ d(q̂κ+1 · p̂κ+1) + D3Ĥ+

d (q̂κ , p̂κ+1, ŝκ)η̂κ .

(74)

Step 3. We take the exterior derivative of the second identity in (66). See that

dsκ = dŝκ + dSκ(q̂κ , qκ , ŝκ)

= dŝκ + D1Sκ(q̂κ , qκ , ŝκ) · dq̂κ + D2Sκ(q̂κ , qκ , ŝκ) · dqκ + D3Sκ(q̂κ , qκ , ŝκ) · dŝκ

= dŝκ − (1 + D3Sκ(q̂κ , qκ , ŝκ))p̂κ · dq̂κ + pκ · dqκ + D3Sκ(q̂κ , qκ , ŝκ) · dŝκ

=
(
1 + D3Sκ(q̂κ , qκ , ŝκ)

)
η̂κ + pκ · dqκ .

(75)

So, we arrive at two expressions. One is the relationship between the contact forms in terms
of the generating function

ηκ =
(
1 + D3Sκ(q̂κ , qκ , ŝκ)

)
η̂κ . (76)

Notice that we have the followings identities:

pκ · dqκ + D3Sκ(q̂κ , qκ , ŝκ)η̂κ = dsκ − η̂κ ,

pκ+1 · dqκ+1 + D3Sκ(q̂κ+1, qκ+1, ŝκ+1)η̂κ+1 = dsκ+1 − η̂κ+1.
(77)

We continue the calculation in (74) by substituting these equations. Accordingly, we have
that

dĤ+
d (q̂κ , p̂κ+1, ŝκ) = pκ · dqκ + D3Sκ(q̂κ , qκ , ŝκ)η̂κ − dSκ(q̂κ , qκ , ŝκ)

−
(
pκ+1 · dqκ+1 + D3Sκ+1(q̂κ+1, qκ+1, ŝκ+1)η̂κ+1 − dSκ+1(q̂κ+1, qκ+1, ŝκ+1))

)
+ d(q̂κ+1 · p̂κ+1) + D3Ĥ+

d (q̂κ , p̂κ+1, ŝκ)η̂κ .

= dsκ − η̂κ − dSκ(q̂κ , qκ , ŝκ)− (dsκ+1 − η̂κ+1 − dSκ+1 + d(q̂κ+1 · p̂κ+1)

+ D3Ĥ+
d (q̂κ , p̂κ+1, ŝκ)η̂κ .

(78)

Since on the image space, i.e., the space with coordinates (q̂, p̂, ŝ), the dynamics are rendered
trivial (67), we take the Hamiltonian function as

Ĥ+
d (q̂κ , p̂κ+1, ŝκ) = q̂κ · p̂κ+1. (79)

This gives that the Hamiltonian function is independent of ŝκ , so D3Ĥ+
d vanishes identically.

We substitute this into (78) and arrive at

dĤ+
d = dsκ − η̂κ − dSκ − (dsκ+1 − η̂κ+1 − dSκ+1) + d(q̂κ+1 · p̂κ+1) + D3Ĥ+

d η̂κ .

d(q̂κ · p̂κ+1) = dsκ − η̂κ − dSκ − (dsκ+1 − η̂κ+1 − dSκ+1) + d(q̂κ+1 · p̂κ+1).
(80)

Step 4. Since the dynamics are trivial on the image space, the discrete contact forms co-
incide as

η̂κ = η̂κ+1 (81)

and so do the coupling functions

q̂κ · p̂κ+1 = q̂κ+1 · p̂κ+1 = q̂0 · p̂0. (82)
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Now, we take the exterior derivative of the third equation in (60) and replace the first
equation in (60). We also use the first equation in (66) to replace the value of pk+1. This gives

dsκ+1 − dsκ = d(pκ+1 · qκ+1)− dH+
d (qκ , pκ+1, sκ)

= d(D2Sκ+1(q̂κ+1, qκ+1, ŝκ+1) · qκ+1)− dH+
d (qκ , pκ+1, sκ)

(83)

We collect all the equations in (81)–(83) and substitute them into (80). This reads as follows:

d(q̂κ · p̂κ+1) = dsκ − η̂κ − dSκ − (dsκ+1 − η̂κ+1 − dSκ+1) + d(q̂κ+1 · p̂κ+1)

d(q̂0 · p̂0) = dsκ − η̂κ − dSκ − (dsκ+1 − η̂κ+1 − dSκ+1) + d(q̂0 · p̂0)

0 = dsκ − dsκ+1 + dSκ+1 − dSκ

0 = −d(D2Sκ+1(q̂κ+1, qκ+1, ŝκ+1) · qκ+1) + dH+
d (qκ , pκ+1, sκ) + dSκ+1 − dSκ

0 = d
(
Sκ+1 − Sκ − D2Sκ+1(q̂κ+1, qκ+1, ŝκ+1) · qκ+1 + H+

d (qκ , pκ+1, sκ)
)
.

(84)

Now, fix the initial point (q̂0, q0, ŝ0). For the generating function (66) presented in the
previous subsection, we introduce a new notation as follows:

Sκ
d(qκ) := ŝ0 + Sκ(q̂0, qκ , ŝ0). (85)

This denotation determines a function from Q to the real numbers. In this notation, the
discrete contact Hamilton–Jacobi Equation (68) turns out to be

Sκ+1
d (qκ+1)− Sκ

d(qκ)− dSκ+1
d (qκ+1) · qκ+1 + H+

d (qκ , dSκ+1
d (qκ+1), Sκ

d(qκ)) = 0. (86)

One can obtain a similar result in terms of the left discrete Hamiltonian. By using the
new notation (85), we present the left discrete contact Hamilton–Jacobi equation

Sκ+1
d (qκ+1)− Sκ

d(qκ) + dSκ
d(qκ) · qκ + H−

d (qκ+1, dSκ
d(qκ), Sκ+1

d (qκ+1)) = 0. (87)

3.4. A Geometric Discrete Hamilton–Jacobi Theory on Contact Manifolds

Having obtained a discrete contact Hamilton–Jacobi Equation (86) in the previous
section, it is easy to see that that the differential of the discrete generating function in (85) is
precisely the discrete version of the continuous section γ in Theorem 1. Here, we aim at
interpreting the discrete contact Hamilton–Jacobi Equation (86) in terms of discrete flows.

Projection of discrete flow. Consider a Hamiltonian function H+
d = H+

d (qκ , pκ+1, sκ).
Referring to the commutativity of diagram (55) and in the light of the discrete contact
Hamiltonian dynamics in (60), we compute the Hamiltonian flow on the extended cotangent
bundle as

Φ̃ :
(

qκ ,
D1H+

d
1 − D3H+

d
, sκ

)
−→

(
D2H+

d , pκ+1, sκ + pκ+1 · D2H+
d − H+

d

)
(88)

Recall the projection ρ : T∗Q ×R 7→ Q ×R given in (32). For a function Sd = Sd(qκ) on
the base space, we define local sections of the projection ρ as

γκ : Q −→ T∗Q ×R, qκ 7→ (qκ , dSκ
d(qκ), Sκ

d(qκ)),

γκ+1 : Q −→ T∗Q ×R, qκ+1 7→ (qκ+1, dSκ
d(qκ+1), Sκ+1

d (qκ+1)).
(89)
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According to the commutative diagram

(qκ , pκ , sκ)

ρ

��

Φ̃ // (qκ+1, pκ+1, sκ+1)

ρ

��
(qκ , sκ)

γκ

??

Φ̃γκ

// (qκ+1, sκ+1)

γκ+1

__
(90)

we pull down the flow Φ̃ to the base manifold Q and obtain the following projected
discrete flow:

Φ̃γ : Q −→ Q, qκ 7→ qκ+1 = D2H+
d
(
qκ , dsκ+1

d (qκ+1), Sκ
d(qκ)

)
. (91)

This procedure reduces the number of dependent variables to the coordinates q on the base
manifold Q. By means of the section γ, one can lift a solution of the projected flow to the
extended cotangent bundle level. The lifted solution becomes a solution to the Hamiltonian
flow if and only if the commutation relation

Φ̃ ◦ γκ = γκ+1 ◦ Φ̃γ. (92)

holds.

Theorem 3. For a section γ admitting the local forms in (89), the following conditions are equivalent:

1. The flows Φ̃ and Φ̃γ commute, i.e., Φ̃ ◦ γκ = γκ+1 ◦ Φ̃γ.
2. S solves the HJ Equation (86).

Proof. In terms of the local coordinates, the commutation condition (that is, the first of the
conditions in the statement of the theorem) gives rise to the following equations:

Sκ+1
d (qκ+1) = Sκ

d(qκ) + dsκ+1
d (qκ+1) · qκ+1 − H+

d
(
qκ , dsκ+1

d (qκ+1), Sκ
d(qκ)

)
,

dSκ
d(qκ) = D1H+

d
(
qκ , dSκ+1

d (qκ+1), Sκ
d(qκ)

)/(
1 − D3H+

d
(
qκ , dSκ+1

d (qκ+1), Sκ
d(qκ)

))
.

(93)

A direct comparison gives that the second condition in (93) is the infinitesimal version of
the first one. Indeed, if we take the derivative of the first equation in (93) with respect to
qκ , we have that

0 = dSκ
d(qκ)− D1H+

d
(
qκ , dSκ+1

d (qκ+1), Sκ
d(qκ)

)
− D3H+

d
(
qκ , dSκ+1

d (qκ+1), Sκ
d(qκ)

)
dSκ

d(qκ) (94)

By collecting all the terms involving dSκ
d on the left-hand side, it is immediate to see that it

is precisely the second condition in (93). We remark that the first equation is the discrete
Hamilton–Jacobi Equation (86). The inverse of the assertion is straightforwardly proved by
reversing the arguments.

4. Application
4.1. Free Single Particle Contact Hamiltonian

Given a mechanical contact Lagrangian with an Euclidean metric and a potential
function V : Q → R of the type

L(q, q̇, z) =
1
2

q̇2 − V(q) + γz, (q, q̇, z) ∈ TQ ×R, γ > 0.

one usually approximates the exact discrete Lagrangian associated to L by means of a
quadrature rule. Note that the restriction of γ to positive values is necessary to model a
withholding oscillator receiving energy, though we could define the integrator for any value
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of γ ∈ R. If we use the middle point rule to approximate the positions, i.e., q ≈ qk+1+qk
2 ,

one may define the discrete Lagrangian Ld : Q × Q ×R → R in the following way:

Ld(qk, qk+1, sk) =
1

2h
(qk+1 − qk)

2 − hV
(

qk+1 + qk
2

)
+ hγsk.

We remark that the value of h should be chosen small. In this case, the right
Hamiltonian reads

H+(qk, pk+1, sk) =
1
2

hp2
k+1 + pk+1qk − hγsk. (95)

If we compute the Hamilton–Jacobi equation with this Hamiltonian, we obtain

Sκ+1
d (qκ+1)− Sκ

d(qκ)− dSκ+1
d (qκ+1) · qκ+1 +

1
2

hp2
k+1 + pk+1qk − hγsk = 0. (96)

We integrate (96) numerically with a first-order Euler method and fixed step h = 0.001. The
choice of a not-so-relatively small h is due to instability or numerical oscillations of the first-
order Euler method in stiff systems. Since our purpose is to show the qualitative behavior
of the first derivative of the generating function in comparison with the momentum, we
leave higher-order precision methods for further research. In the following graphics, one
can see that p and dS qualitatively behave in the same way for the same set of initial values
(q0 = 1, p0 = 1, s0 = 0.1, γ = 0.1). The figures were generated with the library matplolib
(Figures 1 and 2).

Figure 1. q vs. p.
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Figure 2. q vs. dS.

In the case that we choose a proper V for the description of a parachute, we obtain
the Hamiltonian

H+
d (qκ , pκ+1, sκ) =

1
2m

(pκ+1 + 2λsκ)
2 +

mg
2λ

(e2λqκ − 1), (97)

where λ, g ∈ R.
This Hamiltonian describes the vertical motion of a particle falling in a fluid under

the action of constant gravity. The friction is modeled by the drag equation, and it is
proportional to the square of the velocity.

When calculating the discrete right contact Hamiltonian equations, we have the
following discrete dynamics:

qκ+1 =
1
m
(pκ+1 + 2λsκ),

pκ =
mge2λqκ

1 − 2λ
m (pκ+1 + 2λsκ)

,

sκ+1 = sκ +
p2

κ+1
2m

− 2λ2sκ

m
− mg

2λ

(
e2λqκ − 1

)
This dynamic is represented in the following diagram obtained by plotting the points

(q(κ), p(κ), s(κ)), which have been integrated recursively for different values of κ. For
λ = −0.01, m = 1, g = 10 and initial condition (q(0), p(0), s(0)) = (100, 1, 1), we obtain
the dynamics of the parachute as follows.

Here, it is easy to see from Figures 3 and 4 that the position coordinate (red line on the
left) descends from the initial position q(0) = 100 until the parachute reaches the ground.
The momentum (blue line on the left) grows until it crosses the red line. This crossing point
represents the instant in which the parachute opens and the momentum decreases until
the parachute touches the ground, i.e., the parachute decelerates so that the parachuter
can touch the ground safely. Nonetheless, as it happens, the velocity is not zero when the
parachuter touches the ground.
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Figure 3. Dynamics of the parachute.

Figure 4. Evolution of DS(k).

Now, in order to prove the accuracy of the discrete contact Hamilton–Jacobi equation,
we plot the differential of the generating function, i.e., DSκ(qκ), which, according to the
first equation in (66), should match the dynamic of the blue line in the diagram depicted
above. Let us corroborate this fact by plotting γ = DSκ(qκ) for different discrete values
of κ. For λ = −0.01, m = 1, g = 10 and initial condition (q(0), S(0), s(0)) = (100, 1, 1), we
obtain Figure 2.

It is easy to check that the line representing DS(k) (blue line on the right in
Figures 3 and 4) is very similar to the blue line depicted on the left. Indeed, both lines
should be equal (see that for k = 2, both reach the maximum momentum p) since in the
vicinity of the discrete Hamilton–Jacobi equation, p(k) = DS(k).

4.2. Rayleigh Systems

Physically, the Rayleigh equation represents systems with oscillatory motion influ-
enced by nonlinear damping forces. Consider the discrete left Rayleigh Hamiltonian with a
time-dependent mass which accounts for the third parameter in the contact framework [60].

H−
d (qj+1, pj, sj+1) = −pjqj −

h
2

sj+1 p2
j+1 +

h
2

kq2
j+1. (98)
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By making use of the left discrete contact HJ equation this time and using the formulation
in (87), we obtain the equation

Sκ+1
d (qκ+1)− Sκ

d(qκ) + dSκ
d(qκ) · qκ − pjqj −

h
2

sj+1 p2
j+1 +

h
2

kq2
j+1. (99)

We integrate (99) numerically with a first-order Euler method and fixed step h = 0.1.
The choice of a not-so-relatively small h is due to instability or numerical oscillations of
the first-order Euler method. We represent the momentum versus the discrete-time step
with conditions for j = 0 and (q(0) = 0, p(0) = 1, s(0) = 1). It is easy to see that the
Rayleigh systems end up losing all the momentum stored and the oscillations tend to zero
because of dissipation. One can check a more precise simulation in [60], but even a few-step
integration like ours already shows the same qualitative behavior that our collaborators
previously detected in [60] (Figure 5).

Figure 5. Solution of the discrete Rayleigh system.

5. Commentaries

In this paper, we have proposed a discrete Hamilton–Jacobi equation (stated in Theorem 2)
for contact discrete Hamiltonian dynamics. We have presented its geometric foundations in
terms of contact discrete flows in Theorem 3. We have exhibited the relationship between
the continuous geometric HJ Theorem 1 for contact Hamiltonian dynamics and Theorem 3
for discrete contact Hamiltonian dynamics. One may wonder if all of these examples
could be solved with the aid of other theories, and the answer is yes. Indeed, it would be
fairly easy to retrieve the equations of the discrete contact dynamics by using the discrete
contact Hamilton equations. Nonetheless, here, we have made the choice of developing
a Hamilton–Jacobi theory so that we can also obtain the generating functions, which are
crucial in the identification of conserved quantities and symmetries, and they serve as a
bridge to the quantum formulation.

We wish to continue in the following directions:

• Contact Hamiltonian dynamics do not preserve the Hamiltonian function. There exists
an alternative characterization of Hamiltonian dynamics on contact manifolds that
preserves the energy, known as evolution dynamics [50,61]. We wish to examine the
discretization of evolution dynamics and their HJ formulation.

• For the extended cotangent bundle T∗Q ×R, the continuous HJ theory for contact
Hamiltonian dynamics was presented in [11,58,59]. The authors consider the base
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manifold as the extended configuration space Q ×R. In this work, we consider the
base manifold to be Q. We wish to write a discrete HJ equation on contact manifolds
with base manifold Q ×R.

• If a Lagrangian is degenerate, then one cannot arrive at explicit Euler–Lagrange
equations. In this case, the Legendre transformation is not immediate. Tulczyjew’s
triple is a geometric formulation that allows us to also achieve this in singular cases [62].
In a discrete framework, Tulczyjew’s triple was constructed in [63]. This determines a
proper geometry for implicit discrete Lagrangian and Hamiltonian dynamics [64]. For
the continuous case, a geometric HJ theory has been recently given in [18,65] in the
symplectic framework and in [59] in the contact framework. We wish to concentrate
on generalizing the discrete HJ theories both for symplectic and contact geometry
including the implicit case. On the other hand, Tulczyjew’s triple for contact geometry
has been recently constructed in [57]. In the future, we aim at constructing a discrete
contact Tulczyjew’s triple.

• One could wonder what are the limitations of the discrete contact Hamilton–Jacobi
equation. The equation has been exactly derived, so the limitations are up to the
numerical integration of choice. For a simple visualization like the one we have
displayed, the behavior is fair, given that the Euler method is the simplest method we
can choose and the number of iterations is small. One could greatly diminish the error
with a different integration procedure.

• In the limit of very big number of steps in the discretization, one can easily depict that
one retrieves the continuous contact HJ equation.

• In the future, we would like to explore more intricate examples and implement more
sophisticated numerical methods for the integration, since Euler is unstable. As we
have mentioned, in modern control systems, controllers operate on discrete-time
signals, making the discretization of continuous-time models necessary.

• The discretization of field theories and the formulation of a corresponding HJ theory to
study families of discrete Hamiltonian mappings as in [66] and the effects of diffusion.

• Study of integrability properties of discrete solitons as in [67] by developing a discrete
field HJ theory.

• To redefine step by step our HJ theory to solve more real-world scenarios. The
generalization of an HJ theory to classical mechanics and field theory from a discrete
or quantum point of view will bring several potential difficulties. These can arise
from both the theoretical aspects of the method and the practical considerations of
implementation. Some challenges will be nonlinear effects, chaos and sensitivity, as
in [66–68].

• To find specific geometric integrators that preserve the contact discrete geometry.
In this paper, we have used a very simple Euler method to depict the dynamic of
simple discrete contact systems. Nonetheless, the Euler method does not preserve
the geometric background of the system, and this is why we need to come up with
specific integrators for these systems.
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