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Abstract: Topological data analysis (TDA) is a method of feature extraction based on data topological
structure. Image feature extraction using TDA has been shown to be superior to other feature
extraction techniques in some problems, so it has recently received the attention of researchers. In this
paper, clothing image retrieval based on topology features and color texture features is studied. The
main work is as follows: (1) Based on the analysis of image data by persistent homology, the feature
construction method of a topology feature histogram is proposed, which can represent the ruler of
image local topological data, and make up for the shortcomings of traditional feature extraction
methods. (2) The improvement of Wasserstein distance is presented, while the similarity measure
method named topology feature histogram distance is proposed. (3) Because the single feature
has some problems such as the incomplete description of image information and poor robustness,
the clothing image retrieval is realized by combining the topology feature with the color texture
feature. The experimental results show that the proposed algorithm, namely topology feature
histogram + corresponding distance, can effectively reduce the computation time while ensuring the
accuracy. Compared with the method using only color texture, the retrieval rate of top5 is improved
by 14.9%. Compared with the method using cubic complex + Wasserstein distance, the retrieval rate
of top5 is improved by 3.8%, while saving 3.93 s computation time.

Keywords: clothing image retrieval; topological data analysis; topology feature histogram; topology
feature histogram distance

MSC: 68U10

1. Introduction

At present, image retrieval technology has been widely used in daily life and commer-
cial areas, and clothing image retrieval is a typical application in commercial areas. In the
early application stage of clothing retrieval, the main way of clothing retrieval is text-based
retrieval. Later, with the deepening of computer vision-related technology research and
the continuous maturity of means, there are more and more methods for image analysis
and image processing, and content-based image retrieval has become the focus of a large
number of researchers and enterprises. At the beginning of the research on content-based
clothing retrieval, almost all of the research work was realized by traditional image retrieval
technology, that is, the features used to describe images are extracted manually.

For example, in the task of image retrieval, Y.J. Choi [1] and the others divide the
image into six different blocks in a specific way, extract color features from each block
and transform them into feature vectors, and finally measure the similarity of each block
and combine them into total distance as the basis of similarity between images. M. Gupta
ect. [2] proposed a method that includes four attributes of clothing at the same time, namely
texture, contour, feature, and color. Different attributes are given different weights, and
finally, the four metric distances are added as the total similarity distance, so as to match
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clothing. But, because of many problems such as the background, posture, and angle of
clothing images, researchers have made many improvements to traditional features, which
greatly improve their retrieval accuracy.

In 2017, Huang Dongyan et al. [3] proposed a joint segmentation algorithm for clothing
images, which is based on HOG (Histogram of Oriented Gradients) features and E-SVM
(Exemplar Support Vector Machine) classifier, and improves the accuracy of clothing image
segmentation to a certain extent. Jin Jie et al. [4] fuses three features of color, texture, and
shape as total features for retrieval, and the experiments show that the retrieval performance
of the multi-feature fusion method is better than that of single feature algorithm.

Li Zongmin et al. [5] aimed to study the problem of the existing clothing retrieval
framework retrieving the limbs of clothing in different scenes, due to the differences in the
different styles of the same category of clothing and the information interference in differ-
ent shooting backgrounds, and a new clothing segmentation method and clothing style
recognition based on cross-domain dictionary learning is proposed, thus improving the
accuracy of clothing style recognition in different scenes. Based on clothing elements, Wang
Mengmeng et al. [6] used different methods such as roughness, orientation, and contrast to
express the different clothing fabrics according to their texture, fabric weaving, and color
characteristics. At the same time, they constructed various decision trees to distinguish
the membership principles of different characteristics, which met the requirements of the
classification decisions of clothing fabrics. Tao Binjiao et al. [7] improved the traditional
algorithm of the weighted color histogram by combining the Grabcut image to block the
foreground area of the image, and calculated the color histogram, respectively, and then
gave different weights, which significantly improved its efficiency.

In 2018, Ge Jun et al. [8] also adopted the idea that a single feature cannot clearly and
completely express the image content containing a lot of information. By accumulating
the histogram features extracted from the image and weighting them by Hu invariant
moments, this finally fuses the local binary pattern (LBP) and applies it to image retrieval.
Chen Qian et al. [9] put forward the main color extraction algorithm to extract the color
features of clothing images using the perception of human vision. Experiments show that
this method has a better effect than other existing methods.

In 2019, Miao Zhiwen et al. [10] extracted the shape, color, and LBP-GLCM texture
features of clothing images, and assigned different weights according to the characteristics
of each feature. This method can integrate the advantages of each single feature, thus
improving the retrieval accuracy. Hu Ying et al. [11] firstly locates the key points of clothing
images through deep learning, and extracts the local features around the key points, which
are used as the local area information of clothing. At the same time, the global features
of clothing images are extracted through a convolutional neural network, which is used
as the overall information of clothing, and the features also contain advanced semantic
information on the images. Finally, combining the extracted local information with the
global information as the basis for judging the image similarity, it can improve the accuracy
of image retrieval to a certain extent.

In 2020, Qin Hui [12] mainly improved the SIFT feature matching method of images
to solve the problem that the feature vectors of SIFT at high latitudes are not conducive
to calculation, and the matching speed was accelerated by converting feature points into
binary coding, thus greatly improving the image retrieval accuracy and matching efficiency.
Wu Zhixin et al. [13] established a fusion method of the two features by extracting HSV
feature histogram as a color feature and a gray level co-occurrence matrix as texture feature,
and then normalized the extracted features. The results show that this method has certain
advantages over a single feature.

Among many techniques in the field of computer vision, with the great achievements
of deep learning, more and more scholars began to deeply study the application of this tech-
nology to clothing image retrieval. Kiapour [14] et al. used a convolutional neural network
to process the image and extract the depth features of the image as the measurement basis.
Different parameters can effectively reduce the influence of unimportant information in the
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background area of the image and improve the ability of image retrieval in different scenes.
Chen [15] and others put forward a depth neural network model RCNN [16] to realize
clothing target detection in order to accurately locate clothing information in complex
images. By accurately locating clothing, more accurate feature extraction can be obtained,
and the influence of background area can be reduced, thus reducing redundant information.
In addition, Liu [17] trains clothing images from different angles and extracts features for
retrieval by designing a depth neural network model so as to solve the problem of clothing
similarity from different angles. Wang [18] and Verma [19] and others adjust the parameters
of the network model by adding an attention mechanism to the network model to extract
clothing image features better. Garcia [20] established a dynamic clothing retrieval system,
which intercepts clothing images from a video and retrieves them.

Topology data analysis (TDA) is a mathematical method, which makes use of topology
ideas to mine the structure of datasets by analyzing the intrinsic topology characteristics
of data. TDA provides a general framework for data analysis. Its advantage is that it can
extract information from a large number of high-dimensional data and has stable anti-noise
performance.

Since 2004, Carlsson and other scholars [21,22] began to study the application and
practice of the continuous coherence method based on their in-depth understanding of
topology and geometry. For a three-dimensional model, mainly through the construction
of three-dimensional point cloud data complex, the corresponding topology feature is
calculated to describe the skeleton of the three-dimensional model.

For two-dimensional images, we can imitate the idea of a three-dimensional model
to extract feature points and build a two-dimensional skeleton structure for topology
feature retrieval. For example, Zhang Jingliang et al. [23] applied the method of persistent
homology to represent the image space by transforming the image space and constructing a
simple complex structure under different parameters. Finally, the topology feature of these
complexes are calculated using persistent homology, and then the topology information is
represented by barcode graph. Experiments show that, in this continuous approximation
process, not only the topology invariant features of the image can be obtained, but also some
geometric features related to the topology structure of the image space can be obtained.
Through the experiments of simple geometric images and natural images, it is concluded
that the similarity between images can be analyzed by the topology invariant features of
images, and different images can be distinguished by the geometric features of images. In
particular, by comparing the similarity and difference of topology structure and geometric
structure between images taken from different angles, it can be concluded that the similarity
between the original image and the deformed image can be reflected to a certain extent by
topology invariance, in which the image deformation includes deflection, rotation, reversal,
scaling, and occlusion due to shooting angle and distance.

From the research results of the above literature, the current image features include
two aspects: one being the underlying visual features such as color, texture, and shape,
and the other being the depth features extracted by neural network, which have their
own shortcomings. In addition, the research on topology is rarely used in clothing image
retrieval. Therefore, this paper comprehensively considers the characteristics of clothing
images, and improves the performance of clothing image retrieval through the fusion of
topology, color texture, and depth features.

2. Topology Feature Extraction

In the field of topology, there is an important property called symmetry. Generally
speaking, “symmetry” means that the result of an object after transformation remains
the same as before. Mathematicians call symmetry in topology “symmetries persistent
homologies”, which is the key to solving problems such as network analysis, data mining,
and understanding brain neural network connection graphs [24].

In most applications, data are processed in the form of a point cloud, a large but
limited set of points sampled from some underlying geometric objects in Euclidean space.
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Persistent homology is a multi-scale method in a sense [24]. Its utility is illustrated by
considering the following simple geometric cases. Suppose we first have a set of ϵ distances
between two points. Because the invariants to be calculated are highly dependent on the
connectivity of the space being described, it is necessary to specify how small the ϵ of the
two points should be in order to become a connected component. To avoid making such a
choice, this article uses the concept of persistence.

Given a topology space X and a filter function f : X → R , persistent homology studies
the homology changes of subsets, where Xt = f−1(−∞, t]. The algorithm captures the birth
and death time of the homology class from the growth of subsets X−∞ to the time X+∞.
More persistent homologous classes reveal information about the global structure of space
X, as described by functions f .

An important proof of using persistence is the stability theorem. Cohen-Steiner
et al. [25] proved that, for the sum of any two filter functions f and g, their persistence
difference is always equal to the norm upper of L∞ which is bound to their difference:

∥ f − g∥∞ = max
x∈X

| f (x)− g(x)| (1)

This theorem guarantees that persistence can be used as a feature.
Extracting the topology feature of images primarily causes images to be analyzed as a

topology space, while similar images are considered as two homologous spaces. For two
topology spaces X and Y, their persistent homology can be described as follows. If there is a
continuous mapping H : X × [0, 1] → Y that makes the sum H(x, 0) = f(x) and H(x, 1) =
g(x), then the two continuous mappings f, g : X → Y are considered homologous. For a
mapping f : X → Y, if there is a mapping g : Y → X, then it is called an identical homology
mapping of f and g, g is an inverse homology of f. Two spaces X,Y with homologous
equivalent mappings f : X → Y are called the homologous equivalent. Therefore, it can be
used as an important basis for image retrieval using topology.

2.1. Witness Complex

Witness complex can be regarded as an approximation of restricted Delaunay triangu-
lation, but this construction avoids the dimension curse related to Delaunay calculation;
Specifically, the external extension of the dataset has little influence on the complexity of
the algorithm.

Firstly, every pixel of a color RGB image is transformed into a five-dimensional point
in space, and its dimensions are x, y coordinates and r, g, and b components of pixels,
respectively. In this way, the analysis of an image is transformed into the analysis of a
five-dimensional point cloud data, which acts as the point cluster Z for constructing the
witness complex flow.

There are two main methods to select landmark set L. One is the random selection
method, and the other is sequential maximum–minimum method. The algorithm steps [26]
are as follows:

(1) Randomly select a data point L1 in the point cluster Z.
(2) Inductively, if a set of landmark points i − 1 has been selected, the selection of the

first landmark point i needs to satisfy the maximization function z 7→ d(z, Li−1) , where
z 7→ d(z, Li−1) is the distance from point z to point set (L1, L2, . . . , Li−1).

(3) Repeat this operation until the required number of landmark points are selected.
The method can tend to cover datasets and disperse each other. Figure 1 shows

the comparison between the two methods, where the number of landmark points are
n = N/100.
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After selecting the landmark points, the distance matrix D of a dimension N × n
is obtained by calculation. For each non-negative integer v, a nested family of simple
complexes W(D, R, v) is constructed, in which R ∈ [0, ∞]. The values are 0, 1, and 2. If the
vertex set of W(D, R, v) is {1, 2,. . ., n}, then the different value v is defined as follows:

If v = 0, then for i = 1, 2,. . ., N defines mi = 0.
If v > 0, then for i = 1, 2,. . ., N is defined mi as the v-th minimum of the i-th column of

D. Edge σ = [a, b] belongs W(D, R, v), then there is a witness i ∈ (1, 2, . . . , N) satisfaction:

max(D(a, i), D(b, i)) ≤ R + mi (2)

p − Simplex of σ =
[
a0, a1, . . . ap

]
belongs to W(D, R, v), if all its edges belong to

W(D, R, v); there is a witness satisfaction:

max
(

D(a0, i), D(a1, i), . . . D
(
ap, i

))
≤ R + mi (3)

The first task of data preprocessing is to generate a simple list (up to the dimension of
p-dimensional homology p +1). For each simplex σ, it is necessary to identify its face and
determine its appearance time, that is, R = Rσ, and the minimum value of σ ∈ [D, R]. By
definition, Rσ = max{Rτ}, in which τ is an edge of σ. Its steps [26] are as follows:

(1) A matrix E which is n × n calculated with non-diagonal terms E(i, j) = R[ij], which
records the occurrence time of each edge.

(2) Generate a simple list that appears in time.
(3) Calculate the appearance time of each simplex as the maximum value of the

appearance time of its edges.
Step 1 can be expressed algebraically as a “minimum” matrix product: E = D ⊙ D*.

Here,
⊙

is the action:

[A ⊙ B](i, j) = minmax(A(i, k), B(k, j)) (4)

For Step 2, the list of temporal edges which are born from time r can be used to
generalize high-dimensional units: for example, simplex

[
a0 . . . ap

]
occurs in time r if

th three simplexes
[
a1 . . . ap

]
,
[
a0 . . . ap−1

]
, and

[
a0ap

]
all occur at time r. Step 3 can be

performed simultaneously with Step 2. Then, the persistent homologous group on the
interval R ∈ [0, r] can be calculated using the algorithm in paper [27].

When v = 0, the complex structure W(D, R, v) will be very similar to the complex
Rips, specifically meeting the following conditions:

W(D, R, 0) ⊆ Rips(L, 2R) ⊆ W(D, 2R, 0) (5)

Their homology group structures are similar, so the calculated persistence graphs are
similar.
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When v = 1, in some cases, it is the most suitable parameter to witness the complex,
and it can be interpreted as a series of coverages of space X by Voronoi [28]—like regions
around each landmark point, which gradually overlap as R approaches infinity.

When v = 2, although the persistence of the complex was sometimes not so good, the
following conditions were met when R = 0:

W(D, 0, 2) = W(D) (6)

In practice, the complex can give a cleaner persistent interval diagram when v = 2,
that is, there is less “noise”, which is proved in paper [29]. The calculation effect is shown in
Figure 2. In this paper, one-dimensional feature information is mainly used for calculation.
Although the complexity of the witness complex has been greatly reduced by selecting
landmark points, it mainly aims at the calculation of spatial point cloud data, and there is a
more suitable processing method for images, that is, cube complex.
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2.2. Cube Complex

Persistence is underused in applications, in large part because of its high computational
cost. The standard algorithm [30] requires three runs, which may be prohibited even for
small-size data (for example, 64 × 64 × 64). In addition to the high time complexity, there
are two problems: (1) the currently available memory consumption is very large, even
for small data, so it is forbidden for commodity calculation; (2) several applications focus
on higher dimensional data, such as 4D, 5D, or higher. There are few implementations of
general dimensions, and the existing implementations cannot expand well with the increase
in dimensions, thus introducing larger computing time and low memory efficiency. Hubert
Wagner et al. [31] proposed an effective computing framework, which focuses on uniform
or periodic sampling data common in visualization and data analysis, that is, image data
include pixels (2D images), voxels (3D scanning, simulation), or their high-dimensional
analogies, such as 4D time-varying data. In this work, the name “cube” is used to represent
these data. This method uses a specific triangulation, namely Freudenthal triangulation [32].
This triangulation can be easily extended to general dimensions.

Next, the cube complex is introduced in detail. Firstly, a basic interval is defined as
a unit interval [k, k+1] or a degenerate interval [k, k]. For d-dimensional space, a cube is
the product of d basic intervals I: ∏d

i=1 Ii, and the number of non-degenerate intervals in
the product is the dimension of the cube. Cube 0, Cube 1, Cube 2, and Cube 3 are vertices,
edges, squares, and three-dimensional cubes (voxels), respectively. Given two cubes:b ⊆ Rd,
a is a face of b only if one a ⊆ b. A cube complex of dimension d is a set of cubes with the
maximum dimension d. Similarly to the definition of a simple complex, it must be closed
under the surface and intersection point. In this article, cube complexes will be used to
describe data. In Figure 3, two-dimensional and three-dimensional cube complexes are
shown, depicting a two-dimensional image with a size of 3 × 3 and a three-dimensional
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image with a size of 3 × 3 × 3. And, the corresponding simple complex representation is
given.
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After constructing the simple complex of the data, it is necessary to calculate the
boundary matrix of the structure. The information of the boundary matrix is hidden
in the simple complex structure. The construction of the cube complex abandons the
standard construction method, including triangulation space. There are two advantages.
First of all, the size of the complex is significantly reduced, and the memory and runtime
efficiency are significantly improved, especially for high-dimensional data. Second, cubic
complexes allow the use of more compact data structures. For d-dimensional data, the
correlation ratio is expressed as ρd = Sd/Cd, where Cd and Sd are the size of the cube
complex and its triangulation, respectively. The exact formula ρd given is very important
because the triangulation of the minimum cardinal cube is an open problem [33]. Here,
by triangulating all the cubes of the cube complex in each dimension, given the lower
bound ρd of d ≤ 7. When triangulating a d-dimensional cube, only the d-simplex and their
(d − 1)-dimensional intersections are calculated. Finally, considering that some simplex
will be the common surface of many high-dimensional simplex, we can obtain the number
τd of the d-dimensional simplex in the triangulation of the d-dimensional cube.

ρd ≥
∑d

i=0

(
d
i

)
τi + ∑d−1

i=0

(
d

i + 1

)
(τi+1 − 1)

2d (7)

The specific operation of the cube complex for image data processing is as follows:
firstly, the input of the cube complex requires a square image. Its input requirements are
different from that of witness complex flow. It does not input point cloud data, but directly
inputs pixel matrix. Take a 2D image with 5 × 5 pixels as an example, as shown in Figure 4.
Because of the regular structure, the relationships between cells can be immediately read
from their coordinates, and the necessary information for each cell (i.e., order in filtering,
function values) can be stored in a 9 × 9 array. You can then immediately obtain the
dimension of any cell (whether it is a vertex, an edge, or a square), as well as its face
and coplanar, that is, the cell where it is a face. This is achieved by checking that the
coordinates are modulus 2, because cubes can be defined as the product of intervals,
and even coordinates correspond to the degenerate interval of a cube. This structure is
called cube graph, and the main advantage of this data structure is improved memory
efficiency. Boundary relationships are implicitly encoded in the coordinates of the cells,
which themselves are implicit, and each cube persistence can be accessed randomly. The
above properties are applicable to any dimension because of the inductive structure of the
complex of cubic complexes and the fact that the cube is the product of intervals.
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Figure 4. Cube complex of 2D gray image.

Each vertex (yellow) corresponds to one pixel: edge (blue); cube (red); and the cube
complex itself. All the filter build information is encoded in a 9 × 9 array, with each
element corresponding to a cell. Next consider the input data of dimension d and size wd,
where w is the number of vertices in each dimension. You can append information to a
two-dimensional array with elements (2w − 1)d. This array consists of overlapping copies
of arrays of size 3d. Therefore, for two-dimensional image data, w is the size of a square
image. The main advantages of this data structure are the improved memory efficiency, the
fact that the boundary relationship is implicitly encoded in the coordinates of cells, and
that each cell can be accessed randomly and its boundary can be located quickly.

Now, an effective algorithm is used to calculate the filtering of cubic complex caused
by a given function. This article uses the cube map data structure to store additional
information (function values, filtering order) for each cell. The result of the algorithm
is a sorted boundary matrix, which is used as the input of simplification step. Because
there is only one non-zero element in each column of cubic data boundary matrix, sparse
matrix representation is usually used. The intuition behind the algorithm is that, when all
vertices are iterated in descending order, the remainder of the vertices that are not added to
the filter is known and can be added to the filter. At the same time, you cannot create a
boundary matrix in the same step, because the indexes of adjacent cells may not have been
calculated. Figure 5 illustrates the data structure of the algorithm, in which the value of
filter function f is assigned to vertices and extended to all cubes. Cells are assigned indexes
during filtration. These indexes are separate for each dimension. Vertices are marked as V,
edges as E, and squares as S.
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Figure 5. Cube complex of 2D gray image (cube map data structure).

Edelsbrunner et al. [27] designed an algorithm to calculate persistent homology, which
is calculated in cube time (complex number size). For images, functions are defined on all
pixels or voxels. First, these values are interpreted as the values of vertices of a complex
number. Then, the filter of complex numbers is calculated, and the sorted boundary matrix
is generated. This matrix is the input of the reduction algorithm. Filtering can be described
as adding incremental cells one by one. To achieve this, a filter build algorithm extends the
function to all complex units by assigning the maximum value of each unit of its vertices.
Then, all cells are sorted in ascending order according to the function value, so that each
cell is added to the filter after all faces. Such cell sequences are called low star filtering.
After calculating the sort of cells, you can generate a sort boundary matrix.
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In the reduction step, the algorithm reduces the columns of the sorted boundary matrix
from left to right. Each new column is reduced by adding the column that has been reduced
until its lowest non-zero entry is as high as possible. The simplified matrix encodes all
persistent coherence information. Because the cube complex requires the input data to be
square, and the image size of the dataset is 256 × 256, it can be directly input for calculation,
and the calculation results are as shown in Figure 6.
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2.3. Topology Feature Histogram

In this paper, we construct witness complex and cube complex to extract the topology
features of images, which are mainly biased towards the extraction of overall features of
images. On this basis, we proposes a new local feature extraction method, that is, using
Rips complex to construct topology histogram to extract image features.

Both witness complex and cube complex calculate the whole image, and extract the
whole features. In this paper, the sliding window method is used, only a limited number
of pixels in the window are calculated each time, and finally, all the output features of the
window are counted. The purpose of this method is to extract the repetitive and regular
local topology feature in the two-dimensional image plane as the basis for retrieval.

Topology feature histogram uses Rips complex, which is the simplest simple complex
structure construction method, and it has good performance when there are a few data
points. However, due to the particularity of digital images, each image can be regarded as
a dense point cloud. And, with the change of image resolution, the number of point clouds
increases rapidly, and in the region with little color change, the distance between adjacent
data points is too small, which leads to the complexity of constructing Rips complex, which
not only requires a lot of calculation, but also cannot extract effective features. Among
them, the best window size is 3 × 3. Because of the calculation method of the Rips complex,
an excessively large window will lead to a long time consumption of feature extraction
calculation, while a small window will lead to insufficient feature types, resulting in poor
calculation accuracy. Firstly, the whole image is scanned sequentially using the window,
and the point cloud data containing nine data points is extracted. Then, the Rips complex
is constructed by the extracted data, the homology information is calculated and written
into the persistence graph, and the topology eigenvalue of the window is calculated, as
shown in Figure 7.

After calculating the persistence graph for each 3 × 3 window, it is necessary to
calculate an eigenvalue according to the persistence graph. If the central pixel coordinate
of each window is (x0, y0), the eigenvalue of the window is

Rips(x0,y0)
= ∑

i=0

(dxi + dyi)

m
(8)
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where dxi and dyi are the value of x and y of the i-th coordinate in the one-dimensional
information in the persistence graph calculated using the complex, that is, the birth time
and death time of the hole, where m is equal to 4, which means that, when taking nine
pixels for calculation, there will be four holes connected by four points in most cases, so
in order to avoid having an excessive value for the final calculated eigenvalue, scaling
processing is carried out. Finally, the topology histogram is obtained by counting all the
window eigenvalues of the whole image, in which the abscissa of the histogram represents
the eigenvalues and the ordinate represents the number of eigenvalues in the image. The
calculation results are shown in Figure 8.
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3. Distance Measure of Topology Feature

The distance measure of the topology feature are mainly divided into the measure
of persistent graph and the measure of the vector graph, in which the vector graph is
transformed by mapping a persistent graph. Euclidean distance can be used as the mea-
surement method for a vector graph. However, there are two main measure methods
for two-dimensional persistence graphs with many points and discrete points: one is the
bottleneck distance algorithm [34], and the other is the Wasserstein distance algorithm [35].
Finally, focusing on the topology feature histogram proposed in this paper, we propose a
topology histogram distance algorithm, which is improved by the Wasserstein distance.

3.1. Bottleneck Distance

The bottleneck distance between two persistence graphs measures the cost between
their corresponding relationship points. Simply put, two persistence graphs are trans-
formed into the same scale coordinate system, and then every point in one persistence
graph finds the nearest match in the other persistence graph, and calculates the distance
between the two points. If the point is closer to the diagonal or y axis, no point matching is
required. The matching effect is shown in Figure 9.
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If D and D′ are two persistence graphs, their bottleneck distance is

dB
(

D, D′) = min
σ
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p∈D

d(p, σ(p)) (9)

where σ differs in all bijections between D and D′ and satisfies

d
(
(u, v),

(
u′, v′

))
= min

{
max

{∣∣u − u′∣∣, ∣∣v − v′
∣∣}, max

{
v − u

2
,

v′ − u′

2

}}
(10)

where (u, v) and (u′, v′) satisfy (u, v) ∈ R2, u ≤ v.

3.2. Wasserstein Distance

Wasserstein distance was originally used to calculate the distance between two his-
tograms, that is, the distance between two discrete distributions. Later, it can also be used
to calculate the distance between two probability distributions, that is, the distance of
continuous distribution. It can be popularly understood as the minimum transportation
cost required to move objects in several positions to several other positions. Its definition
formula is as follows:

Wp(µ, v) = in f X ∼ µ
Y ∼ v

(
E∥X − Y∥p) 1

p , p ≥ 1 (11)

where X and Y are d-dimensional space sets satisfying the sum probability distribution,
respectively, which p represents the norm of Lp and in f represents lower bound. Compared
with other distance measures, the Wasserstein distance has the following advantages: (1) it
can calculate the distance between discrete distribution and continuous distribution; (2)
it cannot only calculate the distance between two distributions, but also gives a clear
transition scheme from one distribution to another; and (3) it does not lose its original
geometric characteristics when transferring from one distribution to another. This method
is more accurate than the bottleneck distance measurement method, but the calculation
cost is also higher.

3.3. Topology Feature Histogram Distance

For the measurement method of the topology feature histogram distance, the Wasser-
stein distance can be directly used for the calculation. However, due to the large amount
of histogram data, the data amount of two histograms is usually different, according to
the calculation rules of Wasserstein distance, and it is necessary to allocate weights in
advance to ensure that the total weights of the two histograms are equal, which makes the
calculation complexity rise and the calculation results are of too large an order of magni-
tude. Therefore, in order to solve the above problems, this paper proposes an improved
measurement algorithm.
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First, the two histograms to be calculated are simplified, that is, with the abscissa xn
for each point of each histogram, the simplified formula is

H1,2(xn) = H1,2(xn)− min(H1(xn), H2(xn)) (12)

where xn represents the same eigenvalue in the two histograms and Hi(xn) represents
the number of features at the eigenvalue xn. The simplification is based on simplifying
the same eigenvalue part of two histograms, and only different eigenvalues remain after
simplification, so as to facilitate subsequent calculation.

After simplification, the calculation time of histogram distance can be greatly short-
ened. The traditional Wasserstein distance needs to assign different weights to both calcu-
lation parties to ensure the same total weights. However, due to the large amount of data
in the histogram, the computational magnitude will increase. Therefore, this paper uses
the improved Wasserstein distance to calculate the distance of the simplified histogram.
Its basic principle is that the histogram with more data is divided into two parts H1a and
H1b, in which the amount of data in the first part is equal to that in the histogram H2, so
that the weights of the two parts are the same without allocation, and the distance of L1
is calculated by Wasserstein. The distance of each data pair H2 in the histogram H1 of the
other part is the distance from the abscissa of the data to the mean value of the abscissa of
H2, and the distance L2 is obtained by sum. The calculation formula is as follows:

L2 =
m

∑
i=0

abs(xi − mean(H2))× H1b(xi) (13)

This method is equivalent to distributing more data of H1 than H2 to H2 evenly, and
finally taking the sum of L1 and L2 as the final distance. If the data amount of H1 and H2 is
the same, it can be calculated directly.

It can be seen from the above analysis that the calculation of bottleneck distance is
relatively simple, while the Wasserstein distance is relatively accurate, but the calculation
cost is relatively high. The calculation speed of a vector graph is fast, but the corresponding
accuracy is low. According to the topology feature histogram proposed in this paper, the
improved Wasserstein distance is used to calculate it. The experimental results show that
the improved Wasserstein distance has achieved a good retrieval performance.

4. Clothing Image Retrieval

The typical CBIR (content-based image retrieval) system firstly needs to select the
appropriate feature extraction methods according to different fields, application scenarios,
and systems to analyze and process all the images in the image database, and extract the
different forms of image features in various ways. Then, the features are quantified and
saved in the database, and finally, an index mechanism is established to facilitate users’
query. In the field of clothing image retrieval, there are many ways to measure the similarity
level of two images, one of which is Metric learning [36]. The accuracy of image retrieval
has a great relationship with the selected similarity measurement method. In order to
make image retrieval more accurate and efficient, it is necessary to select a suitable distance
calculation method between images. The measurement function [37] mainly includes
the Manhattan distance, Euclidean distance, histogram intersection distance, and cosine
similarity. In the stage of image retrieval, different kinds and different forms of features will
be extracted from the different kinds of images. In actual operation, it is necessary to select
appropriate similarity calculation methods according to the characteristics of different
images, so that the required images can be retrieved more accurately and efficiently.

In the clothing image retrieval technology in this paper, feature extraction is mainly
divided into three types. Among them, image color texture features are mainly aimed
at the underlying features of the image. Image depth features are extracted from the
model trained by neural network. The topology feature is to construct a complex filter
flow through a variety of methods, and finally calculate the persistence graph, in which a
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series of two-dimensional coordinates are taken as the topology feature of the image. After
multi-feature fusion, it cannot only solve the shortcoming of the insufficient expression
information of single feature, but also extract more abundant image information, which
improves the retrieval efficiency.

4.1. Color Histogram

Color is one of the most widely used underlying visual features. It is one of the most
basic visual bases for human beings to distinguish different things, so it is also one of the
most representative features to describe image content, and it is widely used in the field of
image retrieval.

In the CBIR system, the color histogram is easy to extract, so it is also one of the most
widely used color features. Firstly, the color space of the image is quantized, and then
the color distribution is counted to form a color histogram. RGB, LUV, HSV, YCrCb are
commonly used color space models. Among them, RGB color space is the most common
and simplest in the field of computer vision. After choosing the appropriate color space,
we need to quantify the color space properly, and finally calculate the corresponding color
histogram features according to the statistical information of color distribution.

When extracting color histogram features, in order to transform color features into
vector form, a certain quantization strategy is needed. The main idea is that, the richer the
color information, the smaller the quantization interval, while the larger the quantization
interval, the lesser the color information. At the same time, the selection of quantization
granularity should also be appropriate. An excessively fine quantization granularity will
lead to excessively high feature dimension, which will lead to too low computational
efficiency when the image database is too large, while excessively coarse quantization
granularity will lead to obviously different colors being quantized into the same interval,
which will lead to wrong feature information and affect retrieval accuracy. Therefore, it is
very important to select appropriate quantization granularity.

4.2. SURF

SURF (Speeded-Up Robust Feature) is a fast and stable local invariant feature extrac-
tion algorithm. Similar to the SIFT feature calculation method, the salient feature points
in the linear scale space of the image need to be selected as key points at first, and then
the gradient direction distribution of pixels around the key points of the image is counted
and taken as local features in turn. In contrast to the SIFT feature, the Gaussian filter is
replaced by an integral image and frame filter, and an approximate differential operator is
calculated in different scale spaces, so the calculation speed is faster than the SIFT feature.
The SURF algorithm consists of the five following steps:

(1) Calculate the integral image of the input image;
(2) Using frame filters to calculate discrete operators on the multiple scales of the

original image;
(3) The image is divided into different scale spaces, the determinant of Hessian matrix

is calculated, respectively, and the maximum value is selected to accurately locate the
detected key points.

(4) The main direction of each key point is calculated by window sliding method.
(5) Using the parameters of the scale space in which the feature points are located and

their main azimuth angles, the eigenvalues of their nearest neighbors are obtained, and a
new feature descriptor is generated.

On this basis, a rectangular window area of 20s × 20s is constructed with each key
point as the center, and it is divided into 25 4 × 4 sub-areas, and given Gaussian weight
coefficients. By summing the transverse wavelet response dx, longitudinal wavelet response
dy and the absolute value of wavelet response of the key points, the four-dimensional vector(
∑ dx, ∑ dy, ∑|dx|, ∑

∣∣dy
∣∣) of the region at each key point is obtained, and the final (4 × 4)

× 4 = 64-dimensional vector Vs = (i1, i2, . . . , i64) is obtained as the feature descriptor. For
details of SURF calculation, please refer to [38].
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4.3. Convergence Strategy

In order to make the computer program better implement the multi-feature fusion
image retrieval method, it is necessary to use appropriate rules to fuse the feature vectors. A
direct and effective method is to connect the features of various patterns into a new feature
vector to represent them. However, this method will lead to a rapid increase in feature
dimensions and a decrease in time efficiency, which is not suitable for large-scale clothing
retrieval. In addition, there are many hierarchical structures among various clothing
categories, and the method of direct series connection ignores the statistical relationship
between different pattern features.

Therefore, this paper adopts the fusion strategy at the level of similarity measure.
Generally, there are linear fusion and nonlinear fusion methods, and linear fusion is
adopted in this paper.

SFusion = α1S1(F1) + α2S2(F2) + · · · (14)

where SFusion represents the similarity measure after fusion, S1 represents the similarity
calculated between two images based on the first feature F1, α1 denotes the proportion of
similarity measure S1 in the fused measure SFusion, and so on.

In this paper, the similarity measure level is used for linear fusion. At present, there are
mainly two kinds of image feature extraction, one is for image visual feature extraction, and
the other is for image depth feature extraction through trained neural network. Therefore,
in the following experiments, we fuse the new topology feature with these two methods to
achieve clothing image retrieval.

5. Experiments and Analysis
5.1. Datasets

In order to ensure the accuracy and effectiveness, the dataset used here is DeepFashion,
an open clothing image database of Chinese University of Hong Kong, which is commonly
used in scientific research fields such as clothing image retrieval and classification. It
contains 800,000 pictures, including pictures from different angles, different scenes, buyer
shows, and so on. The WOMEN dataset in In-shop Clothes Retrieval Benchmark was
selected in this paper, which includes 7982 items and 52,712 images, which are divided into
14 categories, and each image size is 256 × 256. The image database is shown in Figure 10.
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5.2. Evaluation of Image Retrieval

Top-K index [39] is the most commonly used in image retrieval tasks. In the task of
image retrieval, it is necessary to calculate the similarity degree between different images
through appropriate similarity measurement methods, and arrange the calculated results
in turn, which can be used to evaluate the ability of the algorithm for image retrieval.
In addition, the common evaluation indexes also include precision, which refers to the
proportion of images with the same kind of images to be retrieved in all retrieval results in
an image retrieval task. The average precision rate is the sum of P divided by the number
of searches, and the calculation formula of precision rate is shown in (15),

P =
TP

TP + FP
(15)

where TP represents the number of positive cases correctly predicted as positive cases, and
FP represents the number of negative cases incorrectly predicted as positive cases.

When all the image results obtained at the end of the retrieval are numbered from
small to large according to the order of the distance between them and the image to be
retrieved, N represents the average value of the image numbers of the same things as the
image to be retrieved in the retrieval results, and the calculation formula is shown in (16):

N =
1
M

M

∑
x=1

x (16)

M denotes the number of images similar to the image to be retrieved in the returned
results, and x denotes the serial number of the returned images in the total results. Generally,
the Top-K index is used to evaluate the quality of the retrieval results, which indicates the
first K images with the smallest calculation distance as the retrieval results. Image retrieval
tasks not only need to consider all the above factors, but also have strict rules on retrieval
time, which often reflects the quality of model performance and whether the similarity
measurement algorithm is suitable to a certain extent. For an image retrieval task, the
calculation of the retrieval time is shown as (17), and when evaluating an image retrieval
algorithm, it is necessary to comprehensively consider accuracy, ranking and retrieval time.

t =
one retrieval time

total number o f pictures in one retrieval
(17)

5.3. Experimental Results of Topology Feature
5.3.1. Results of Witness Complex

The difference between the witness complex and cube complex is that the cube complex
directly inputs images for operation, and the calculation of the witness complex is not only
based on the image itself, but also affected by the selection of data landmark points. Then,
the calculation results are analyzed for different data quantities and different landmark
points.

The selection number of landmark points only needs to satisfy: N/n ≥ 20 [26]. N and
n are the number of dot clusters Z and the number of landmark points, respectively. The
smaller the ratio, the more landmark points are selected, and the calculation is finer, but
the calculation time is longer. Therefore, the selection of landmark points should not be
excessive.

There is no requirement for the horizontal–vertical ratio of the image size in the
calculation of the witness complex. Therefore, because both sides of the image in this
dataset are invalid information, images are clipped and calculated. The specific clipping is
to clip 40 pixels at the left and right ends, and the clipped image size is 176 × 256, which
can reduce the calculation time of the witness complex without losing image information.
Table 1 shows the running time in different sizes and ratios after cutting. Figure 11 shows
the calculation results in the different sizes and ratios after cutting.
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Table 1. Running time at different ratios after cutting.

Image Size Ratio Running Time

176 × 256 128 67.14 s
176 × 256 192 31.14 s
176 × 256 256 18.41 s
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5.3.2. Results of Topology Feature Histogram

During the calculation processing of the topology feature histogram, because of the
particularity of the triangle structure and the calculation method of the Rips complex,
the hole composed of three points cannot die out after filling, and the whole structure
composed of three points is very common, especially in the area with strong pixel change.
Therefore, in order to avoid this situation, the x and y coordinates of the pixels need to be
scaled first.

This zoom mode has little influence on the area with gentle pixel gray change, but
has an obvious effect on extracting the topology features from areas with strong pixel gray
changes. As shown in Figure 12, it can be clearly seen that the appropriate multiple of x
and y coordinates can make certain topology features appear. Of course, different scales
of scaling will extract the different scales of topology features. If the scaling factor is too
small, the influence of the pixel coordinates on distance will be too small, which leads to the
inability to extract most features. When the RGB influence on the distance is too small, this
results in similar features for most pixel blocks, which cannot be effectively distinguished.
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Figure 12. Result of zoomed-in 100 compared with the result without zoom.

In this paper, the 256 × 256 size image is transformed into a 254 × 254 size vector after
3 × 3 windowing with one step size, and then normalized to 0–255 and turned into gray
image.

After the above processing, some local features of the image can be restored, and more
features of image can be extracted with appropriate magnification. The disadvantage is
that the calculation time is long, so the step size is three here. The feature is sensitive to the
distance between pixels and insensitive to its spatial position information, so the feature
has certain rotation invariance. Figure 13 shows topology feature histograms in different
rotation angles.
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5.4. Retrieval Result Combine Color Texture Feature with Topology Feature

In this paper, color histogram, SURF features, and topology feature are used for
clothing image retrieval. In the color histogram, after being divided into 16 intervals on the
three components of R, G, and B, the colors are quantized, and finally 16 × 16 × 16 = 4096
color bins are formed. Then, count the number of these 4096 colors, that is, the color
histogram. Due to the background of the image, the calculation effect after removing
the histogram peak is shown in Figure 14. The similarity of two color histograms can be
measured by Euclidean distance.
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In the experiments, we extract SURF features from all images, and generate a 64×
n-dimensional feature from each image. For the measure of SURF features, we use the
matching vectors closest to the first 30 distances, and calculate the average value as SURF
distance, while the topology features are converted into two-dimensional vectors for
calculation. In order to avoid the influence of color feature distance on the different color
images of the same style, adaptive threshold processing is adopted because there are many
different colors in the same style of clothing in this dataset. That is to say, for each image
to be retrieved, when the color feature distance is too large in the calculation with the
database, the color distance will not be assigned weight, that is, for clothing images with
an excessively large color difference, the distance between them is only determined by the
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SURF feature and topology feature. We adopt linear fusion, that is, the distances calculated
by different features are linear fused together, as shown in (18).

S = α1Lcolor(F1, F2) + α2LSURF(F1, F2) + α3Lt(F1, F2) (18)

where F1 represents the image to be retrieved, F2 represents the image in the database, α1
represents the color feature distance weight, Lcolor represents the color feature distance, α2
represents the SURF feature distance weight, LSURF represents the SURF feature distance,
α3 represents the topology feature distance weight, and Lt represents the topology feature
distance. There are seven ways to calculate the topology feature distance due to the different
complex construction forms and measurement methods, and all the calculated distances
need to be normalized. α1 is 0 when the distance between the image to be retrieved and the
color feature of the image in the database is large, and in the rest of cases, the weights of
the three features are the same, all of which are 1.

In the experiment, the images to be retrieved are styles with more than 15 images in the
dataset. Table 2 shows the retrieval results combined with the topology feature with color
and SURF feature, where the witness complex is adopted in different distance measures
and different landmark selection ratios, in which the image size is 176 × 256. It can be seen
that, with the increase in ratio, the decrease in the number of landmark points will lead
to the decrease in calculation, and the calculation time will decrease correspondingly but
the accuracy will decrease. The retrieval results of the cube complex and topology feature
histogram are shown in Table 3, and the time is the average calculation time of each image.

Table 2. Comparison of witness Complex retrieval results (different distance measures).

Distance Measure Ratio Top5
(%)

Top10
(%)

Top15
(%) Time

Bottleneck distance 128 72.3 70.5 65.9 11.98
Bottleneck distance 192 71.4 69.8 64.1 10.65
Bottleneck distance 256 69.2 66.6 62.8 9.41
Wasserstein distance 128 81.5 78.6 74.5 12.96
Wasserstein distance 192 80.4 78.1 74.3 11.52
Wasserstein distance 256 79.2 77.4 73.8 10.07
Vector graph 128 69.6 66.3 64.8 9.02
Vector graph 192 68.8 65.5 62.1 9.02
Vector graph 256 68.7 65.1 60.8 9.02

Table 3. Comparison of retrieval results.

Method Top5
(%)

Top10
(%)

Top15
(%) Time

Only color surf 68.7 64.5 61.2 8.26
Color surf + cubic complex + bottleneck distance 74.5 71.5 69.8 11.78
Color Surf + cubic complex + Wasserstein distance 79.8 76.5 72.4 12.86
Color surf + cubic complex + vector graph 66.4 60.5 56.9 9.02
Color surf + topology feature Histogram + topology
feature Histogram distance (our method) 83.6 80.9 78.8 8.93

As can be observed from Tables 2 and 3, for the measurement methods of the three
topology features, the calculation speed of the vector graph is relatively fast, but the
accuracy is poor. While the Wasserstein distance has high accuracy, but its calculation
speed is the slowest. As can be seen from Table 3, after adding the topology feature,
the retrieval effect is basically improved compared with only using the color and texture
information. Our proposed method, i.e., the topology feature histogram + its corresponding
distance, improves the retrieval rate of top5 by 14.9% compared with the method using color
texture alone. Compared with the method of the cubic complex + Wasserstein distance, it is
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improved by 3.8%, and the calculation time is saved by 3.93 s (accounting for 44%). It can
be seen that the algorithm proposed retains the accuracy of Wasserstein distance, and can
shorten some calculation time. Figure 15 shows some examples of top-5 retrieval results
using the proposed algorithm, where the first column represents the clothing images to be
retrieved, and the retrieval results show the first five similar images retrieved.
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Figure 15. Some examples of retrieval results.

Experiments indicate that the three methods have good calculation results for images
with different resolutions. Among the three methods, the witness complex is the slowest
for feature extraction, which is affected by the image size and landmark selection ratio,
and the amount of feature extracted directly affects the retrieval results and retrieval time.
However, it has no requirement on the horizontal and vertical proportion and shape of
the image, and it has little influence on the clothing images with different colors. The
cube complex has the fastest calculation speed, but the cube complex has low retrieval
accuracy and a large error for different colors. On the other hand, the algorithm proposed
has good results under different color conditions, and the calculation speed is fast, so the
comprehensive retrieval performance is the best.

6. Conclusions

This paper studies the technology of clothing image retrieval based on topology
features. As for topology features, firstly, the different construction methods of image
complex and their characteristics are studied, and the construction mode of topology
feature histogram is proposed. This feature calculates the information of each pixel block
of the image separately, and takes its statistical characteristics as the topology feature of the
image, which has good scale and rotation invariance. According to the similarity measure of
topology feature, this paper improves the Wasserstein distance and proposes the topology
feature histogram distance. Experimental results show that the proposed topology feature
measurement method can effectively reduce the operation time while ensuring the accuracy.
In this paper, the color texture feature are combined with the topology feature, and then,
the image retrieval is carried out. The experiments show that, after fusing the topology
feature, the accuracy of clothing image retrieval has been improved.

Although persistent homology in algebraic topology has the advantages of mathemat-
ical principles, it is still difficult to give full play to the advantages of continuous homology
method in image analysis and understanding technology, and there is room for further
research and development. The shortcomings of this paper and the further work are as
follows.
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(1) In the related research, most studies use the one-dimensional Betty number as ho-
mology information for analysis and calculation, and 1-dimensional information can better
represent the topology characteristics of data than 0-dimensional information, while the
research on using higher-dimensional homology information for clothing image retrieval
needs further discussion.

(2) The dataset studied in this paper is clothing images with a simple background,
but in real life, the images and scenes shot are very complex, such as shadows, masks,
deformation and so on. Therefore, the complex background image retrieval needs further
discussion.
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