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Abstract: Bias in facial recognition systems often results in unequal performance across demographic
groups. This study addresses this by investigating how dataset composition affects the performance
and bias of age estimation models across ethnicities. We fine-tuned pre-trained Convolutional
Neural Networks (CNNs) like VGG19 on the diverse UTKFace dataset (23,705 samples: 10,078 White,
4526 Black, 3434 Asian) and APPA-REAL (7691 samples: 6686 White, 231 Black, 674 Asian). Our
approach involved adjusting dataset compositions by oversampling minority groups or reducing
samples from overrepresented groups to mitigate bias. We conducted experiments to identify the
optimal dataset composition that minimizes performance disparities among ethnic groups. The
primary performance metric was Mean Absolute Error (MAE), measuring the average magnitude of
prediction errors. We also analyzed the standard deviation of MAE across ethnic groups to assess
performance consistency and equity. Our findings reveal that simple oversampling of minority
groups does not ensure equitable performance. Instead, systematic adjustments, including reducing
samples from overrepresented groups, led to more balanced performance and lower MAE standard
deviations across ethnicities. These insights highlight the importance of tailored dataset adjustments
and suggest exploring advanced data processing methods and algorithmic tweaks to enhance fairness
and accuracy in facial recognition technologies.
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1. Introduction

Bias in facial recognition systems is a critical issue, impacting fairness, transparency,
and accuracy. This bias can manifest in various forms, including age, gender, and ethnicity
disparities, often resulting from inherent assumptions and decision-making processes
embedded within the model architecture. For example, studies have analyzed the impact of
age [1,2], demonstrating worse performance on children’s faces. Other studies compare face
recognition performance between males and females [3,4], showing that face recognition
systems perform worse for females, partly because women’s faces are generally more
covered due to longer hair.

Addressing bias in facial recognition systems is essential to ensure these technologies
are equitable and just, respecting the rights and dignity of all individuals while complying
with various regulations aimed at preventing discrimination. These include the Universal
Declaration of Human Rights, the European Convention on Human Rights, and the General
Data Protection Regulation (GDPR) [5,6].

Public training datasets often exacerbate the issue of bias by being heavily skewed
toward certain ethnic groups, particularly White/Caucasian faces. This lack of diversity
can result in less accurate recognition of individuals from underrepresented ethnic groups.
Models trained on such biased datasets fail to generalize well across different demographic
groups, leading to systematic inaccuracies and unfair outcomes.
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As automatic age estimation becomes increasingly used in applications like foren-
sics [7] and surveillance, this facial recognition sub-task has garnered significant research
attention. This study focuses on improving the fairness of age estimation models, specifi-
cally addressing racial bias.

Utilizing the UTKFace and APPA-REAL datasets, chosen for their demographic diver-
sity and inclusion of labels such as real age and ethnicity necessary for this research, we
investigate the impact of unbalanced training data on model performance and bias. The
primary research questions are as follows: (1) How does adjusting dataset composition
affect the performance of age estimation models? (2) Can rebalancing datasets mitigate
bias across different ethnic groups? These questions are crucial for understanding how to
develop more equitable and accurate facial recognition systems. Rather than focusing on
outperforming the state-of-the-art on these two datasets, we aim to:

• Analyze the relationship between dataset composition and both overall and ethnicity-
specific model performance;

• Quantify the extent to which dataset rebalancing can mitigate bias in age estima-
tion models;

• Determine whether dataset rebalancing alone is sufficient or if it should be combined
with other bias mitigation techniques.

By addressing these objectives, this study aims to contribute to the development of
fairer and more accurate age estimation models, ultimately enhancing the reliability and
equity of facial recognition technology.

Age estimation can be tackled through various methods, including manual feature
extraction techniques and deep learning models like Convolutional Neural Networks
(CNNs). Researchers have extensively studied factors that influence facial aging, which
can be intrinsic (genetic) or extrinsic (environmental). Several methods for image repre-
sentation and age modeling have been explored. These include anthropometric models,
active shape models (ASMs), active appearance models (AAMs), aging pattern subspace
(AGES), age manifolds, appearance models, and hybrid models. Additionally, feature
extraction techniques such as Gabor filters, linear discriminant analysis (LDA), local binary
patterns (LBPs), local directional patterns (LDPs), local ternary patterns (LTPs), gray-level
co-occurrence matrix (GLCM), spatially flexible patches (SFPs), Grassmann manifolds, and
biologically inspired features (BIFs) have also been investigated [8].

Angulu et al. (2018) surveyed various age estimation techniques, summarizing the
Mean Absolute Error (MAE) and Cumulative Score (CS) of different age or age-group
estimation models. They found that hybrid approaches, combining classification and
regression, generally outperform using either method alone. Furthermore, deep learning
methods, particularly CNNs, have demonstrated promising results, often surpassing
traditional methods [8].

ELKarazle et al. (2022) supported these findings by providing a comprehensive
overview of machine learning techniques for estimating age from facial images. They high-
lighted the challenges in this task, such as variations in aging patterns among individuals
due to genetics, lifestyle, health conditions, and environmental factors. Additionally, they
noted the limited availability of diverse and high-quality facial image datasets covering a
wide range of ages, genders, and ethnicities, as well as the variations in lighting, pose, and
facial expressions that influence overall age estimation accuracy and performance across
different ethnic groups. ELKarazle et al. concluded that deep learning models, especially
those based on transfer learning, generally outperform handcrafted models due to their
ability to learn complex features automatically [9].

This conclusion is further supported by another study where manual feature extraction
techniques were applied to the facial-age dataset and the UTK Face dataset. The resulting
filtered images were converted to scalars and fed to a Random Forest classifier and a
Support Vector classifier. When compared with a CNN, the CNN outperformed traditional
machine learning techniques for age classification by up to 40% [10]. This proven track
record of CNNs is why we have chosen to use them for our research purposes.
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As mentioned earlier, the age estimation problem has garnered significant attention
from researchers. An in-depth comparison of studies on age estimation, as well as dataset
imbalance mitigation, can be seen in Table 1.

Table 1. Comparison of previous work.

Paper Methodologies Advantages Disadvantages Main Findings

Analysis of Race and
Gender Bias in Deep

Age Estimation
Models [11]

WideResNet
(UTKFace,

IMDB-WIKI) and
FaceNet

(IMDB-WIKI)

Utilizes pre-trained
models;

comprehensive
evaluation using
MAE and RMSE

Performance
inconsistency across

datasets; possible
impact of non-racial

factors like image
quality and pose

Male subjects have more
accurate age estimation;

inconsistent race bias
across datasets; suggests

makeup as a factor for
gender bias

FairFace: Face
Attribute Dataset for

Balanced Race, Gender,
and Age [12]

ResNet-34, evaluated
on FairFace,

UTKFace, LFWA+,
CelebA

Balanced dataset
across seven racial
groups; improved

cross-dataset
performance

Potential biases in
external datasets;

limited evaluation
metrics

FairFace model shows
consistent performance

with less than 1% accuracy
discrepancy between

male/female and
White/non-White

classifications

Age and Gender
Prediction From Face

Images Using
Attentional

Convolutional
Network [13]

Residual Attention
Network (RAN) and

ResNet

Attention
mechanisms for
important facial

regions; ensemble
model improves

performance

Requires complex
model training;

potential overfitting

Ensemble model
outperforms individual

models in age and gender
prediction accuracy

An Intelligent Human
Age Prediction from

Face Image Framework
Based on Deep

Learning
Algorithms [14]

Deep Convolutional
Neural Network

(DCNN) with Cuckoo
Search (CS)

High accuracy and
computational

efficiency; novel use
of CS for

optimization

Complexity in
preprocessing; requires

extensive
computational

resources

DCNN-CS model
outperforms other

methods like CNN, DNN,
LSTM, and SVR in

accuracy and efficiency

Age Estimation on
Human Face Image

Using Support Vector
Regression and
Texture-Based
Features [15]

SVR with LBP, LPQ,
and BSIF for feature

extraction

Effective feature
extraction methods;
combines multiple

texture features

Limited to
texture-based features;

high
computational cost

Combination of BSIF and
LPQ features with a PCA
dimension of 70 achieves

the best MAE

Age estimation via face
images: a survey [8]

Various validation
strategies;

multi-manifold
metric learning

Comprehensive
overview;

emphasizes
validation strategies

Does not provide new
experimental results;

limited practical
applications

Highlights the importance
of validation strategies to

avoid overfitting and
enhance generalization

From apparent to real
age: gender, age, ethnic,

makeup, and
expression bias analysis

in real age
estimation [16]

CNN with bias
correction on
predictions

Addresses bias
correction; improves
real-age estimation

Limited to specific
biases; requires an
extensive dataset

Using apparent labels for
training improves real-age
estimation; bias correction

enhances performance

Diagnosing deep
learning models for
high-accuracy age
estimation from a
single image [17]

Systematic diagnosis
with deep learning
models; multi-task

learning architectures

Comprehensive
evaluation of training

procedures;
multi-task approach

High complexity;
requires large datasets

Regression-based approach
with MAE loss favored;

multi-task learning
architecture outperforms

other models
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Table 1. Cont.

Paper Methodologies Advantages Disadvantages Main Findings

On the effect of age
perception biases for

real age regression [18]

VGG16 with face
attributes integration

Incorporates human
perception biases;

improves age
estimation accuracy

Requires complex
model adaptation;
extensive training

Incorporating face
attributes enhances age

estimation; attribute-based
analysis reveals influence
of gender, race, happiness,

and makeup

A survey of Methods
for Managing the
Classification and
Solution of Data

Imbalance Problem [19]

Oversampling
(SMOTE, ADASYN),
Undersampling (RUS,
T-Link), SVM, KNN,

Naïve Bayes,
Decision Tree,

Bagging, Boosting
(AdaBoost, RUSBoost,

SMOTEBoost)

Highlights methods
that improve
minority class

prediction and reduce
class imbalance
impacts; hybrid

methods often yield
better accuracy

Increased
computational cost;

potential information
loss during

undersampling;
challenges with

high-dimensional data

Data imbalance remains a
critical challenge impacting

classifier performance;
hybrid and ensemble

methods are effective but
computationally intensive

Addressing the Class
Imbalance Problem in
Medical Datasets [20]

SMOTE
oversampling,
cluster-based

undersampling,
decision tree, Fuzzy

Unordered Rule
Induction Algorithm

Balances data;
improves minority

class prediction;
effective for

medical datasets

Increased
computational cost;

complexity in
implementation

Modified cluster-based
undersampling method
outperforms traditional
methods; SMOTE shows

good
classification outcome

Imbalanced Dataset
Classification and

Solutions: A
Review [21]

Data-level techniques
(SMOTE, ADASYN),

Algorithm-level
(cost-sensitive

learning), Ensemble
methods (Bagging,

Boosting)

Comprehensive
review of techniques;

applicable across
various domains

Complexity of
implementation; lack of
empirical validation for

some techniques

Techniques like SMOTE
and cost-sensitive learning

are effective; method
choice should be

dataset-specific for
optimal results

Handling imbalanced
datasets: A review [22]

Various re-sampling
techniques (random

oversampling,
undersampling),

cost-sensitive
learning, ensemble
methods (boosting,
bagging), feature

selection

Comprehensive
overview; highlights
multiple approaches;

practical
recommendations

No single best method;
some techniques can
lead to overfitting or

loss of useful data

Emphasizes the need for a
tailored approach based on

dataset characteristics;
recommends ensemble

methods and
cost-sensitive learning

Previous works, such as the analysis by Puc et al. (2020) [11], investigate the perfor-
mance of pre-trained age estimation models on datasets like UTKFace and APPA-REAL
across different race and gender groups. They find that models tend to be more accurate for
males than females, suggesting gender bias. Additionally, performance differences across
races show inconsistent variations between datasets, indicating that factors like image qual-
ity and pose may also impact accuracy. While Puc et al. (2020) [11] acknowledge potential
dataset imbalance, they do not actively manipulate the dataset to mitigate bias. Our study
specifically investigates the effects of rebalancing datasets to achieve a more equitable
representation of different racial groups, providing concrete evidence of rebalancing as a
bias mitigation strategy.

Karkkainen and Joo (2019) [12] introduce the FairFace dataset to mitigate racial bias in
facial attribute datasets. However, they do not explore the impact of unbalanced training
data on model performance and bias as we have. Their use of age ranges rather than exact
ages complicates direct comparison with our work, which focuses on precise age regression.
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Despite achieving relatively comparable performance across racial groups, their accuracy
remains around 60%.

Abdolrashidi et al. (2020) [13] focus on improving the accuracy of age and gender
prediction using an ensemble of attentional and residual convolutional neural networks.
Although they utilize the demographically diverse UTKFace dataset, they do not analyze
the impact of dataset imbalance on model performance across ethnicities or genders. Their
study highlights challenges in age and gender prediction due to intra-class variations
but does not investigate bias mitigation strategies. Our work extends their findings by
specifically addressing dataset imbalance and exploring techniques to mitigate bias.

Sathyavathi and Baskaran (2023) [14] focus on improving age prediction accuracy us-
ing a deep learning framework combining a Deep Convolutional Neural Network (DCNN)
with a Cuckoo Search (CS) algorithm. While their datasets (UTKFace, FGNET, CACD) are
diverse, they do not analyze the effect of dataset composition on performance for specific
ethnic groups or explore bias mitigation strategies. Their study mentions potential issues
with capturing relevant features for accurate age estimation but does not delve deeper into
these issues or investigate their causes.

Amelia and Wahyono (2022) [15] aim to improve age estimation accuracy using texture-
based features and Support Vector Regression (SVR). They acknowledge the limitations
of their dataset, which primarily consists of images from Western countries and may not
perform well on Asian images due to underrepresentation. This suggests potential bias,
but this has not been deeply investigated in their study.

The survey on age estimation by Angulu et al. (2018) [8] discusses dataset challenges
but does not deeply explore imbalances related to ethnicity. Our research targets the critical
issue of dataset imbalance, ensuring fairness and accuracy across diverse ethnic groups.

The paper by Xing et al. (2019) [17] explores model architectures but does not ex-
tensively evaluate performance across diverse ethnic groups. Our research meticulously
assesses accuracy degradation concerning ethnicity, providing valuable insights into algo-
rithmic biases in facial recognition systems.

The study by Clapes et al. (2018) [16] analyzes biases in apparent age estimation and
leverages this to improve real age estimation. They identify target bias (gender, ethnicity,
makeup, facial expression) and guess bias (biases introduced by guessers). Although they
do not explicitly investigate the impact of unbalanced training data, their work touches on
the issue of bias in age estimation models.

Jacques et al. (2019) [18] focus on improving real-age estimation by incorporating
apparent age and facial attributes into an end-to-end deep learning model. They highlight
the importance of considering biases related to facial attributes in age estimation but do
not address dataset imbalance or rebalancing techniques directly. Their work identifies
several issues in existing methods, such as bias in age perception influenced by various
factors, including gender, race, facial expression, and makeup, affecting the accuracy of age
estimation models.

Survey of Methods for Managing the Classification and Solution of Data Imbalance
Problem (2020) by Hasib et al. [19] provides an extensive review of methods addressing
class imbalance in datasets. This paper categorizes methodologies into data-level methods,
algorithm-level methods, ensemble methods, and hybrid methods. Data-level methods
include oversampling techniques like SMOTE and ADASYN, which generate synthetic
data to balance class distributions, and undersampling techniques like RUS and T-Link,
which reduce the size of the majority class to balance the dataset. Algorithm-level methods
focus on enhancing classifiers like SVM, KNN, Naïve Bayes, and Decision Trees to handle
imbalanced data.

Ensemble methods such as Bagging and Boosting combine multiple algorithms to im-
prove classification performance. The paper also highlights hybrid methods that integrate
data sampling and algorithm boosting to address class imbalance effectively. The study
emphasizes the computational challenges associated with these methods, particularly in
handling high-dimensional data and ensuring minimal information loss during sampling.
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Overall, the paper concludes that while hybrid and ensemble methods provide significant
improvements, they come with increased computational costs and complexity.

The paper “Addressing the Class Imbalance Problem in Medical Datasets” by Rahman
and Davis (2013) [20] investigates the performance of oversampling and undersampling
techniques to balance cardiovascular data. The methodologies used include the SMOTE
oversampling technique and a cluster-based undersampling technique. The advantages of
this approach are that it balances the data, improves minority class prediction, and is effec-
tive for medical datasets. However, it has disadvantages, such as increased computational
cost and complexity in implementation. The main finding of the paper is that the modified
cluster-based undersampling method outperforms traditional methods, and SMOTE shows
a good classification outcome.

In “Imbalanced Dataset Classification and Solutions: A Review” (2014) by Dr. D.
Ramyachitra and P. Manikandan [21], the authors present a comprehensive review of
the challenges and solutions associated with imbalanced datasets. They explore various
methodologies, including data-level techniques like SMOTE, algorithmic-level methods
such as cost-sensitive learning, and ensemble methods like Bagging and Boosting. The
advantages of their approach include a detailed categorization of methods and their ef-
fectiveness in different scenarios. However, the paper also highlights the complexity of
implementing these methods and the lack of empirical validation for some techniques.
Their main findings suggest that while techniques like SMOTE and cost-sensitive learning
are effective, the choice of method should be tailored to the specific characteristics of the
dataset to achieve optimal results.

Handling Imbalanced Datasets: A Review by Kotsiantis, Kanellopoulos, and Pintelas
(2006) [22] investigates various techniques for handling imbalanced datasets, which are
common in real-world classification problems where one class significantly outnumbers
the other. The authors categorize solutions into data-level and algorithmic-level methods.
At the data level, solutions include various forms of re-sampling, such as random over-
sampling, random undersampling, directed oversampling, and directed undersampling,
along with feature selection tailored for imbalanced datasets. Algorithmic-level solutions
involve adjusting misclassification costs and decision thresholds and employing one-class
learning methods. The review highlights the use of ensemble methods, such as boosting
and bagging, to improve classification outcomes by combining multiple models. The paper
emphasizes that while re-sampling methods can address imbalance, they may introduce
other issues like overfitting or loss of useful data. The review also discusses evaluation
metrics specific to imbalanced datasets, including ROC curves and precision–recall metrics.
The main finding is that no single method universally outperforms others, and the choice
of technique often depends on the specific characteristics of the dataset and the problem
at hand.

To address dataset imbalance, we explored various strategies to mitigate bias in age es-
timation models by adjusting the representation of different racial groups. Unlike previous
studies that employed advanced techniques and combinations such as SMOTE, ADASYN,
and ensemble methods, our approach systematically reduced the sample size of specific
racial groups while keeping others constant to observe the impact on model performance.

From our experimentation, we observed that dataset variations significantly influence
the Mean Absolute Error (MAE) and standard deviation across different ethnic groups.
For instance, reducing the sample size of the Asian group by 90% resulted in an overall
MAE of 5.4808 and a standard deviation of 0.3015, indicating improved performance
consistency compared to the original dataset (Overall MAE: 4.8925, Standard Deviation:
0.7401). However, reducing samples from other groups did not always yield better results,
highlighting the complexity of achieving balanced performance across all demographics.

In some cases, balancing datasets by reducing samples from overrepresented groups
led to lower standard deviations and more equitable performance across different racial
groups. For example, balancing the White group to 20% and 40% yielded standard devia-
tions of 0.0440 and 0.2451, respectively, indicating more stable performance.
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Our findings suggest that while advanced techniques like SMOTE and ensemble meth-
ods have their merits, a systematic and simpler approach to adjusting group representation
can also provide valuable insights and potentially enhance fairness in model performance.
This novel approach of selectively reducing samples from specific groups may complement
existing techniques and offer new perspectives in future research.

In conclusion, our study demonstrates that dataset rebalancing can effectively mitigate
bias and improve the equity of age estimation models. By systematically analyzing the
impact of various dataset compositions, we provide a comprehensive understanding of
how different approaches affect model performance and fairness. Our findings contribute
to the ongoing efforts to develop fairer and more accurate facial recognition technologies,
ultimately advancing the field toward more equitable and unbiased solutions.

2. Materials and Methods

This study utilizes two publicly available datasets for experiments: the UTKFace
dataset [23] and the APPA-REAL dataset [24]. These datasets were chosen for their demo-
graphic diversity and labels such as real age, ethnicity, and gender. Detailed composition
of both datasets is provided in Table 2.

Table 2. Overview of the two datasets.

Name
Total Number of

Samples
Gender Race

Age Range
Male Female White Black Asian Indian Others

UTKFace 23,705 12,391 11,314 10,078 4526 3434 3975 1692 1–116
APPA-REAL 7591 3818 3773 6686 231 674 1–100

The UTKFace dataset contains 23,705 samples, while the APPA-REAL dataset contains
7591 samples. We split the UTKFace dataset into training and test sets, whereas the APPA-
REAL dataset comes pre-split into training, test, and validation sets. As shown in Table 1,
both datasets have an equal number of male and female samples, and they cover a wide
age range from 1 to 116 years.

However, there are disparities in racial representation. Both datasets are heavily
weighted towards the White race. Although the UTKFace dataset does not have an equal
number of samples across different race groups, it has more samples of Black and Asian
groups compared to the APPA-REAL dataset. The UTKFace dataset also includes images
of the Indian group and others representing ethnicities such as Hispanic, Latino, and
Middle Eastern.

Since the APPA-REAL dataset contains only three ethnic groups, we combined the
Black and Indian groups from the UTKFace dataset into one and discarded the “Others”
group. This decision was made to facilitate comparison, as the “Others” group contains a
mix of ethnicities.

The only preprocessing steps applied to these images involved scaling them to a size
of 224 × 224 × 3, as required by the VGG19 model [25], and using its preprocess_input
function, which centers the color channels at zero and converts the images from RGB to BGR.
Figure 1 shows a few example images from both the UTKFace and APPA-REAL datasets.

Due to the proven track record of CNNs and their superior performance compared
to manual feature extraction techniques, we chose to utilize them in our experiments.
CNNs are deep learning models specifically designed to process and analyze visual data
by automatically detecting features such as edges, textures, and shapes from raw pixel data
through layers of convolutional filters. This enables CNNs to effectively recognize patterns
and objects, making them particularly suited for tasks such as image classification, object
detection, and age estimation from facial images.

We opted to employ CNNs with transfer learning for several advantages. Transfer
learning harnesses knowledge acquired from a pre-trained model on a large dataset for a
related task, significantly reducing training time and data requirements. Pre-trained models
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have already gleaned valuable features from extensive datasets, enhancing performance on
new tasks, particularly with smaller datasets. Additionally, transfer learning enables the
utilization of sophisticated models without the need for extensive computational resources
to train from scratch. Moreover, earlier layers of transfer learning models, designed for
extracting generic features, can be fine-tuned for specific applications.
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We employed widely recognized CNN models extensively used in scientific studies:
VGG16 [25], VGG19 [25], ResNet50 [26], and MobileNetV2 [27], all pre-trained on the
ImageNet [28] dataset. These models were selected for their proven effectiveness in feature
extraction from complex visual data, including facial images, which is crucial for accurate
age estimation. Specifically:

• VGG19 and ResNet50 are known for their deep architectures, allowing them to cap-
ture intricate features through multiple layers of convolutions. This depth can be
advantageous in learning hierarchical representations of facial features relevant to age;

• MobileNetV2 is chosen for its efficiency and suitability for mobile and embedded
applications, offering a balance between computational efficiency and performance,
which is valuable for practical deployment scenarios;

• VGG16 offers a simpler architecture compared to VGG19 but still maintains strong
performance in various computer vision tasks, making it a reliable benchmark in our
comparative analysis.

It is important to note that intra-class performance variation was similar between
these different models. VGG19 had the best performance on the original and equally
oversampled dataset versions; however, all models needed to be opened for training to
achieve better performance. The specific layers opened for training varied among the
models, with optimal results achieved by progressively fine-tuning layers. Opening all
layers for training worsened the performance of all models, underscoring the importance
of selective fine-tuning.

In conclusion, while VGG19 emerged as the best-performing model in our specific
experimental setup, other models like ResNet50 and MobileNetV2 also showed competitive
performance. Future research could further explore the potential of ensemble methods and
other advanced CNN architectures, such as EfficientNet, to handle demographic variability
better and potentially enhance model fairness and accuracy.

Our primary objective was to optimize the models for predicting real age using the
UTKFace and APPA-REAL datasets.

To achieve this, we conducted a grid search, varying hyperparameters within empiri-
cally justified ranges. Grid search allowed us to systematically explore combinations of
hyperparameters to identify the set that resulted in the best model performance. Specifi-
cally, we tested different learning rates, batch sizes, and numbers of epochs within specified
ranges. The grid search involved training multiple instances of each model with different
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combinations of these hyperparameters and selecting the combinations that yielded the
lowest Mean Absolute Error (MAE) on the validation set.

The learning rate was varied within the range of 0.1 to 0.000001. This wide range
was chosen to balance between convergence speed and fine-grained adjustments. Higher
learning rates can lead to faster convergence but might overshoot optimal values, resulting
in poor performance. Lower learning rates allow for finer adjustments, improving the
model’s ability to converge to a more optimal solution. This range allows us to explore
different levels of model weight updates, ensuring we do not miss any optimal points that
might occur at different scales. The optimal learning rate for both datasets was 0.0001,
which minimized the MAE on the validation set.

Batch sizes were explored within the range of 16 to 128. This range was selected to
balance computational efficiency and model generalization. Smaller batch sizes, while
computationally more expensive, did not lead to better generalization compared to a batch
size of 64. Larger batch sizes utilized GPU capabilities more efficiently but sometimes led
to poorer generalization. The optimal batch size of 64 provided the best accuracy, balancing
computational efficiency and model generalization, and minimized the MAE observed
during the grid search.

The number of epochs was varied within the range of 30 to 100. This range was chosen
to find the point where the model achieves optimal performance without overfitting. More
epochs help the model learn more complex patterns in the data but also increase the risk
of overfitting, especially with limited data. This range is generally sufficient to allow the
model to learn complex patterns while giving us the flexibility to stop training once the
validation error stabilizes. Training for 60 epochs was sufficient for convergence on the
APPA-REAL dataset, while 50 epochs were optimal for the UTKFace dataset. Beyond these
points, additional epochs did not significantly reduce the validation error and sometimes
led to overfitting.

Additionally, we evaluated different optimizers, such as Adam and SGD, assessing
their impact on training dynamics and convergence speed. The configuration of fully
connected layers at the model’s top was also varied to optimize age estimation performance.
Throughout our experiments, we progressively opened layers one by one and, eventually,
the entire base model for training to evaluate and optimize performance comprehensively.

Both models used the Adam optimizer and benefitted from fine-tuning of the base
model. However, the specific layers unlocked for training differed: fine-tuning commenced
from layer 17 for the APPA-REAL dataset, whereas optimal results for the UTKFace dataset
were achieved by fine-tuning from layer 7 onwards. To mitigate overfitting due to the
relatively small dataset sizes, we applied data augmentation techniques, including im-
age rotation (with a range of 40 degrees), width and height shift (0.2), zoom (0.2), and
horizontal flip. Additionally, a random state of 42 was set for both oversampling and
data augmentation.

By systematically adjusting these parameters through grid search, we aimed to find
the best combination that minimized the MAE on the validation set, ensuring robust
and generalizable model performance. The insights gained into the relationship between
parameter settings and model performance are critical for optimizing deep learning models
for age estimation tasks.

Our primary focus was not solely on achieving the highest possible accuracy but on
understanding the relationship between dataset composition and model performance across
different groups. Using grid search, we obtained well-performing hyperparameters that
adequately meet our research objectives. While grid search provides a systematic approach
to hyperparameter tuning, it is computationally expensive. Future work could incorporate
advanced techniques such as Random Search or Bayesian Optimization, which sample
hyperparameters from specified distributions, potentially offering better performance with
reduced computational cost. Although our goal was not to achieve state-of-the-art overall
performance, the insights gained into group performance relationships are robust with the
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current tuning. Exploring these advanced tuning methods in future studies could further
enhance both overall accuracy and fairness.

Following the identification of the best-performing model from our initial evaluation
of the original dataset composition, all subsequent tests were conducted exclusively on this
model. Its architecture is illustrated in Figure 2.
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As illustrated in Figure 2, our model takes an input size of 224 × 224 × 3. The archi-
tecture starts with a block containing two convolutional layers followed by a max pooling
layer. Max pooling is a downsampling technique used to reduce the spatial dimensions of
the input representation, which helps to lower computational load, control overfitting, and
enhance the network’s robustness. This step is essential in CNN architectures to simplify
the representation while preserving important features.

Next, we have another block with two convolutional layers and a max pooling layer.
This is followed by a third block with four convolutional layers and a max pooling layer.
The fourth and fifth blocks each consist of four convolutional layers and a max pooling
layer. This totals 16 convolutional layers in the network.

After the convolutional and pooling layers, a flattening layer converts the multi-
dimensional tensor into a one-dimensional vector. This transformation is crucial because it
allows the output from the convolutional and pooling layers to be fed into fully connected
(dense) layers for final classification or regression tasks, effectively bridging the two parts
of the network.

Following the flattening layer are two dense layers with 4,096 nodes each, then another
dense layer with 100 nodes, and finally, the output layer with a single node. The hidden
convolutional and dense layers utilize the ReLU (Rectified Linear Unit) activation function,
which is widely used in CNNs. ReLU introduces non-linearity into the model, enabling it
to learn complex patterns and functions. It is computationally efficient, involving a simple
operation of setting negative values to zero while keeping positive values unchanged,
and it also helps mitigate the vanishing gradient problem. Since we are dealing with a
regression task, the activation function used in the output layer is the linear activation
function. The linear activation function does not transform its input, meaning the output of
the neuron is directly equal to its input.

Now that we have fine-tuned our base model architectures and hyperparameters, we
proceeded with the experiment. To thoroughly assess the influence of dataset composition
on model performance—both overall and for specific demographic groups—we oversam-
pled both datasets until the number of samples in the Black and Asian groups matched that
of the dominant White group. This oversampled dataset serves as our baseline alongside
the original dataset composition results.
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The purpose of oversampling the minority groups to match the dominant group was to
facilitate controlled reduction experiments, where we systematically reduced each group’s
sample size from 10% to 100%. This allowed us to measure performance differences for the
reduced group and observe how other groups were affected. We compared these results
against the original dataset composition, the equally oversampled dataset composition,
and all variations in between.

This method enabled us to identify which variations in dataset composition minimized
performance variance between groups.

3. Results

In our analysis, we used Mean Absolute Error (MAE), Standard Deviation (SD),
Disparate Impact (DI), and Equality of Opportunity (EoO) to evaluate the performance of
our VGG19 model across different dataset compositions and ethnic groups. The formula
for Mean Absolute Error (MAE) is given by:

MAE =
1
n

n

∑
i=1

|yi − ŷi

∣∣∣∣∣
where yi is the actual age, ŷi is the predicted age, and n is the total number of samples.

To assess the variability in model performance between the ethnic groups (White, Black,
and Asian), we calculated the standard deviation of the MAEs for these groups. The MAE
for each group was computed separately and then used to determine the standard deviation.

The standard deviation (SD) of the MAEs is given by:

SD =

√
1
3∑3

j=1

(
MAEj − MAE

)2

1. MAEj represents the MAE for the j-th group (White, Black, or Asian).
2. MAE is the mean MAE across the three groups.

Calculating the SD of the MAEs helps in understanding the extent of performance
variability among different groups, highlighting any potential biases or inconsistencies in
the model’s predictions.

Additionally, incorporated fairness metrics, Disparate Impact and Equality of Oppor-
tunity, further assess the fairness of our model across different ethnic groups. These metrics
are defined as follows:

Disparate Impact:

DI =
MAEgroup

MAEWhite

DI measures the ratio of the MAE for a specific group to that of the White group. A
DI value of 1 indicates perfect parity, suggesting no disparate impact. Values less than 1
indicate a potential disadvantage for the group in question.

Equality of Opportunity:

EoO = 1 −
∣∣∣∣ MAEgroup − MAEWhite

MAEWhite

∣∣∣∣
EoO assesses how close the MAE of a specific group is to that of the White group,

adjusted for the scale of the White group’s MAE. An EoO value close to 1 suggests that both
groups experience similar error rates, indicating fairness in terms of model performance.

By employing these metrics, we can better understand and mitigate any potential
biases our model may exhibit, ensuring that it performs equitably across different demo-
graphic groups.

The APPA-REAL dataset, which is highly unbalanced with the Black and Asian
groups together accounting for less than 10% of the available data, surprisingly shows
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relatively good results in terms of MAE variations across these groups, with a standard
deviation of 0.19 on a model trained on the dataset’s original form. It might be assumed
that oversampling to equalize group sizes would result in equal performance across these
groups or at least reduce the MAE deviation. However, our findings suggest otherwise.

The model trained with 20% fewer samples from the White group exhibited the
smallest standard deviation of 0.04, with the White and Black groups performing almost
equally well, having MAEs of 7.1676 and 7.1663, respectively, and the Asian group slightly
better at 7.0736. The original dataset composition resulted in only the 7th smallest standard
deviation among groups, with the oversampled equal dataset ranking 8th.

This indicates that six other dataset compositions performed better in terms of reducing
MAE variation across groups, with the 20% reduced White group dataset achieving a
standard deviation reduction of 78.94% compared to the original dataset and an 80.95%
reduction compared to the equally oversampled dataset. The overall best MAE was
achieved with the original dataset composition (6.45), whereas the most equal model had
an overall MAE of 7.16, suggesting that achieving equal performance across groups comes
at a small cost to overall performance.

The worst-performing model was trained with the dataset composition where the
White group was completely omitted, resulting in an overall MAE of 8.89 and a standard
deviation of 0.94. In comparison, the most equal model had a 95.74% smaller variation.
Table 3 presents these results, sorted by the least standard deviation.

Table 3. Comparison of all variations on the APPA-REAL dataset sorted by lowest standard deviation
between groups performance.

Dataset Variations Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Deviation

DI
Black
Group

EoO
Black
Group

DI Asian
Group

EoO
Asian
Group

White 20% 7.1603 7.1676 7.1663 7.0736 0.0440 0.9998 0.9998 0.9869 0.9869
Black 60% 6.7788 6.764 6.7813 6.9478 0.0828 1.0026 0.9974 1.0272 0.9728
Asian 90% 6.9338 6.956 6.9148 6.6874 0.1181 0.9941 0.9941 0.9613 0.9613
Black 70% 6.7632 6.7431 7.1447 6.8198 0.1740 1.0595 0.9405 1.0114 0.9886
Black 30% 6.7834 6.7537 7.2087 6.9303 0.1872 1.0673 0.9327 1.0261 0.9739
White 10% 6.8679 6.8687 7.1783 6.7177 0.1917 1.0451 0.9549 0.978 0.978
Original 6.4588 6.4241 6.4529 6.8593 0.1987 1.0045 0.9955 1.0677 0.9323
Equal 6.7129 6.4547 6.9672 6.5739 0.2189 1.0794 0.9206 1.0185 0.9815
White 40% 7.1286 7.153 7.3405 6.7528 0.2451 1.0262 0.9739 0.944 0.944
Asian 50% 6.6626 6.6547 7.1479 6.5305 0.2666 1.0741 0.9259 0.9813 0.9813
White 70% 7.3275 7.3464 7.625 6.9741 0.2666 1.0379 0.9621 0.9493 0.9493
Asian 100% 6.8969 6.8269 7.2377 7.5441 0.2938 1.0602 0.9398 1.1049 0.8951
Black 10% 6.7724 6.77 7.2787 6.5685 0.2988 1.0751 0.9249 0.9703 0.9703
Asian 70% 6.8689 6.9326 6.7004 6.2145 0.2991 0.9665 0.9665 0.8963 0.8963
Black 40% 7.1176 7.0839 7.7754 7.2036 0.3017 1.0977 0.9023 1.0169 0.9831
Asian 10% 6.6531 6.6385 7.2428 6.5518 0.3073 1.0910 0.909 0.9869 0.9869
Asian 40% 6.7736 6.731 7.5072 6.927 0.3295 1.1152 0.8848 1.0291 0.9709
White 30% 7.1779 7.2144 7.49 6.6156 0.3650 1.0382 0.9621 0.9169 0.9169
Black 90% 6.8216 6.8529 7.2218 6.2795 0.3877 1.0538 0.9462 0.9162 0.9162
Asian 30% 6.8468 6.8523 7.4678 6.4999 0.3999 1.0898 0.9102 0.949 0.949
Asian 60% 7.1463 7.1156 8.0009 7.1076 0.4192 1.1244 0.8756 0.9989 0.9989
Asian 20% 6.7844 6.7327 7.733 6.9448 0.4303 1.1486 0.8514 1.0315 0.9685
White 50% 7.224 7.2357 7.9872 6.7413 0.5122 1.1039 0.8961 0.9317 0.9317
White 60% 7.6724 7.7254 8.1431 6.8498 0.5389 1.0541 0.9459 0.8866 0.8866
Black 80% 6.7672 6.762 7.7404 6.3828 0.5719 1.1447 0.8553 0.9439 0.9439
Black 50% 6.8294 6.845 7.7236 6.2425 0.6081 1.1285 0.8715 0.9119 0.9119
White 90% 8.2641 8.3888 8.039 6.9359 0.6191 0.9583 0.9583 0.8267 0.8267
Black 100% 6.8285 6.7755 8.1289 6.8429 0.6227 1.2000 0.8000 1.0100 0.9900
White 80% 7.6813 7.7504 8.1856 6.6583 0.6424 1.0562 0.9438 0.8589 0.8589
Black 20% 6.8741 6.8916 7.8781 6.2144 0.6831 1.1431 0.8569 0.9017 0.9017
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Table 3. Cont.

Dataset Variations Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Deviation

DI
Black
Group

EoO
Black
Group

DI Asian
Group

EoO
Asian
Group

Asian 80% 6.7975 6.7792 8.0498 6.4349 0.6944 1.1873 0.8127 0.9491 0.9491
White 100% 8.8956 9.1258 7.3192 6.9751 0.9432 0.8022 0.8022 0.7646 0.7646

For better clarity of the changes in model performance, we have included Figure 3
which shows the overall MAE and standard deviation for different dataset variations.
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To further understand the fairness of these models, we analyze disparate impact (DI)
and equality of opportunity (EoO) metrics. These metrics help us assess how different
demographic groups are affected by the model’s performance.

Disparate Impact (DI) is a measure that indicates whether one group is adversely
affected compared to another. A DI value close to 1 indicates that the model treats different
groups equitably, while a value significantly different from 1 indicates potential bias.

Figure 5 shows the Disparate Impact for the Black and Asian groups across various
dataset compositions.
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For the White 20% variation, the model shows DI values of 0.9998 for both Black and
Asian groups, suggesting that this variation achieves almost perfect fairness across these
groups. In the Black 60% variation, the DI values are 1.0026 for the Black group and 1.0272
for the Asian group. These values are close to 1, indicating minimal disparate impact
and suggesting that this variation also promotes fairness. The Asian 90% variation has DI
values of 0.9941 for both groups, maintaining a balance in treatment across demographic
groups and ensuring minimal bias.

Interestingly, despite equalizing the sample sizes, the DI values for the Equal Dataset
variation are 1.0794 for the Black group and 1.0185 for the Asian group. These values
suggest a slight bias, indicating that mere equalization of dataset proportions does not
necessarily eliminate disparate impact.

Equality of Opportunity (EoO) measures whether different groups have the same
chances of achieving a favorable outcome. Like DI, an EoO value close to 1 indicates
equitable performance across groups.

Figure 6 shows Equality of Opportunity values for the Black and Asian groups across
various dataset compositions.
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In the White 20% variation, EoO values for this variation are 0.9998 for both the Black
and Asian groups, demonstrating that this model provides equal opportunity to these
groups. For the Black 60% variation, the EoO values are 0.9974 for the Black group and
0.9728 for the Asian group, indicating good equality of opportunity with slight variations.
The Asian 90% variation shows EoO values of 0.9941 for both groups, suggesting that the
model performs equitably across these demographics.

Conversely, the EoO values for the Equal Dataset variation are 0.9206 for the Black
group and 0.9815 for the Asian group. These values reflect some inequity, highlighting that
equal dataset proportions do not automatically translate to equal opportunity.

Examining the lower-performing models, particularly those at the bottom of the
table, reveals additional insights. For instance, the White 100% variation, with the highest
standard deviation (0.9432), has DI values of 0.8022 for both Black and Asian groups,
indicating a significant disparate impact. The EoO values for this variation are 0.7646,
showing considerable inequality of opportunity. This suggests that completely excluding
certain demographic groups can lead to substantial biases and unfair outcomes.

Another example is the Black 100% variation, which has a standard deviation of 0.6227.
The DI values are 1.2000 for the Black group and 1.0100 for the Asian group, indicating a
higher disparate impact, especially for the Black group. The EoO values are 0.8000 for the
Black group and 0.9900 for the Asian group, further demonstrating significant inequalities
in opportunity.

These examples illustrate that dataset compositions with extreme imbalances or com-
plete exclusions of certain groups tend to exhibit higher disparities in both impact and
opportunity. Therefore, it is crucial to consider both performance metrics and fairness
measures when evaluating and selecting dataset variations for training models. The goal
is to achieve a balance that minimizes bias and promotes equitable outcomes across all
demographic groups.

Diving deeper into separate groups, we can observe in Table 4 how the MAE of a
group is responding to reductions in samples; we will first discuss the White group. The
performance of the White group alone is like that of the other groups, the best with the
original dataset composition with an MAE of 6.42, and the second best performing is the
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equal dataset, where, again, all the samples are still present. As can be seen in Table 4, there
is a definite worsening of performance the more samples we remove. The increase in MAE
is not linear. A reaction to a 10% decrease in samples can vary from a 0.20% increase in
MAE for the group to 8.79%. It is clear, however, that decreasing the number of samples by
10% does not automatically equate to a 10% decrease in performance. Most of the time, the
worsening rate is far below 10%, and it never even reaches such an immediate decrease.
The standard deviation increase also closely follows our pattern of more and more samples
being removed during training. The performance of the White group, when not being used
for training at all, equates to a 42.06% higher MAE during testing compared to the original
dataset and 41.38% compared to the equally oversampled dataset. Clearly, the presence of
these samples does matter.

Table 4. Performance changes upon APPA-REAL White group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

Black
Group
Com-
pared to
Original

Black
Group
Com-
pared to
Equal

Asian
Group
Com-
pared to
Original

Asian
Group
Com-
pared to
Equal

Original 6.4588 6.4241 6.4529 6.8593 0.1987
Equal 6.7129 6.4547 6.9672 6.5739 0.2189 0.48% 0.48% 7.97% −4.16%
10% 6.8679 6.8687 7.1783 6.7177 0.1917 6.41% 6.41% 6.92% 11.24% 3.03% −2.06% 2.19%
20% 7.1603 7.1676 7.1663 7.0736 0.0440 4.35% 11.04% 11.57% 11.06% 2.86% 3.12% 7.60%
30% 7.1779 7.2144 7.49 6.6156 0.3650 0.65% 11.77% 12.30% 16.07% 7.50% −3.55% 0.63%
40% 7.1286 7.153 7.3405 6.7528 0.2451 −0.85% 10.82% 11.35% 13.76% 5.36% −1.55% 2.72%
50% 7.224 7.2357 7.9872 6.7413 0.5122 1.16% 12.10% 12.63% 23.78% 14.64% −1.72% 2.55%
60% 7.6724 7.7254 8.1431 6.8498 0.5389 6.77% 19.69% 20.26% 26.19% 16.88% −0.14% 4.20%
70% 7.3275 7.3464 7.625 6.9741 0.2666 −4.91% 13.81% 14.36% 18.16% 9.44% 1.67% 6.09%
80% 7.6813 7.7504 8.1856 6.6583 0.6424 5.50% 20.07% 20.65% 26.85% 17.49% −2.93% 1.28%
90% 8.2641 8.3888 8.039 6.9359 0.6191 8.24% 29.96% 30.58% 24.58% 15.38% 1.12% 5.51%
100% 8.8956 9.1258 7.3192 6.9751 0.9432 8.79% 41.38% 42.06% 13.42% 5.05% 1.69% 6.10%

What is also very interesting to see is that the Black group’s performance also worsens
as more and more samples of the White group are removed. With the highest MAE increase
for that group at 26.85% compared to the performance on the original dataset, when 80%
of samples from the White group are removed. Interestingly, performance starts to get
better again as 90% or 100% of the White group samples are removed, with the MAE
increase for the Black group compared to the original performance being 13.42% when
100% of White group samples are removed. The Black group is less reactive compared to
its performance on the equally oversampled dataset, with variations in performance never
reaching a 20% increase but usually being somewhere around 5%. When 100% of White
samples are removed, the performance for the Black group compared to the Equal dataset
is worse by only 5.05%.

The Asian group performance stays relatively the same regardless of the number of
White group samples removed, with the increase in its MAE varying from −3.55% to 3.12%
compared to the original dataset performance. The Asian group seems to be a bit more
reactive compared with the performance on the Equal dataset, with MAE increases of
around 6%. Clearly, the White and Black groups are more correlated.

Examining the performance of the Black group, as shown in Table 5, reveals a notice-
able degradation as a percentage of its samples are removed. Surprisingly, there is not a
linear correlation between increased sample removal and worsening performance. For
instance, removing 10% of samples results in a 12.80% increase in MAE, while removing
20% leads to a 22.09% increase compared to the original dataset performance. However,
beyond this point, the MAE increase fluctuates between 5.09% and 20.49%, suggesting that
performance stabilizes or even improves when more samples are removed rather than just
10% or 20%. Notably, only when the Black group is entirely excluded from training do we
observe the highest MAE increase, reaching 25.97% compared to the original dataset. This



Mathematics 2024, 12, 2358 17 of 29

increase is significantly lower than that observed for the White group, indicating greater
resilience to underrepresentation among Black group samples.

Table 5. Performance changes upon APPA-REAL Black group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

White
Group
Com-
pared to
Original

White
Group
Com-
pared to
Equal

Asian
Group
Com-
pared to
Original

Asian
Group
Com-
pared to
Equal

Original 6.4588 6.4241 6.4529 6.8593 0.1987
Equal 6.7129 6.4547 6.9672 6.5739 0.2189 7.97% 7.97% 0.48% −4.16%
10% 6.7724 6.77 7.2787 6.5685 0.2988 4.47% 4.47% 12.80% 5.38% 4.88% −4.24% −0.08%
20% 6.8741 6.8916 7.8781 6.2144 0.6831 8.23% 13.07% 22.09% 7.28% 6.77% −9.40% −5.47%
30% 6.7834 6.7537 7.2087 6.9303 0.1872 −8.50% 3.47% 11.71% 5.13% 4.63% 1.04% 5.42%
40% 7.1176 7.0839 7.7754 7.2036 0.3017 7.86% 11.60% 20.49% 10.27% 9.75% 5.02% 9.58%
50% 6.8294 6.845 7.7236 6.2425 0.6081 −0.67% 10.86% 19.69% 6.55% 6.05% −8.99% −5.04%
60% 6.7788 6.764 6.7813 6.9478 0.0828 −12.20% −2.67% 5.09% 5.29% 4.79% 1.29% 5.69%
70% 6.7632 6.7431 7.1447 6.8198 0.1740 5.36% 2.55% 10.72% 4.97% 4.47% −0.58% 3.74%
80% 6.7672 6.762 7.7404 6.3828 0.5719 8.34% 11.10% 19.95% 5.26% 4.76% −6.95% −2.91%
90% 6.8216 6.8529 7.2218 6.2795 0.3877 −6.70% 3.65% 11.92% 6.67% 6.17% −8.45% −4.48%
100% 6.8285 6.7755 8.1289 6.8429 0.6227 12.56% 16.67% 25.97% 5.47% 4.97% −0.24% 4.09%

Interestingly, the Black group’s performance appears more resilient compared to the
Equal dataset, with MAE increases averaging around 10% across different tests, peaking
at a 16.97% increase when all samples are removed during testing. Regarding how other
groups react to reductions in Black group samples, there is not a clear correlation. The
White group’s MAE increase ranges from 4.97% to 10.27% and does not consistently show
higher increases when more Black group samples are removed. The Asian group shows a
slightly more reactive response to the removal of Black group samples compared to White
group samples, albeit not significantly. Removing Black group samples actually improves
Asian group performance, with MAE decreases ranging from −0.58% to −9.40% compared
to the original dataset when 20% of Black group samples are removed.

Regarding the Asian group, as reflected in Table 6, it appears to be the least reactive
to sample reductions. Interestingly, removing 70% of its samples results in a decrease
of 9.40% in MAE compared to the original dataset performance, suggesting improved
accuracy in some cases. Only when all samples are removed does the MAE increase by
9.98% compared to the original dataset and by 14.76% compared to the equal model. In
contrast, the White group shows little reaction to reductions in Asian group samples, with
MAE increases ranging consistently between 5% and 10%, regardless of the number of
Asian samples removed.

Table 6. Performance changes upon APPA-REAL Asian group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

White
Group
Com-
pared to
Original

White
Group
Com-
pared to
Equal

Black
Group
Com-
pared to
Original

Black
Group
Com-
pared to
Equal

Original 6.4588 6.4241 6.4529 6.8593 0.1987
Equal 6.7129 6.4547 6.9672 6.5739 0.2189 −4.16% −4.16% 0.48% 7.97%
10% 6.6531 6.6385 7.2428 6.5518 0.3073 −0.34% −0.34% −4.48% 3.34% 2.85% 12.24% 3.96%
20% 6.7844 6.7327 7.733 6.9448 0.4303 6.00% 5.64% 1.25% 4.80% 4.31% 19.84% 10.99%
30% 6.8468 6.8523 7.4678 6.4999 0.3999 −6.41% −1.13% −5.24% 6.67% 6.16% 15.73% 7.19%
40% 6.7736 6.731 7.5072 6.927 0.3295 6.57% 5.37% 0.99% 4.78% 4.28% 16.34% 7.75%
50% 6.6626 6.6547 7.1479 6.5305 0.2666 −5.72% −0.66% −4.79% 3.59% 3.10% 10.77% 2.59%
60% 7.1463 7.1156 8.0009 7.1076 0.4192 8.84% 8.12% 3.62% 10.76% 10.24% 23.99% 14.84%
70% 6.8689 6.9326 6.7004 6.2145 0.2991 −12.57% −5.47% −9.40% 7.92% 7.40% 3.84% −3.83%
80% 6.7975 6.7792 8.0498 6.4349 0.6944 3.55% −2.11% −6.19% 5.53% 5.03% 24.75% 15.54%
90% 6.9338 6.956 6.9148 6.6874 0.1181 3.92% 1.73% −2.51% 8.28% 7.77% 7.16% −0.75%
100% 6.8969 6.8269 7.2377 7.5441 0.2938 12.81% 14.76% 9.98% 6.27% 5.77% 12.16% 3.88%
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Conversely, the Black group exhibits more noticeable reactions, experiencing MAE
increases ranging from 3.84% to 24.75% when 80% of Asian group samples are removed
compared to the original dataset performance. Interestingly, the Black group’s perfor-
mance remains more stable compared to the equal oversampled dataset, suggesting that
oversampling generally helps stabilize performance.

The UTK Face dataset, while more balanced initially compared to the APPA REAL
dataset with a higher representation of Black and Asian groups, surprisingly does not
achieve equitable performance across groups as effectively as models trained on the APPA
REAL dataset. Overall, MAE is lower on the UTK dataset due to the larger number of
samples available for training. The top-performing model remains the one trained on
the original dataset, achieving an overall MAE of 4.89, followed closely by the equally
oversampled dataset at an MAE of 4.98.

Notably, the standard deviation across groups in the original dataset is 0.74. Contrary
to expectation, the equally oversampled dataset shows increased variation with a standard
deviation of 0.85, ranking 18th in terms of variation compared to the original dataset’s 5th
place. This underscores that mere equalization of dataset proportions is insufficient for
achieving balanced performance across demographic groups.

The model demonstrating the least deviation across groups involves removing 90% of
Asian group samples during training, resulting in a standard deviation of 0.30. Although
this model exhibits a higher overall MAE of 5.48 compared to the original (a 12.06%
increase) and the equally oversampled (a 10.04% increase) models, it significantly reduces
performance variation across groups by 59.45% compared to the original and by 64.70%
compared to the equally oversampled model. Clearly, the benefits of reduced group-wise
variation outweigh the slight increase in overall MAE.

Interestingly, the top four models in terms of variation reduction all involve some
reduction of Asian group samples during training, demonstrating that models perform
better as more Asian samples are removed. This approach also proved effective on the
APPA REAL dataset, ranking third in terms of group variation with a standard deviation
of 0.11.

Conversely, models that removed all samples from the White group during training
exhibited the highest variation (1.36), mirroring findings in the APPA REAL dataset. The
lowest five ranks also shared similarities with APPA REAL, with the complete removal of
Black group samples resulting in the fourth worst variation on the UTK dataset, akin to its
fifth place in APPA REAL.

Throughout our tests on the UTK dataset, a consistent trend emerged: the White group
typically exhibited the highest MAE (~5), closely followed by the Black group (~5), slightly
lower than the White group. Surprisingly, despite its initially lower sample count, the
Asian group consistently performed the best with an MAE of around 3. However, it was the
performance degradation of this group that ultimately led to more equitable performance
across all groups.

For a detailed overview of the experiment results on the UTK Face dataset sorted by
standard deviation, refer to Table 7.

Table 7. Comparison of all variations on the UTKFace dataset sorted by the lowest standard deviation
between groups’ performance.

Dataset
Variations

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Deviation

DI Black
Group

EoO Black
Group

DI Asian
Group

EoO Asian
Group

Asian 90% 5.4808 5.7351 5.4583 5.0036 0.3015 0.9517 0.9518 0.8724 0.8725
Asian 100% 5.3499 5.6983 5.2564 4.7976 0.3677 0.9225 0.9226 0.8417 0.8418
Asian 80% 5.1197 5.5972 5.2153 4.0006 0.6807 0.9318 0.9319 0.7147 0.7148
Asian 70% 5.178 5.5635 5.2437 3.908 0.7170 0.9425 0.9426 0.7025 0.7026
Original 4.8925 5.3772 5.0445 3.6674 0.7401 0.9381 0.9382 0.6820 0.6821
Asian 60% 5.1361 5.7023 5.2071 3.877 0.7707 0.9132 0.9133 0.6799 0.6800



Mathematics 2024, 12, 2358 19 of 29

Table 7. Cont.

Dataset
Variations

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Deviation

DI Black
Group

EoO Black
Group

DI Asian
Group

EoO Asian
Group

Black 10% 4.9504 5.4966 5.072 3.6505 0.7894 0.9227 0.9228 0.6643 0.6644
White 10% 5.028 5.5884 5.1332 3.7261 0.7926 0.9185 0.9186 0.6670 0.6671
Asian 40% 5.0608 5.6095 5.1833 3.7543 0.7934 0.9240 0.9241 0.6683 0.6684
White 20% 5.0549 5.6 5.1896 3.7361 0.7996 0.9267 0.9268 0.6672 0.6673
Asian 50% 5.2064 5.8149 5.2504 3.9063 0.8005 0.9030 0.9031 0.6717 0.6718
Black 50% 5.1155 5.5867 5.3529 3.7797 0.8024 0.9581 0.9582 0.6764 0.6765
Asian 20% 4.9849 5.5227 5.1505 3.6308 0.8183 0.9325 0.9326 0.6575 0.6576
Black 30% 5.2779 5.821 5.4611 3.8847 0.8408 0.9381 0.9382 0.6678 0.6679
Asian 30% 5.088 5.6537 5.2456 3.6904 0.8458 0.9277 0.9278 0.6528 0.6529
Black 60% 5.1542 5.6783 5.3728 3.7417 0.8501 0.9462 0.9463 0.6591 0.6592
White 40% 5.1123 5.7115 5.2279 3.7152 0.8503 0.9154 0.9155 0.6505 0.6506
Equal 4.9879 5.5465 5.1663 3.5711 0.8557 0.9315 0.9316 0.6439 0.6440
White 50% 5.152 5.7823 5.2317 3.7499 0.8582 0.9047 0.9048 0.6484 0.6485
Asian 10% 5.0262 5.6409 5.1295 3.6179 0.8588 0.9094 0.9095 0.6417 0.6418
White 30% 5.0891 5.6989 5.2045 3.6709 0.8634 0.9132 0.9133 0.6444 0.6445
Black 70% 5.1646 5.5988 5.5342 3.6896 0.8851 0.9885 0.9886 0.6581 0.6582
Black 20% 5.0512 5.6157 5.2732 3.5516 0.9031 0.9389 0.9390 0.6323 0.6324
Black 90% 5.2389 5.6447 5.6612 3.7357 0.9038 1.0029 1.0030 0.6618 0.6619
Black 80% 5.3513 5.8564 5.6689 3.8171 0.9203 0.9679 0.9680 0.6528 0.6529
White 60% 5.1887 5.8597 5.2998 3.6538 0.9362 0.9043 0.9044 0.6234 0.6235
White 70% 5.3421 6.0802 5.3782 3.7933 0.9565 0.8846 0.8847 0.6239 0.6240
Black 40% 5.3027 5.92 5.535 3.6802 0.9778 0.9350 0.9351 0.6215 0.6216
Black 100% 5.3681 5.7606 5.9055 3.7052 1.0048 1.0252 1.0253 0.6432 0.6433
White 80% 5.3377 6.1819 5.2886 3.7123 1.0209 0.8555 0.8556 0.6005 0.6006
White 90% 5.5117 6.4859 5.3614 3.7876 1.1066 0.8266 0.8267 0.5841 0.5842
White 100% 5.8152 7.1516 5.3912 3.803 1.3676 0.7536 0.7537 0.5316 0.5317

For better clarity of the changes in model performance, we have included Figure 7
which shows the overall MAE and standard deviation for different dataset variations.
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For the UTK Face dataset, the Asian 90% variation shows DI values of 0.9517 for the
Black group and 0.8724 for the Asian group, suggesting that this variation achieves nearly
fair treatment across these groups. Similarly, the Asian 100% variation presents DI values
of 0.9225 for the Black group and 0.8417 for the Asian group, indicating minimal disparate
impact and promoting fairness.

In contrast, the Equal Dataset Variation, despite equalizing the sample sizes, has
DI values of 0.9315 for the Black group and 0.6439 for the Asian group, reflecting some
bias. The worst performing model in terms of DI is the White 100% variation, with DI
values of 0.7536 for the Black group and 0.5316 for the Asian group, indicating significant
bias. Figure 9 shows the Disparate Impact for the Black and Asian groups across various
dataset variations.

Equality of Opportunity (EoO) measures whether different groups have the same
chances of achieving a favorable outcome. Like DI, an EoO value close to 1 indicates
equitable performance across groups.

The Asian 90% variation shows EoO values of 0.9518 for the Black group and 0.8725
for the Asian group, demonstrating that this model provides nearly equal opportunities to
these groups. The Asian 100% variation presents EoO values of 0.9226 for the Black group
and 0.8418 for the Asian group, also indicating good equality of opportunity.

Conversely, the Equal Dataset Variation shows EoO values of 0.9316 for the Black
group and 0.6440 for the Asian group, reflecting some inequity. The White 100% variation
has the worst EoO values at 0.7537 for the Black group and 0.5317 for the Asian group,
highlighting substantial inequity. Figure 10 shows Equality of Opportunity values for the
Black and Asian groups across dataset compositions.

Turning our attention to the performance of each group individually, we begin with
the White group. As depicted in Table 8, a noticeable trend emerges where a 10% decrease
in sample size does not necessarily translate to a 10% decline in group performance.
Instead, we observe performance changes typically ranging between 1% and 3%. The most
significant increase in MAE, approximately 10.26%, occurs only when reducing White
group samples from a 90% cut to complete omission.
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Comparing these results with the equal and original datasets, similar to the APPA
REAL dataset findings, the White group exhibits a more subdued reaction to sample
reductions in the equal dataset compared to the original. The highest MAE increase,
compared to the equal dataset, reaches 28.94%, and compared to the original dataset, it
reaches 33%.
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Table 8. Performance changes upon UTKFace White group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

Black
Group
Com-
pared to
Original

Black
Group
Com-
pared to
Equal

Asian
Group
Com-
pared to
Original

Asian
Group
Com-
pared to
Equal

Original 4.8925 5.3772 5.0445 3.6674 0.7401
Equal 4.9879 5.5465 5.1663 3.5711 0.8557 3.15% 3.15% 2.41% −2.63%
10% 5.028 5.5884 5.1332 3.7261 0.7926 0.76% 0.76% 3.93% 1.76% −0.64% 1.60% 4.34%
20% 5.0549 5.6 5.1896 3.7361 0.7996 0.21% 0.96% 4.14% 2.88% 0.45% 1.87% 4.62%
30% 5.0891 5.6989 5.2045 3.6709 0.8634 1.77% 2.75% 5.98% 3.17% 0.74% 0.10% 2.79%
40% 5.1123 5.7115 5.2279 3.7152 0.8503 0.22% 2.97% 6.22% 3.64% 1.19% 1.30% 4.04%
50% 5.152 5.7823 5.2317 3.7499 0.8582 1.24% 4.25% 7.53% 3.71% 1.27% 2.25% 5.01%
60% 5.1887 5.8597 5.2998 3.6538 0.9362 1.34% 5.65% 8.97% 5.06% 2.58% −0.37% 2.32%
70% 5.3421 6.0802 5.3782 3.7933 0.9565 3.76% 9.62% 13.07% 6.62% 4.10% 3.43% 6.22%
80% 5.3377 6.1819 5.2886 3.7123 1.0209 1.67% 11.46% 14.97% 4.84% 2.37% 1.22% 3.95%
90% 5.5117 6.4859 5.3614 3.7876 1.1066 4.92% 16.94% 20.62% 6.28% 3.78% 3.28% 6.06%
100% 5.8152 7.1516 5.3912 3.803 1.3676 10.26% 28.94% 33.00% 6.87% 4.35% 3.70% 6.49%

Interestingly, akin to observations from the APPA REAL dataset, the White group
shows notable sensitivity to reductions in its sample size during training. Conversely,
other groups exhibit less pronounced reactions to changes in the White group’s sample
composition. The Black group’s performance worsens by approximately 1% to 4%, irre-
spective of the percentage of White samples removed. Similarly, the Asian group shows a
consistent performance decline of around 6%, regardless of whether 20% or 90% of White
group samples are removed. This pattern suggests, similar to findings in the APPA REAL
dataset, that the Asian group remains relatively unaffected by such changes.

However, in contrast to the APPA-REAL dataset, we observe a weaker correlation in
performance between the White and Black groups in this dataset analysis.

Examining the performance of the Black group, detailed in Table 9, reveals a clear
trend where increasing sample removal correlates with higher MAE. The highest MAE
increase occurs when all Black group samples are excluded during training, resulting in
a 17.07% increase compared to the original performance. Interestingly, this increase is
slightly lower at 14.31% when compared to the equal model performance, indicating that
oversampling benefits the Black group by stabilizing its performance.

Table 9. Performance changes upon UTKFace Black group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

White
Group
Com-
pared to
Original

White
Group
Com-
pared To
Equal

Asian
Group
Com-
pared to
Original

Asian
Group
Com-
pared to
Equal

Original 4.8925 5.3772 5.0445 3.6674 0.7401
Equal 4.9879 5.5465 5.1663 3.5711 0.8557 2.41% 2.41% 3.15% −2.63%
10% 4.9504 5.4966 5.072 3.6505 0.7894 −1.83% −1.83% 0.55% 2.22% −0.90% −0.46% 2.22%
20% 5.0512 5.6157 5.2732 3.5516 0.9031 3.97% 2.07% 4.53% 4.44% 1.25% −3.16% −0.55%
30% 5.2779 5.821 5.4611 3.8847 0.8408 3.56% 5.71% 8.26% 8.25% 4.95% 5.93% 8.78%
40% 5.3027 5.92 5.535 3.6802 0.9778 1.35% 7.14% 9.72% 10.09% 6.73% 0.35% 3.06%
50% 5.1155 5.5867 5.3529 3.7797 0.8024 −3.29% 3.61% 6.11% 3.90% 0.72% 3.06% 5.84%
60% 5.1542 5.6783 5.3728 3.7417 0.8501 0.37% 4.00% 6.51% 5.60% 2.38% 2.03% 4.78%
70% 5.1646 5.5988 5.5342 3.6896 0.8851 3.00% 7.12% 9.71% 4.12% 0.94% 0.61% 3.32%
80% 5.3513 5.8564 5.6689 3.8171 0.9203 2.43% 9.73% 12.38% 8.91% 5.59% 4.08% 6.89%
90% 5.2389 5.6447 5.6612 3.7357 0.9038 −0.14% 9.58% 12.23% 4.97% 1.77% 1.86% 4.61%
100% 5.3681 5.7606 5.9055 3.7052 1.0048 4.32% 14.31% 17.07% 7.13% 3.86% 1.03% 3.76%

Similar to observations with the White group, a 10% reduction in sample size does
not linearly equate to a 10% increase in MAE for the Black group. Instead, we observe a
high single-digit increase, with a 14.31% increase when moving from a 90% reduction to
complete removal of Black group samples.



Mathematics 2024, 12, 2358 23 of 29

In contrast, other groups show minimal reaction to changes in the Black group’s
sample size. The White group’s MAE increases by approximately 1% to 6%, regardless
of the percentage of Black group samples removed. Similarly, the Asian group exhibits
varying MAE increases of 2% to 8%, showing a consistent pattern with the findings from
the APPA REAL dataset tests for the Black group.

Turning to the Asian group, as detailed in Table 10, we observe a pattern similar to
that seen in the results from the APPA-REAL dataset. Reductions in sample size generally
result in minor fluctuations in MAE, typically ranging from a slight decrease to an increase
of 1–4%. An exception occurs when reducing samples from 80% to 90%, where we see a
significant jump in MAE by 25.07%. Surprisingly, the performance change between 90% of
samples removed and 100% is actually a 4.12% improvement in performance, indicating a
complex relationship between sample size and performance for the Asian group.

Table 10. Performance changes upon UTKFace Asian group reduction.

Dataset
Varia-
tions

Overall
MAE

White
Group
MAE

Black
Group
MAE

Asian
Group
MAE

Standard
Devia-
tion

MAE
Change
Com-
pared to
Previous

Compared
to
Equal

Compared
to
Original

White
Group
Com-
pared to
Original

White
Group
Com-
pared to
Equal

Black
Group
Com-
pared to
Original

Black
Group
Com-
pared to
Equal

Original 4.8925 5.3772 5.0445 3.6674 0.7401
Equal 4.9879 5.5465 5.1663 3.5711 0.8557 −2.63% −2.63% 3.15% 2.41%
10% 5.0262 5.6409 5.1295 3.6179 0.8588 1.31% 1.31% −1.35% 4.90% 1.70% 1.69% −0.71%
20% 4.9849 5.5227 5.1505 3.6308 0.8183 0.36% 1.67% −1.00% 2.71% −0.43% 2.10% −0.31%
30% 5.088 5.6537 5.2456 3.6904 0.8458 1.64% 3.34% 0.63% 5.14% 1.93% 3.99% 1.53%
40% 5.0608 5.6095 5.1833 3.7543 0.7934 1.73% 5.13% 2.37% 4.32% 1.14% 2.75% 0.33%
50% 5.2064 5.8149 5.2504 3.9063 0.8005 4.05% 9.39% 6.51% 8.14% 4.84% 4.08% 1.63%
60% 5.1361 5.7023 5.2071 3.877 0.7707 −0.75% 8.57% 5.72% 6.05% 2.81% 3.22% 0.79%
70% 5.178 5.5635 5.2437 3.908 0.7170 0.80% 9.43% 6.56% 3.46% 0.31% 3.95% 1.50%
80% 5.1197 5.5972 5.2153 4.0006 0.6807 2.37% 12.03% 9.09% 4.09% 0.91% 3.39% 0.95%
90% 5.4808 5.7351 5.4583 5.0036 0.3015 25.07% 40.11% 36.43% 6.66% 3.40% 8.20% 5.65%
100% 5.3499 5.6983 5.2564 4.7976 0.3677 −4.12% 34.35% 30.82% 5.97% 2.74% 4.20% 1.74%

Comparing these outcomes with the original and equal dataset performances, the
Asian group shows a response pattern akin to the White group. Removing 100% of Asian
group samples results in a 34.35% increase in MAE compared to the equal dataset and a
30.82% increase compared to the original dataset. This reaction is notably more pronounced
compared to findings from the APPA REAL dataset.

Regarding the reactions of other groups to reductions in Asian group sample size, we
observe consistent increases in MAE ranging from 1% to 8%, regardless of the extent of
Asian sample reductions. This contrasts somewhat with findings from the APPA REAL
dataset, where the Black group exhibited more significant MAE increases that were not
strictly correlated with reductions in Asian sample size. The most substantial reaction in
the APPA REAL dataset saw a 24.75% increase in MAE for the Black group.

To provide a comprehensive evaluation of our model’s performance, we compare
our results with those from other related works, focusing on overall MAE, race-specific
accuracies, and standard deviation. While previous studies on age estimation have reported
different accuracies for various ethnicities, none have explicitly addressed the disparities in
performance across different demographic groups. Table 11 below presents a summary of
our findings alongside related work.

As observed, our model achieves a significantly lower overall MAE and standard
deviation on both the UTKFace and APPA-REAL datasets compared to previous studies.
This indicates a more balanced performance across different ethnic groups, emphasizing
the effectiveness of our approach in addressing performance disparities.
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Table 11. Comparison of our results with related work.

Paper Dataset Overall MAE
Race Standard

DeviationWhite Black Asian

[11] UTKFace 9.79 7.71 9.56 0.931
[11] APPA-REAL 7.79 8.23 7.85 0.1948
[18] APPA-REAL 7.356 7.40 7.73 6.59 0.4789
[16] APPA-REAL 13.5774 13.6386 14.1607 12.4729 0.7055
Our results UTKFace 5.4808 5.7351 5.4583 5.0036 0.3015
Our results APPA-REAL 7.1603 7.1676 7.1663 7.0735 0.044

4. Discussion

In this study, we investigated the impact of dataset composition on the performance
of age estimation models, focusing on mitigating bias across different ethnic groups. We
employed a transfer learning approach, utilizing pre-trained CNN models (VGG16, VGG19,
ResNet50, and MobileNetV2) and fine-tuning them on the UTKFace and APPA-REAL
datasets, chosen for their demographic diversity and inclusion of relevant labels, such as
real age and ethnicity.

Our methodology involved systematically manipulating the dataset composition by
oversampling minority groups to match the majority group and then gradually reducing
the sample size of each group. This allowed us to analyze the relationship between dataset
composition and model performance, both overall and for specific ethnic groups. We used
Mean Absolute Error (MAE) and standard deviation as our primary evaluation metrics.

Our findings reveal that simply balancing the dataset by oversampling minority
groups does not necessarily lead to equitable performance across ethnicities. This aligns
with the observations of Puc et al. (2020) [11], who found performance discrepancies
across different racial groups in age estimation models but did not actively manipulate the
datasets to mitigate these biases. In contrast, our research demonstrated that varying the
number of samples from the majority group (White) can lead to mixed results. In some
cases, it led to a more balanced performance across ethnic groups, as indicated by a lower
standard deviation of MAE, while in other cases, it did not significantly improve fairness or
overall performance. This suggests that oversampling and undersampling may not always
be effective strategies on their own for mitigating bias, and a more nuanced approach
is needed.

For the UTKFace dataset, the model trained on the original dataset composition
achieved an overall MAE of 4.89 with a standard deviation of 0.74. Reducing the sample
size of the Asian group by 90% resulted in the smallest standard deviation (0.30) and
an overall MAE of 5.48. This reduction improved performance consistency compared
to the original dataset. Conversely, reducing samples from other groups did not always
yield better results, underscoring the complexity of achieving balanced performance across
all demographics.

The APPA-REAL dataset, on the other hand, exhibited different trends. The original
dataset composition led to an overall MAE of 6.45 and a standard deviation of 0.20. Re-
ducing the White group to 20% achieved the most balanced performance, with a standard
deviation of 0.04 and an overall MAE of 7.16. This indicates that reducing the represen-
tation of the majority group can enhance fairness across different ethnic groups. The
worst-performing model omitted the White group entirely, resulting in an overall MAE of
8.89 and a standard deviation of 0.94, demonstrating that complete exclusion of a dominant
group adversely affects model performance.

These findings highlight the ability of our approach to systematically uncover and
address biases in age estimation models by manipulating dataset composition. Our method
provides a clear framework for analyzing and improving model fairness.

We were intrigued by the distinct performance of the Asian group within the UTK Face
dataset compared to other groups, consistently showing a smaller MAE by approximately
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2 points. To investigate this further, we conducted an analysis using our trained models,
evaluating example images from all groups within both the UTK dataset and the APPA
REAL dataset. Our findings, illustrated in Figure 11, reveal an interesting observation.
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When examining examples from the UTK Face dataset, the model demonstrates a
preference for certain facial features across different groups. For the White and Black
groups, there is a notable focus on the eyes, nose, and mouth, with stronger activations
within these regions. Additionally, some emphasis is placed on outlining the edges of the
face. In contrast, activations for the Asian group predominantly concentrate on the edges
of the face, particularly around the shape of the cheeks, in addition to the mouth, nose, and
eyes. While the model analyzes similar facial features across all groups, the intensity and
distribution of these activations vary.

This distinction in activation patterns may help explain why the Asian group shows
different performance characteristics compared to the White and Black groups within the
UTK dataset. In contrast, the performance of the White and Black groups appears more
aligned across various tests.

Now, let us explore why we do not observe the same relationship in the APPA REAL
results. This can be explained by examining the feature maps. As shown in Figure 12,
the feature maps of the APPA REAL dataset reveal that the model exhibits a consistent
pattern of activations across all ethnic groups. Significant activations are observed within
the face, particularly highlighting the cheeks, smile, eyes, and nose, along with some
background details. This uniform pattern of feature extraction across different ethnicities



Mathematics 2024, 12, 2358 26 of 29

likely contributes to the relatively equal performance results observed across these groups
in the APPA REAL dataset.
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This difference in feature detection and model performance can be attributed to several
factors. One possibility is that the more visible background in APPA REAL images leads
the model to follow a different path in recognizing images, thereby treating them more
uniformly. By analyzing the feature maps, we gain valuable insights into how the model
processes images from different datasets and why there might be variations in performance
across different ethnic groups.

The analysis of feature maps provided further insights into the model’s behavior.
For the UTKFace dataset, we observed distinct activation patterns for the Asian group
compared to the White and Black groups, which could explain the performance differences.
This finding aligns with Abdolrashidi et al. (2020) [13], who highlighted challenges in
age prediction due to intra-class variations. In contrast, the APPA-REAL dataset showed
consistent activation patterns across all ethnic groups, contributing to the more balanced
performance observed in this dataset.

These results highlight the complexity of achieving equal performance among different
demographic groups. It is clear that equal performance among groups or classes is a
very complex problem without a simple solution. Oversampling the dataset to make
distributions even should not be the only step taken; it is just an introduction to more
granular processing that needs to be performed. Although we have seen some patterns
shared between the two datasets and how performance among groups varies in different
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scenarios, the reactions are not identical. One dataset composition that works for one
dataset may not work for another due to various factors, such as lighting and contrast.

Our findings suggest that a balanced approach, incorporating both undersampling of
the majority class and oversampling of minority groups, may be more effective in mitigat-
ing bias than solely relying on oversampling. The minority classes in our datasets have
significantly fewer samples compared to the majority group, necessitating oversampling to
balance the datasets. This disparity presents challenges, and despite using data augmen-
tation to reduce overfitting, having larger datasets with equal group sizes from the start
would be far more beneficial. This would eliminate the need to generate synthetic data,
thereby avoiding the introduction of potential noise and enhancing the model’s reliability.
While we demonstrated that equally sampled datasets do not automatically result in equal
performance, working with unique samples from a balanced dataset would improve both
model fairness and reliability.

The drawback to our method, as well as some other proposed methods, is that it
is computationally expensive. It requires extensive testing of different combinations. A
possible improvement could involve using a representative sample of the dataset to find
the right combination of group ratios. Even though we cannot expect high accuracy at
this point, the relationship between groups and how dataset adjustment affects equity
among them should still be visible while reducing testing time since less data are involved.
Following this, we could continue training with ensemble models on the tailored group
ratios but now with a full dataset.

Our findings resonate with previous research, such as the extensive review by Hasib
et al. (2020) [19], which addressed class imbalance in datasets. They categorized method-
ologies into data-level methods, algorithm-level methods, ensemble methods, and hybrid
methods. Techniques like SMOTE and ADASYN, which generate synthetic data to balance
class distributions, and undersampling techniques like RUS and T-Link were highlighted
for their effectiveness. However, the increased computational cost and potential infor-
mation loss during undersampling were noted as significant challenges. Our approach
of systematically reducing samples from overrepresented groups and observing the im-
pact on model performance revealed that while dataset rebalancing can reduce standard
deviations and improve performance consistency across ethnicities, it does not always
guarantee better overall performance. This observation is consistent with the conclusions
of Ramyachitra and Manikandan (2014) [21], who noted that while techniques like SMOTE
and cost-sensitive learning are effective, the choice of method should be tailored to the
specific characteristics of the dataset.

Similarly, Rahman and Davis (2013) [20] investigated the performance of oversampling
and undersampling techniques to balance cardiovascular data. Their findings emphasized
that while SMOTE showed good classification outcomes, the modified cluster-based un-
dersampling method outperformed traditional methods. This highlights the effectiveness
of hybrid methods, which integrate data sampling and algorithm boosting to address
class imbalance. Our findings support this approach, demonstrating that a combination of
techniques can provide a more balanced performance across different ethnic groups.

Kotsiantis, Kanellopoulos, and Pintelas (2006) [22] also emphasized the need for a
tailored approach based on dataset characteristics. They discussed the use of ensemble
methods, such as boosting and bagging, to improve classification outcomes by combining
multiple models. Our study supports this by demonstrating that a systematic approach
to adjusting group representation can complement existing techniques and offer new
perspectives in achieving fairness.

To apply the findings of our experiment to practical facial recognition systems, several
key steps can be taken. Firstly, our approach of balancing datasets through a combina-
tion of oversampling minority groups and undersampling the majority class should be
implemented. This ensures more equitable performance across different ethnic groups.
Moreover, the insights gained from our feature map analysis, which identified varying
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activation patterns across ethnic groups, can be used to fine-tune model architectures and
improve their sensitivity to diverse facial features.

Real-world applications should prioritize creating and utilizing larger, more balanced
datasets from the start to avoid the need for synthetic data and reduce potential noise. This
will enhance model reliability and fairness. Additionally, employing representative samples
of datasets to determine optimal group ratios can help streamline the process, reducing
computational costs and testing times. Combining these data-level adjustments with
advanced algorithmic techniques, such as ensemble methods, can further enhance model
performance and ensure a more equitable application of facial recognition technology.

Possible improvements include combining our dataset rebalancing technique with
advanced bias mitigation methods such as adversarial training or fairness constraints.
Additionally, exploring more diverse and comprehensive datasets could further enhance
the generalizability and fairness of the models. Future research should also consider the
integration of socio-demographic factors to develop more nuanced models that can better
account for the complexity of human faces.

In conclusion, our study demonstrates that while simple oversampling and under-
sampling techniques can reduce bias to some extent, achieving true fairness requires a
combination of nuanced dataset adjustments and sophisticated algorithmic methods. By
systematically analyzing the impact of various dataset compositions, we provide valuable
insights into developing fairer and more accurate facial recognition models.
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