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Abstract: Breast cancer is one of the most common causes of death in women. Early signs of breast
cancer can be an abnormality depicted on breast images like breast ultrasonography. Unfortunately,
ultrasound images contain a lot of noise, which greatly increases the difficulty for doctors to interpret
them. In recent years, computer-aided diagnosis (CAD) has been widely used in medical images,
reducing the workload of doctors and the probability of misdiagnosis. However, it still faces the
following challenges in clinical practice: one is the lack of interpretability, and another is that the
accuracy is not high enough. In this paper, we propose a classification model of breast ultrasound
images that leverages tumor boundaries as prior knowledge and strengthens the model to guide
classification. Furthermore, we employ the advantages of convolutional neural network (CNN) to
extract local features and Transformer to extract global features to achieve information balance and
complementarity between the two neural network models which increase the recognition performance
of the model. Additionally, an explanation method is used to generate visual results, thereby
improving the poor interpretability of deep learning models. Finally, we evaluate the model on
the BUSI dataset and compare it with other CNN and Transformer models. Experimental results
show that the proposed model obtains an accuracy of 0.9870 and an F1 score of 0.9872, achieving
state-of-the-art performance.

Keywords: breast cancer; ultrasound imaging classification; artificial intelligence; ensemble learning

MSC: 68T05

1. Introduction

Breast cancer is one of the major cancers that have attracted attention in the world,
and it has become first in the incidence of cancer in women. According to “Cancer Statistics,
2022” [1], breast cancer has accounted for 31% of new cancer cases in women, greatly
outpacing the percentage of other malignancies. Due to the etiology of breast cancer being
unclear, it is difficult to prevent it. Physical examination is able to find breast suspicious
lesions and tumors as early as possible. The effective way to increase the breast cancer
survival rate is early identification and diagnosis. With the right therapy, early-stage breast
cancer can be permanently healed.

The methods for breast disease diagnosis mainly include clinician touch examination,
radiological technology and cell histopathological biopsy. Benefiting from advances in
imaging techniques, the accuracy of diagnosing breast lesions has improved significantly
over the past few years. Among the advantages of non-invasive, radiological techniques,
such as mammography, ultrasound, and computer tomography, have become essential
and important procedures in the diagnosis of breast cancer. By using these technologies,
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abnormal signs in the breast can be effectively detected and located. Due to the char-
acteristics of its practical inspection approach, cheap cost, no radiation, high real-time
performance, and robust equipment mobility, ultrasound imaging has emerged as a key
tool for early breast diagnosis and as an aid in the localization of minimally invasive breast
rotational surgery [2,3]. Figure 1 presents normal, benign and malignant cases in the breast
ultrasound dataset BUSI.

Figure 1. Examples of images in dataset BUSI (first row) and dataset (second row). (a) shows an
example of normal case images, (b) images with benign lesion and (c) examples with malignant lesion.

Although breast ultrasound has multiple advantages, it still faces some challenges
in practical application. On the one hand, due to the high acoustic impedance of various
tissues and organs of the human body, it is easy to produce noise and artifacts in ultrasound
images, resulting in blurred images. On the other hand, reading ultrasound images requires
professional doctors with extensive clinical experience, which undoubtedly increases the
time and labor costs. These challenges are not conducive to the identification of benign and
malignant tumors and restrict the use of ultrasound for breast cancer diagnosis. Therefore,
it is critical to interpret breast ultrasound images accurately and objectively. CAD is a
popular way of interpreting medical images and shows a brilliant prospect, which improves
the efficiency of diagnosis and increases the survival rate of patients. Many researchers have
successfully applied CAD to breast cancer diagnosis, such as classifying breast imaging [4],
detection of suspicious lesions [5], and segmenting tumor regions [6].

Most of the previous deep learning-based CAD are all convolutional neural networks
(CNNs) with local filters, which neglect to take into account global features. However,
local features are merely a portion of an image’s features, and stronger global features
with great recognition abilities are disregarded. Recently, the Vision Transformer (ViT)
performed a global self-attention computation of the relationship between tokens [7,8],
achieving comparable performance to CNN. Different from CNNs, induction biases and
translational equivalence, are lost in ViT [9]. Scholars have demonstrated that the limitation
of lack of inductive biases on ViT can break when the amount of data is large enough. Due
to privacy and ethical requirements, it is difficult to obtain millions of labeled medical
images. Therefore, we propose to integrate learning CNN and Transformer models to
achieve better performance.

In addition, current deep-learning CAD algorithms are still black-box models, making
them difficult to interpret. In order to build trust in intelligent systems and apply them to
real breast cancer diagnosis scenarios, it is clear that we must build a transparent model
to explain why the breast image is predicted to be normal, benign, or malignant. Some
researchers attempt to open the deep neural network black box model through feature
visualization, such as saliency map, class activation mapping (CAM) [10] and gradient
weighted class activation mapping (Grad-CAM) [11]. These approaches resize the gradient
or weight maps of the active feature maps to the size of the input image and overlap
them on the original images to highlight the area of focus of the model. In contrast to
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these methods, we adopt a gradient-free interpretation method to evaluate the confidence
increase to show the importance of each feature.

In this work, we propose an interpretable ensemble model to classify breast ultrasound
images into normal, benign, and malignant. Specifically, tumor boundaries are considered
as prior knowledge to improve the perception of tumor boundaries and reduce the incorrect
recognition caused by blurred tumor boundaries. Furthermore, we train a CNN-based
model and a multi-scale hierarchy Transformer, respectively, and then optimize the clas-
sification results using ensemble learning to improve the performance. In addition, we
introduce a gradient-free interpretation method to improve model interpretability, in which
the importance of feature activation is measured by calculating the change in confidence
scores rather than measuring local sensitivities. The proposed model was validated on the
breast ultrasound dataset BUSI.

In summary, our contributions are as follows:

• We propose an interpreted ensemble model for breast ultrasound image classification.
During the training phase, the tumor boundaries mask is employed as prior knowledge
to assist the model in identifying the region of interest.

• We integrate a CNN-based model and a multi-scale Transformer model to optimize
the predictions and improve the average accuracy of the model.

• Moreover, we visualize the confidence increase map according to the prediction results
to improve the interpretability of the model.

• Finally, we evaluate the model on the BUSI dataset and compare it with CNN and
Transformer models. Experimental results show that the proposed model achieves
state-of-the-art performance with 0.9870 in accuracy and 0.9872 in F1 score.

2. Related Work
2.1. Computer-Aided Diagnosis of Breast Cancer

CNNs have been widely employed in the analysis of breast images over the past few
years. Compared with the traditional machine learning methods, CNN can automatically
extract high-level nonlinear features from images, eliminating the need for a feature en-
gineering stage and saving a significant amount of time [12–15]. Reference [2] proposed
the abnormal breast ultrasound system for cancer detection to accelerate reviewing while
keeping high detection sensitivity with low false positives. Reference [16] designed a
novel method to segment the breast tumor via semantic classification and merging patches.
Reference [17] introduced attention blocks into the U-Net and learned the feature repre-
sentation of the spatial region with high salience. Most of these CNN-based methods
were trained on a fully convolutional network to semantically segment lesion or tumor
regions on ultrasound images and adopt the post-processing step to obtain more accurate
segmentation results. In addition to breast lesion segmentation, scholars also adopted the
CNN for classifying breast images into benign and malignant [4,18], judging the BI-RADS
grading [19] and predicting the subclass of the tumors like fibroadenoma and lobular
carcinoma [20,21]. Moreover, several recent works were focused on localizing target objects
of interest and classifying given ROIs into benign or malignant [22–25]. The above breast
CAD systems are expected to assist doctors by improving the diagnosis of breast cancer in
clinical practice [26].

2.2. Transformer of Computer Version

Transformer was originally proposed for natural language processing (NLP) and has
achieved great success in several fields, such as text classification, sentiment analysis,
translation and so on [27–29]. Recently, inspired by the functionality of the Transformer
in NLP, researchers have extended the Transformer to computer vision tasks and shown
the ability to replace CNN. For example, to solve the difficulty of image identification,
Dosovitskiy et al. proposed the visual transformer ViT that divided the whole image
into several image patches and embedded them in a sequence of tokens [7]. Then, multi-
ple Transformer layers were applied to tokens to build global attention. Experiments on



Mathematics 2024, 12, 2354 4 of 14

ViT demonstrated that it outperformed CNNs on several image recognition benchmarks.
Li et al. [30] designed a tokens-to-token Vision Transformer (T2T-ViT), which recursively
aggregated neighboring tokens into a single token and progressively structuring images
to tokens so that local structures represented by surrounding tokens can be modeled.
Liu et al. [9] introduced a multi-scale hierarchical Transformer, Swin-Transformer, which
calculated the representation using shifting Windows. The window-shifting scheme im-
proved efficiency by limiting self-attention calculations to non-overlapping local windows
while allowing cross-window connections. This hierarchical structure allowed modeling
feature mapping at different scales with linear computational complexity associated with
image size. Therefore, in this paper, Swin-Transformer is used as a backbone network to
solve the classification problem of breast ultrasound images.

2.3. Attribution Methods in Deep Learning

Although CNN has achieved great success in several areas [31–34], interpreting its
results still faces challenges and limitations in medical scenarios. In recent years, several
studies have provided attribution methods, which can visualize the class activation and
class discriminative regions (i.e., locate the category in the image) to help the researchers
understand the predictions. Several previous works, such as Guided Backpropagation [35]
and Deconvolution [36], visualized CNN predictions by highlighting important pixels (i.e.,
the value variation of these pixels has the greatest impact on the prediction score). Despite
producing fine-grained visualizations, these methods are not class-discriminative [11].
Gradient-based interpretation methods reflect the sensitivity of each feature to the predicted
category by calculating the forward and backward gradient scores of all input features
when they pass through the network, such as the typical saliency maps. Nevertheless,
saliency maps frequently contain noise [37], and using their absolute value can prevent
the detection of positive and negative evidence that might be present in the input. In this
paper, we employ a gradient-free method, Score-CAM, to generate the visual interpretation
result, which evaluates the increase in confidence score and thus provides reliable results.

3. Method

To solve the problem of identifying benign and malignant breast cancers, we construct
a breast cancer identification method based on the improved Swin Transformer network.
Figure 2 depicts the framework of the proposed method, which consists of three modules:
image embedding, multi-scale feature extraction, and classifier. Specifically, the tumor mask
is employed as prior knowledge to improve the model’s perception of the tumor location.
Moreover, we calculate the class contribution score map by measuring the importance of
each feature element for understanding the model’s decision-making.

Figure 2. The overall framework of the proposed method. It consists of three modules: image
partition module, feature representation learning module and tumor classifier.
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3.1. Improved Swin-Transformer
3.1.1. Patches Partition

Firstly, in contrast to the earlier feature extraction technique which only uses images,
we concatenate the tumor mask with the original images as input and send them to the
network. This design gives the model a head start in its performance in identifying benign
and malignant breast tumors by providing the model with prior knowledge about the
tumor’s shape, size, and location. Then, the patch partition will generate several patches
with patch resolution from breast ultrasound images and matching masks. Each patch is
considered a ”token” characterized by the channel concatenation of image gray values and
corresponding tumor mask. In this module, the patch partition divides the input image
with a size of 224 × 224 and the tumor mask into non-overlapping patches with a size of
4 × 4. Each patch has a feature dimension of 4 × 4 × 3. After that, a linear embedding layer
is used to map patch tokens to C dimensions, where C = 96.

3.1.2. Multi-Scale Feature Extraction

In the feature extraction module, we divide the module into four stages, from coarse
to fine, inspired by the structure of Resnet-50, to construct multi-scale features. Specifically,
each stage consists of an even number of Swin Transformer blocks to control the number
of tokens. The Swin Transformer blocks alternately contain a window multi-head self-
attention (W-MSA) layer and a shifted window multi-head self-attention (SW-MSA) layer.
Figure 3 illustrates the structure of two successive Swin Transformer blocks. Notably,
the WS-MSA layer in the second Swin Transformer block is designed to introduce a cross-
window connection while maintaining efficient computation of non-overlapping windows.

Figure 3. An illustration of two successive Swin Transformer blocks. The l-th block has a common
window multi-head self attention layer (green rectangle) and the l + 1-th block has a window-shifted
multi-head self attention layer (red rectangle).

Swin Transformer Block. We first use a normalization layer on the output feature
maps of l − 1-th block to scale the feature distribution. Then, the feature maps will be
divided into multiple patches through a window partitioning strategy and fed into the
W-MSA or WS-MSA layer for calculating local attention. In this way, the computation of
attention is restricted in each window, which reduces the computational cost. After that,
each patch is sequentially restored to the shape of zl+1 by patch merging to obtain the
hidden feature ẑl . Furthermore, the classic residual skip connection is used to concatenate
the features ẑl with zl+1. Finally, the output of block l will be obtained by a similar structure
which consists of a normalization layer, multiple layer perception (MLP), and residual
concatenation. The following formula shows the calculation process of two successive Swin
Transformer:

ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl ,

ẑl+1 = SW-MSA(LN(zl)) + zl ,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

(1)

where zl represents the output features of l-th block, ẑl and ẑl+1 are the output of W-MSA
module and WS-MSA module, respectively. The WS-MSA layers introduce adjacent non-
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overlapping windows in the previous layer, which plays an important role in the connection
of windows, thus helping capture global information and local window information.

Window Shifted Multi-head Self Attention. As demonstrated in Figure 4, in block
l, we employ the common window partition to compute self-attention in each window.
The feature map with 8 × 8 is uniformly divided into four windows of size 4 × 4 (M = 4).
In block l + 1, a shifted window partition is adopted, which cyclic-shifts the window
toward the top-left direction by 2 pixels. If we only simply refine the window partition, this
will lead to the different sizes of newly generated windows, which means some windows
will be smaller than 4 × 4. Unfortunately, in practice, only windows of the same size are
suitable for batch processing. One common way for calculating self-attention is to fill all
windows into 4 × 4. However, as can be seen in Figure 4, the number of windows increases
from 2 × 2 to 3 × 3, resulting in rapid growth of the calculation cost. Therefore, to improve
the efficiency of batch computation, we shift new windows cyclically and merge them to
reduce the number of windows used for computing self-attention. The state of windows
after shifting used to calculate the self-attention is shown in Figure 5. It is worth noting
that the merged window may consist of several sub-windows that are not adjacent to each
other in the feature map. Therefore, a masking method is applied to limit the calculation of
self-attention to each sub-window.

Figure 4. An illustration of two window partitioning strategies. In block l, we employ a common
window partition to compute self-attention in each window. In block l + 1, a shifted window partition
is adopted, which produces new Windows that cross the boundaries of previous windows l and thus
provides the windows’ connection.

Figure 5. The masking method is used to limit the computation of self-attention to sub-windows. The
colored region of the ”Query ∗ Key” matrix takes part in the computation of self-attention, whereas
the white region does not.

Figure 5 shows the process of the masking method in block l + 1, where ”Query” and
”Key” are the Query vector and Key vector in self-attention. To balance the computational
overhead, the sub-windows are reconstructed and merged into 2 × 2 windows according to
the standard window partitioning method of block l. Considering the window calculated
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in a batch may consist of several windows that are not adjacent to each other in the feature
map. Therefore, we generate an attention mask that allows the Query and Key vectors
with the same index to perform attention calculation while ignoring the results of attention
evaluations with different indexes. In Figure 5, the white squares do not participate in
the calculation of self-attention. Thanks to the use of circular shifting, the number of
batch windows is the same as the number of regular window partitions, which improves
computational efficiency.

Computational overhead. In ViT, the standard MSA is used for global attention to
compute the dependencies between patches. The computational complexity of an image
with h × w patches is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (2)

where h and w are the height and width of patches. C represents the feature dimension
and is a constant. Its computational complexity is the quadratic of patch size, making it
unsuitable for high-resolution images.

While for W-MSA, self-attention is computed in the local window. Here, the window
refers to a set of patches that uniformly and non-overlappingly segment the entire image.
The following is the computational complexity of the W-MSA:

Ω(W-MSA) = 4hwC2 + 2M2hwC (3)

where M2 represents the number of patches in each window, when the window size
(M × M) is fixed, the complexity of the W-MSA is linear. It can be easily seen from
Equations (2) and (3) that global self-attention computation is typically prohibitively expen-
sive for big h × w, while window-based self-attention is scalable.

Multi-head Self-Attention in Vision Transformer. This work introduces the multi-
head self-attention structure in Transformer into ViT. In particular, we add relative position
bias into the similarity calculation of each head, which can be expressed as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
+ B)V, (4)

where Q, K, V ∈ Rn×d are the query, key and value metrics, and B ∈ Rn×n is the relative
position parameter introducing the position embedding. n is the number of patches in a
window and dk is the dimension of query or key.

3.2. Interpretation Method

The deep learning model provides a large number of parameters to fit the distribution
of samples and achieves great detection accuracy. However, deep learning is mostly a
black-box model, and it is hard to understand the reasons for model decisions. Therefore,
in this paper, we employ Score-CAM, an improved CAM-based approach, to provide a
visual interpretation of the predictions. Score-CAM evaluates the contribution of each
feature by measuring the degree of increase in confidence, which gets rid of the gradient
dependency in the standard CAM method. We will describe this algorithm below.

Score CAM. Generally, the mapping between input and output of the trained Swin-
Transformer can be defined as a function Y = F(x), which takes an input vector
X = [x0, x1, · · · , xn]⊤ and outputs the prediction scalar Y. For a given input baseline
Xb, the contribution score Ci of xi for the label category is the change in confidence score by
replacing xi with the i-th output in Xb. Therefore, the definition of the contribution score is
formulated as:

Ci(Xi) = f (Xb ◦ Hi)− f (Xb). (5)

where Hi is a vector, which has the same shape as Xb. For each entry hj in Hi, hj = I[i = j],
i.e., hj = 1 when i = j, and hj = 0 otherwise. ◦ represents Hadamard Product.
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Similarly, specific to a certain layer of the network, we define the trained Swin Trans-
former as Y = f (X) and outputs a class probability scalar Y. We pick the second normaliza-
tion layer in the last Swin Transformer block and corresponding activation as A and denote
the k-th channel as Ak. Therefore, the contribution score Ak towards Y can be defined as:

C(Ak) = f (X ◦ Hk)− f (Xb) (6)

where
Hk = s(Up(Ak)) (7)

Up(·) represents the upsample operation which expands Ak into the input size. In this
way, each upsampled activation map not only provides the spatial locations that are most
relevant to an internal activation map but also can directly work as a mask to perturb the
input image. s(·) is a normalization function that maps each element in the activation
map matrix into [0, 1] to a generate smoother mask Hk. The normalization function s(·) is
represented as follows:

s(Ak) =
Ak − minAk

maxAk − minAk
, (8)

then, the final visualization is obtained by a linear combination of weights and activation
mappings. In addition, ReLU is also applied to the linear combination of mappings, since
we are only interested in those features that have a positive impact on the category. Finally,
we show the visualization in the form of a heatmap and apply it to the input image to
explain the decision process.

3.3. Loss Function

The loss function of the breast ultrasound images classification is shown in Equation (9).
The corresponding formula for this loss is shown as follows:

CE
(

Y, Ŷ
)
=

n

∑
i=1

yilogŷi, (9)

where Y is the ground truth, and Ŷ is the prediction.

4. Experiments
4.1. Dataset

In this paper, we evaluate the proposed method using the breast dataset BUSI, which
collects breast ultrasound images from 600 patients between 25 and 75 years old, covering
780 images with an average resolution of 500 × 500 pixels. According to the relevant
domain knowledge, BUSI datasets are divided into three categories: normal, benign and
malignant. Furthermore, the dataset also provides expert manual annotation of tumor
regions in benign and malignant images. All images and ground truth are saved in PNG
format. During the experiment, we used 80% of the dataset as a training set, 10% as a
validation set, and the rest as a test set. Table 1 shows the specific information of this dataset.

Table 1. The number of samples of raw and augmented data in training, validation and test sets.

Data State Classes Train Validation Test

Raw
Bengin 351 168 107
Malignant 43 21 13
Normal 43 21 13

Augmentated
Bengin 500 500 500
Malignant 100 100 100
Normal 43 21 13
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4.2. Data Preprocessing and Data Enhancement

For deep learning models, the generalizability of the model is closely related to the
number of training samples. However, medical images need to be interpreted by profes-
sional doctors, which are difficult to obtain. In this paper, we employ data augmentation for
expanding the dataset before training to reduce overfitting and improve the performance of
generalizability. At the beginning, we applied median filtering to reduce speckle noise. This
step was followed by contrast enhancement using histogram equalization to improve the
visibility of structures within the images. Then, the data augmentation methods adopted in
the training and validation sets include random rotation, horizontal flipping, image scaling
and so on. After that, the training set is increased to 1500 images while the validation
set is enlarged to 300 images. Then, we reshape the enhanced image to 224 × 224 × 3
and normalize it to [0, 1]. Finally, all images will be converted to tensors and trained on
the GPU.

4.3. Implement Details

In this work, we implement the proposed method in Python using Pytorch. To avoid
overfitting, we use the ReLU function as an activation function between hidden layers,
which can increase the nonlinearity between networks. To speed up the model convergence,
we leverage the models that have been trained on ImageNet as pre-trained models. We set
an initial learning rate of the VGG16 to 1 × 10−3 and the Swin-Transformer to 1 × 10−6, as
well as set the same batch size of 16. The parameters of the network model are optimized by
Adam optimizer with the weight decay to 1 × 10−4. We trained the model on the Ubuntu
20.04 system using the Nvidia 1080Ti GPU to speed up the training process and converged
in 300 epochs. The model which achieves the best performance on the validation set is used
for the final test.

4.4. Evaluation Metrics

In this paper, we adopt accuracy, recall, precision, F1-score and AUC (Area Under
Curve) to comprehensively evaluate the performance of the proposed model. The calcula-
tion formula of the evaluation metrics is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1-score =
2Precision × Recall
Precision + Recall

(13)

where TP (True positive) indicates the number of positive samples predicted as positive,
FN (False negative) denotes the number of positive samples predicted as negative, FP
(False positive) records the number of negative samples predicted as positive, and TN (True
negative) represents the probability of negative samples predicted as negative. Accuracy
reflects the ability of the classifier to predict all samples correctly. Recall reports the
proportion of positive samples in the dataset that are predicted correctly. Precision is the
proportion of samples predicted as positive by the classifier that are actually positive. When
the classification confidence is high, precision is high, while the classification confidence is
low, recall will be increased. Therefore, to comprehensively consider these metrics, F1-score
is proposed. The F1 score is a summed average of the precision and recall, which maximizes
precision and minimizes recall while minimizing the disparity between them. The greater
the value for these evaluation metrics, the better the model’s performance.
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5. Results
5.1. Ablation Experiments

In this subsection, we perform ablation analysis on data augment, data balancing,
introducing boundary contours of tumors, and integrating CNN and Swin-Transformer
learning, respectively, to explore the impact of these methods on model classification
performance. Table 2 shows the prediction results of the model under various conditions.

Specifically, experiments are first conducted on the BUSI dataset using VGG16, the
model’s weighted average accuracy, recall, precision, F1 score and AUC are 0.8803, 0.8808,
0.8803, 0.8805 and 0.9411, respectively. Afterward, we adopt data augment and balance on
the data and use the tumor region as prior knowledge to facilitate the model’s perception
of this region. In this way, the model achieves an accuracy of 0.963, an F1 score of 0.9611,
and an AUC of 0.9937, indicating that effective data augmentation and prior knowledge are
helpful in improving model performance. Similarly, the data set after data augmentation is
also used to train the Swin-Transformer model, and the obtained evaluation metrics are
slightly higher than VGG16, with weighted average accuracy, precision, recall, F1 score,
and AUC of 0.9740, 0.9755, 0.9740, 0.9741 and 0.9892, respectively. Meanwhile, without in-
troducing prior knowledge of tumor margins, we further evaluate the performance of
the model (Ensemble ∗) when adopting the ensemble learning method. After integrating
CNN and Swin-Transformer, Ensemble ∗ achieves comparable performance to Swin-T.
Furthermore, based on the Ensemble ∗, we combine the tumor’s prior knowledge to train
the model, which improves the accuracy, precision, recall, and F1 score by nearly 1.3%,
respectively, 0.9870, 0.9880, 0.9870, 0.9872, and achieve an AUC of 0.9982. The ablation
experiments show that data augmentation, tumor prior knowledge, and integrated learning
strategies all help to enhance the performance of the model.

Table 2. The ablation analysis results on breast ultrasound images classification, containing data
augment and balance, prior knowledge of tumor boundaries and ensemble learning. + represents
the data augmentation of the original dataset and the introduction of prior knowledge of tumor
boundaries. The ensemble ∗ represents the use of augmented data for ensemble learning, and no
tumor margin prior is introduced. Our model uses data augmentation and ensemble learning for
VGG16 and Swin-T combined with tumor margin priors.

Method Class Accuracy Precision Recall F1-Score AUC

VGG16

Bengin 0.9302 0.9070 0.8966 0.9017 0.9316
Malignant 0.7619 0.8372 0.8571 0.8471 0.9447
Normal 0.9231 0.8462 0.8462 0.8462 0.9675
Average 0.8803 0.8808 0.8803 0.8805 0.9411

VGG16 +

Bengin 0.9767 0.9546 0.9767 0.9655 0.9891
Malignant 1.0000 1.0000 1.0000 0.9756 0.9966
Normal 0.9231 0.9231 0.8462 0.9231 0.9964
Average 0.9610 0.9616 0.9610 0.9611 0.9937

Swin-T +

Bengin 1.0000 0.9555 1.0000 0.9773 0.9932
Malignant 1.0000 1.0000 1.0000 1.0000 1.0000
Normal 0.8462 1.0000 0.8462 0.9167 0.9964
Average 0.9740 0.9783 0.9765 0.9923 0.9978

Ensemble ∗

Bengin 0.9767 1.0000 0.9535 0.9762 0.9850
Malignant 1.0000 0.9546 1.0000 0.9767 0.9940
Normal 0.9231 0.9286 1.0000 0.9630 0.9964
Average 0.9740 0.9755 0.9740 0.9741 0.9892

Ours

Bengin 0.9767 0.9773 1.0000 0.9760 0.9973
Malignant 1.0000 1.0000 1.0000 0.9950 1.0000
Normal 1.0000 1.0000 0.9880 0.9990 0.9976
Average 0.9870 0.9880 0.9870 0.9872 0.9982
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5.2. Compare with Other Methods

In this subsection, we compare the performance of the proposed method with other
models on the dataset BUSI, and the results are shown in Table 3. Specifically, we compare
the proposed method with CNN models such as VGG16, ResNet50, ResNet101 and other
advanced methods like [38,39]. Compared with CNN models, our proposed model has
clear advantages in stability and robustness, with slight differences in multiple evaluation
metrics. Furthermore, we also compare with Transformer-based models including Vit,
Swin-T, [5,40]. Among them, [40] is a weakly supervised Transformer model. When
compared to Transformer models, our model combines tumor boundary prior knowledge
and ensemble learning, so it has a better recognition rate. By comparing multiple models
of the two classes of deep learning methods (i.e., CNN and Transformer) in Table 2, our
model achieves optimal results on various metrics, demonstrating the effectiveness of the
proposed model.

Table 3. Comparison of breast ultrasound images classification performance of different models on
dataset BUSI.

Model Type Model Accuracy Precision Recall F1-Score AUC

CNN

VGG16 0.9610 0.9616 0.9610 0.9611 0.9937
ResNet50 0.9481 0.9525 0.9481 0.9475 0.9844
ResNet101 0.9495 0.9429 0.9523 0.9476 0.9862
[38] 0.9162 0.9318 0.9148 0.9666 0.9678
[41] 0.9280 - - - 0.9869
[42] 0.9412 0.9613 0.8993 92.93 -
[43] 0.9000 - - 0.9000 -
[44] 0.8996 0.8933 0.9997 - -
[39] 0.9319 0.9318 0.8875 - -

Transformer

ViT 0.9345 0.9350 0.9345 0.9243 0.9960
Swin-T 0.9740 0.9783 0.9765 0.9923 0.9978
[40] 0.9529 0.9629 0.9601 0.9615 -
[5] 0.8670 - - - 0.9500

CNN + Transformer Ours 0.9870 0.9880 0.9870 0.9872 0.9982

5.3. Visualization

Although deep learning-based algorithms have achieved great success in many fields,
most of them are black-box models, which make it difficult to understand the decision-
making of the model intuitively. Therefore, in this section, we further explore the internal
decision-making of the model by adopting a visual explanation method named Score-CAM.
Specifically, we show a heatmap on the image to emphasize the key attention regions of the
model. The redder the color, the higher the contribution score assigned to the corresponding
pixel, i.e., the point significantly increases the confidence score.

Figure 6 shows the visual interpretation results of using Swin-Transformer or VGG
as feature extractors after ensemble learning. For each category, we give three examples.
To facilitate comparison with the visual interpretation of the results, we show the original
images and draw the tumor boundaries on the benign and malignant images. In the
first three columns of the figure, we show the samples with high similarity in Score-
CAM generated by Swin-transformer and VGG16. Columns 4–9 show the instances with
differences in the Score-CAM generated by the two models. As can be seen from these
images, it is effective to improve the accuracy of predictions by integrating two models. We
discover that for both benign and malignant breast images, the region of the tumor plays
a key role in increasing the prediction confidence. In other words, if the model reflects
the tumor region accurately, it can differentiate between benign and malignant samples.
In addition, we also find that both the Swin-Transformer and VGG16 models focus on
regions of normal samples with rich textural features. These visualizations help researchers
to visualize the characteristics of model selection and understand model decisions.
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Figure 6. Visual interpretation results generated by Score-CAM. EnsembleSwin-T and EnsembleVGG

represent the visual results generated by Swin-Transformer and VGG16 after training with logic
integration, respectively.

6. Conclusions

Breast cancer is one of the life-threatening cancers for women. In clinical practice,
breast cancer classification models face the challenges of poor interpretability and low
accuracy. In this paper, we propose an interpretable breast image recognition model that
classifies breast ultrasound images into normal, benign, and malignant. Firstly, the method
introduces manually annotated tumor contours into the model as a priori knowledge,
which strengthens the model’s ability to determine the location and extent of the tumor,
thereby guiding the classification. Furthermore, we integrate and train two deep learning
models, i.e., the CNN-based model and the Transformer-based model, to achieve informa-
tion balance and complementarity between the two neural network models, which solves
the problems of few training samples and limits feature extraction capabilities. Finally,
we validate the proposed method on the BUSI dataset. Experiments show that our model
outperforms the current mainstream CNN model and Transformer model in several classi-
fication metrics, reaching the state of the art. In future work, we will consider the fusion of
features extracted by CNN and Transformer, as well as combine clinical diagnosis reports
to further improve the model’s accuracy and robustness.
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