
Citation: Bai, Y.; Wang, H.; He, J. Blin:

A Multi-Task Sequence

Recommendation Based on

Bidirectional KL-Divergence and

Linear Attention. Mathematics 2024, 12,

2391. https://doi.org/10.3390/

math12152391

Academic Editors: Nazim Choudhury

and Matloob Khushi

Received: 13 July 2024

Revised: 26 July 2024

Accepted: 29 July 2024

Published: 31 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Blin: A Multi-Task Sequence Recommendation Based on
Bidirectional KL-Divergence and Linear Attention
Yanfeng Bai , Haitao Wang * and Jianfeng He

Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming 650500, China; kustbyf@stu.kust.edu.cn (Y.B.); jfenghe@kust.edu.cn (J.H.)
* Correspondence: 12309177@kust.edu.cn

Abstract: Sequence recommendation is a prominent research area within recommender systems,
focused on predicting items that users may be interested in by modeling their historical interaction
sequences. However, due to data sparsity, user interaction sequences in sequence recommendation
are typically short. A common approach to address this issue is filling sequences with zero values,
significantly reducing the effective utilization of input space. Furthermore, traditional sequence
recommendation methods based on self-attention mechanisms exhibit quadratic complexity with
respect to sequence length. These issues affect the performance of recommendation algorithms.
To tackle these challenges, we propose a multi-task sequence recommendation model, Blin, which
integrates bidirectional KL divergence and linear attention. Blin abandons the conventional zero-
padding strategy, opting instead for random repeat padding to enhance sequence data. Additionally,
bidirectional KL divergence loss is introduced as an auxiliary task to regularize the probability
distributions obtained from different sequence representations. To improve the computational
efficiency compared to traditional attention mechanisms, a linear attention mechanism is employed
during sequence encoding, significantly reducing the computational complexity while preserving
the learning capacity of traditional attention. Experimental results on multiple public datasets
demonstrate the effectiveness of the proposed model.

Keywords: sequence recommendation; self-attention mechanism; consistency training; data
augmentation

MSC: 68T07; 68T01

1. Introduction

Finding content that interests users quickly and accurately amid vast amounts of
information has always been a challenging problem. To address this issue, recommender
systems have become indispensable tools for online users to filter their preferred informa-
tion based on their historical behavior interactions. Sequential recommendation [1], which
dynamically models user preferences over time, has proven effective and has garnered
widespread research attention.

In recent years, with the rapid advancement of deep learning, a range of sequential
recommendation methods have emerged, encompassing architectures such as recurrent
neural networks (RNNs), convolutional neural networks (CNNs), graph neural networks
(GNNs), and Transformers [2–8]. Among these, Transformer-based methods for sequential
recommendation have gained significant attention due to their exceptional performance in
sequence encoding [5–8]. However, current research still faces several challenges: (1) Se-
quence padding space utilization issues and data sparsity problems: most sequence recom-
mendation methods handle the padding of original short sequences with zeros [9], which
do not contribute meaningful information and, thus, result in inefficient space utilization.
Additionally, in the field of sequence recommendation, data sparsity is a prevalent issue.

Mathematics 2024, 12, 2391. https://doi.org/10.3390/math12152391 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12152391
https://doi.org/10.3390/math12152391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-9633-4534
https://doi.org/10.3390/math12152391
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12152391?type=check_update&version=2

Mathematics 2024, 12, 2391 2 of 16

User interaction sequences are typically short and sparse, making it challenging for models
to accurately capture user preferences and behaviors due to the limited data available. This
sparsity further exacerbates the inefficiency of traditional zero-padding methods, as the
padding does not add valuable information and fails to address the underlying lack of
data. (2) The computational complexity of attention mechanisms: when dealing with long
sequences, the computational complexity of dot product operations in attention layers in-
creases quadratically with sequence length. (3) The limitation of a single loss function: most
models rely solely on a single loss function to update their model parameters, which poses
certain limitations to learning user preference representations from interaction sequences.

In response to these issues, this paper proposes a multi-task sequential recommenda-
tion model named Blin, which integrates bidirectional KL divergence and linear attention.
Blin departs from the traditional zero-padding of original short sequences by employing
a method called random repeat padding (RandomPad for short) to enhance the original
sequence data. This involves independently applying RandomPad twice to generate two
padded sequences, which are jointly input into the model. Additionally, a linear attention
mechanism is utilized for the padded sequences in the model to significantly reduce the
computational complexity of dot product operations in the attention layers, while preserv-
ing the learning capability of traditional attention mechanisms. Finally, bidirectional KL
divergence loss is added as an auxiliary task for regularization [10,11], aiming to align or
make similar the probability distributions derived from the representations of different
padded sequences. This assists the model in learning the desired target distributions.

The main contributions of this paper are as follows:

• Blin adopts the RandomPad method to replace traditional zero-padding, thereby
alleviating data sparsity issues and improving the effective utilization of input space.

• Blin employs a linear attention mechanism that reduces the computational complexity
of the attention dot product operations from quadratic O(n2) to near-linear O(n), while
ensuring the accuracy of attention mechanisms for long sequences.

• Blin introduces bidirectional KL divergence loss as an auxiliary task for sequential
recommendation, aiming to regularize the probability distributions derived from
different representations of padded sequences. This loss, combined with the sequence
recommendation loss, jointly updates the model parameters to achieve enhanced user
preference representations.

• Experimental evaluations on multiple public datasets, compared with representative
baseline methods, demonstrate that Blin achieves performance improvements over
baseline methods to varying degrees.

2. Related Work
2.1. Sequence-Based Recommendation

Sequence recommendation tasks involve predicting users’ next behavioral prefer-
ences based on their historical interaction behaviors. Early research, including pioneering
methods based on Markov chains [12], initially explored simple, low-order sequential
dependencies. However, these approaches were constrained by assumptions, making them
inadequate for handling complex situations involving high-order dependencies. With the
rapid development of deep learning, a variety of sequence recommendation methods have
emerged. Among these, methods based on self-attention mechanisms stand out for their
excellent performance and have received extensive research attention. Kang et al. [5] were
pioneers in integrating self-attention mechanisms into sequence recommendation, effec-
tively capturing user preference representations and achieving an improved performance
over previous methods. FDSA [13] introduces multiple attention blocks to depict potential
features. Sun et al. [6] proposed BERT4Rec, which utilizes bidirectional attention mecha-
nisms to model user interaction sequences and employs the Cloze objective to improve the
efficiency of the training process. Li et al. [14] introduced TiSASRec, incorporating time
interval information into attention mechanisms to capture the impacts of different time
intervals on item prediction. Furthermore, an increasing number of studies are combin-

Mathematics 2024, 12, 2391 3 of 16

ing contrastive learning with attention mechanisms [15–18]. For instance, CL4Srec [15]
utilizes a contrastive learning framework to obtain self-supervised signals from original
user sequences and proposes three data augmentation methods to construct these sig-
nals. CoSeRec [16] builds upon CL4SRec by integrating item similarity information into
contrastive learning objectives to maximize sequence consistency enhancement.

2.2. Linear Attention Mechanisms

Traditional attention mechanisms incur high computational costs, posing challenges
in model design and practical applications. To address the high computational costs
associated with Transformers, recent studies have adopted linear attention mechanisms
as a solution. Specifically, linear attention replaces the Softmax function in traditional
dot product attention with a designed kernel function. In this approach, attention can
be computed more efficiently by first calculating KTV. While linear attention is highly
efficient in terms of computational complexity, designing a linear attention module with
the same learning capability as Softmax attention remains a challenge. This issue has
led to a series of emerging studies. The Performer [19] approximates Softmax operations
using orthogonal random features, while Li et al. [20] proposed using a first-order Taylor
expansion to approximate the expanded form of the Softmax function. K et al. [21] utilized
simple feature mapping represented by the elu function as a kernel function. Shen et al. [22]
introduced Efficient Attention, applying Softmax separately to Q and K to ensure that
each row of QKT summed to 1. Hydra Attention [23] selects cosine similarity as a kernel
function, reducing the computational complexity to O(nd).

However, the methods mentioned above still face several challenges. Sequential
recommendation models typically process input sequences into a fixed length for ease of
model training. Most sequence recommendation models handle user sequences by padding
with zeros [9], where these padded zeros do not contribute to the model training, leading to
inefficient utilization of the input space and difficulty in learning long-term user behavior
representations. Furthermore, models based on self-attention mechanisms suffer from high
computational costs [20–25]. Although current research on linear attention mechanisms
has significantly reduced computational complexity, these methods often sacrifice accuracy.
In other words, existing research has not effectively preserved the learning capability of
traditional attention mechanisms.

The Blin model proposed in this paper addresses these challenges by employing Ran-
domPad to effectively increase the utilization of input space for model input sequences.
Additionally, improvements are made to the linear attention mechanism by incorporating a
DWC module [24,25], which enhances the ability to capture local features while maintaining
effective attention. Moreover, Blin introduces bidirectional KL divergence loss as an auxil-
iary task to regularize the probability distributions derived from different representations
of padded sequences, aiding the model in learning more aligned target distributions.

3. Methodology

In this section, we first introduce the problem definition of sequential recommendation.
Then, we provide a detailed description of each component of the Blin model, including
RandomPad, the linear attention mechanism, and the bidirectional KL divergence. The
overall framework of the model is illustrated in Figure 1.

Mathematics 2024, 12, 2391 4 of 16Mathematics 2024, 12, x FOR PEER REVIEW 4 of 16

Figure 1. Architecture of the Blin.

3.1. Problem Statement

In the task of sequence recommendation, let U denote the set of users and V denote

the set of items. For each user u∈U, there exists a time-ordered user interaction sequence

Su=[s1
u,s2

u,…,st
u,…,s|Su|

u], where |Su| denotes the number of interactions in sequence Su

and st
u represents the item interacted by user u at time t. The task of sequence recom-

mendation is to predict a Top-N candidate list of items that a user may find interesting at

the next time step, based on their historical interaction sequence Su. given by:

arg𝑚𝑎𝑥 P൫𝑣|Su|1 ൌ 𝑣∗|𝐒𝑢൯
𝑣∗ ∈ V

(1)

This equation can be understood as calculating the probability for all candidate items

and selecting the highest one for recommendation.

3.2. RandomPad

Most common sequence models can only handle fixed-length sequences. Addition-

ally, due to the issue of data sparsity, the user sequences in sequential recommendations

are often short. Therefore, sequence padding is a frequently used technique in training

sequence models [5]. Before model training, the maximum sequence length n that the

model can handle is defined. For sequences with an initial length greater than n, the most

recent n items are selected as the input sequence. If the initial sequence length is less than

n, padding is required on the left side of the sequence.
The general operation of sequence padding can be described as follows:

SeqOperሺ𝐒୳ሻ ൌ SeqOper൫ൣsଵ, sଶ, sଷ, … , s|𝐒౫|൧൯ ൌ ቐ
Tሺ𝐒୳ሻ, |S୳| ൏ 𝑛,
𝐒୳, |S୳| ൌ 𝑛,

ሾsୡାଵ, sୡାଶ, sୡାଷ, … , sሿ, |S୳| 𝑛,
 (2)

where |Su| represents the initial sequence length, SeqOperሺSuሻ indicates the prepro-
cessing operation on sequence Su before training, and TሺSuሻ represents the padding of
the initial sequence Su. The usual method for sequence padding is zero-padding, where

s1

Multi-Head
Linear Attention

Add&Norm

FFN

Add&Norm

Output

Positional
Encoding

s2 sn

LATM Layer

LATM Layer

ꞏ
ꞏ
ꞏ

Stacking

Prediction Layer

sn+1ꞏꞏꞏ

ꞏꞏꞏ

Initial user sequencesu

s1 s2 ꞏꞏꞏ
RandomPad

Initial user sequencesu

s1 s2 snꞏꞏꞏ

RandomPad

LATM Layer LATM Layer

Softmax Softmax

item Embedding

Input

P1 P2

 Bidirectional KL
divergence Loss

 Next-item Prediction auxiliary learning task LATM layer

1Ê 2Ê

)(
1

LT)(
2

LT

s|s
u
|

Figure 1. Architecture of the Blin.

3.1. Problem Statement

In the task of sequence recommendation, let U denote the set of users and V denote
the set of items. For each user u ∈ U, there exists a time-ordered user interaction sequence
Su = [su

1 , su
2 , . . . ,su

t , . . . ,su
|Su|

]
, where |Su| denotes the number of interactions in sequence Su

and su
t represents the item interacted by user u at time t. The task of sequence recommen-

dation is to predict a Top-N candidate list of items that a user may find interesting at the
next time step, based on their historical interaction sequence Su. given by:

argmax P
(

v|Su|+1 = v∗|Su

)
v∗ ∈ V

(1)

This equation can be understood as calculating the probability for all candidate items
and selecting the highest one for recommendation.

3.2. RandomPad

Most common sequence models can only handle fixed-length sequences. Additionally,
due to the issue of data sparsity, the user sequences in sequential recommendations are often
short. Therefore, sequence padding is a frequently used technique in training sequence
models [5]. Before model training, the maximum sequence length n that the model can
handle is defined. For sequences with an initial length greater than n, the most recent
n items are selected as the input sequence. If the initial sequence length is less than n,
padding is required on the left side of the sequence.

The general operation of sequence padding can be described as follows:

SeqOper(Su) = SeqOper
([

s1, s2, s3, . . . , s|Su |

])
=

T(Su), |Su| < n,

Su, |Su| = n,
[sc+1, sc+2, sc+3, . . . , sn], |Su| > n,

(2)

where |Su| represents the initial sequence length, SeqOper(Su) indicates the preprocessing
operation on sequence Su before training, and T(Su) represents the padding of the initial
sequence Su. The usual method for sequence padding is zero-padding, where c = |Su|−n
represents the number of items that need to be truncated from the initial sequence.

Mathematics 2024, 12, 2391 5 of 16

Traditional sequence padding typically uses zero-padding to extend the initial se-
quence length to the maximum sequence length n:

Z(Su) = Z
([

s1, s2, s3, . . . , s|Su|

])
= [0, 0, . . . , sk+1, sk+2, sk+3, . . . , sn] (3)

where Z(Su) indicates zero-padding for sequence Su, and k = n−|Su| represents the num-
ber of zeros that need to be added, with |Su| < n .

Although traditional zero-padding is simple to implement, it can lead to a waste of
input space. Blin uses RandomPad instead of traditional zero-padding. A comparison
between traditional zero-padding and RandomPad is shown in Figure 2. The specific
definition of the RandomPad padding method is as follows:

RandomPad(α, Su) = [Su|0|Su|0|Su| . . . |0 |Su|]︸ ︷︷ ︸
(α+1)Su

(4)

where RandomPad(α, Su) represents the random repeat padding for Su, |Su|< n and α ∈
[1, max] represents the randomly generated number of padding repetitions. max =⌊n /|Su|⌋
represents the maximum number of repetitions that can be applied to the initial sequence.
When max = 0, it means that the initial sequence is a long sequence, and there is not
enough space to accommodate the maximum sequence length n. In this case, the num-
ber of padding times α= 0. Any remaining space after RandomPad is filled with zeros.
Adding zeros between repeated sequences prevents the tail of the initial user sequence
from predicting the head.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 16

Traditional sequence padding typically uses zero-padding to extend the initial se-
quence length to the maximum sequence length n:

Z(𝐒𝐒u) = Z��s1, s2, s3, … , s|𝐒𝐒u|�� = [0,0, … , sk+1, sk+2, sk+3, … , s𝑛𝑛] (3)

where Z(Su) indicates zero-padding for sequence Su , and k = n-|Su| represents the
number of zeros that need to be added, with |Su|< n.

Although traditional zero-padding is simple to implement, it can lead to a waste of
input space. Blin uses RandomPad instead of traditional zero-padding. A comparison be-
tween traditional zero-padding and RandomPad is shown in Figure 2. The specific defini-
tion of the RandomPad padding method is as follows:

RandomPad(α, 𝐒𝐒u) = [𝐒𝐒u|0|𝐒𝐒u|0|𝐒𝐒u| … |0|𝐒𝐒u|]���������������
(α+1)𝐒𝐒u

 (4)

where RandomPad�α,Su� represents the random repeat padding for Su , |Su|< n and
α∈[1,max] represents the randomly generated number of padding repetitions.
max=⌊n /|Su|⌋ represents the maximum number of repetitions that can be applied to the
initial sequence. When max=0, it means that the initial sequence is a long sequence, and
there is not enough space to accommodate the maximum sequence length n. In this case,
the number of padding times α=0. Any remaining space after RandomPad is filled with
zeros. Adding zeros between repeated sequences prevents the tail of the initial user se-
quence from predicting the head.

Figure 2. Comparison of sequence padding (n = 10).

3.3. Embedding Layer
First, we constructed an embedding table M∈R|V|*d using the set of projects, where

|V| denotes the number of projects in the set and d represents the embedding dimension.
We converted the user training sequence Su=[s1

u,s2
u,…,st

u,…,s|Su|
u] into a fixed-length se-

quence Su=[s1,s2,…,sn], where n is the maximum length the model can handle. If the se-
quence length exceeded n, we considered only the most recent n user interactions. If the
sequence length was less than n, we used RandomPad to pad the left side of the sequence
until its length reached n . Next, we retrieved the project embedding matrix E∈Rn*d

s3 s1 s4

s2s1

s7s6s5s4s1s2

s2s100000000

s4s1s30000000

Tradition zero padding

RandomPad
s2s10s2s10s2s100

s4s1s30s4s1s3000

s7s6s5s4s1s20000

s7s6s5s4s1s20000

Initial user sequence

α=2

α=1

α=0

Figure 2. Comparison of sequence padding (n = 10).

3.3. Embedding Layer

First, we constructed an embedding table M ∈ R|V|∗d using the set of projects, where
|V| denotes the number of projects in the set and d represents the embedding dimension.
We converted the user training sequence Su= [su

1 , su
2 , . . . ,su

t , . . . ,su
|Su|

]
into a fixed-length

sequence Su = [s1, s2, . . . ,sn], where n is the maximum length the model can handle. If the
sequence length exceeded n, we considered only the most recent n user interactions. If the

Mathematics 2024, 12, 2391 6 of 16

sequence length was less than n, we used RandomPad to pad the left side of the sequence
until its length reached n. Next, we retrieved the project embedding matrix E ∈ Rn∗d

corresponding to the user interaction sequence Su by querying the project embedding
table M, where Ei = Msi. For positional embedding, we introduced a learnable positional
embedding P ∈ Rn∗d. By combining project embeddings with positional embeddings, we
obtained the final sequence embedding:

Ê =

Ms1 + P1
Ms2 + P2

. . .
Msn + Pn

 =

s1
s2
. . .
sn

 (5)

3.4. Transformer Layer

Utilizing the sequence embeddings obtained from the previous section, we input them
into the Transformer module. We stacked multiple Transformer layers to capture hierarchi-
cal dependencies within the input sequence, aiming to better learn the representations of
user preferences. However, traditional dot product attention methods involve high com-
putational costs in the attention matrix calculation process. To mitigate these costs while
ensuring model effectiveness, Blin employs a linear attention mechanism by designing a
unique kernel function to replace the Softmax function in the self-attention mechanism.
This changes the computation order in the attention dot product operation, from first calcu-
lating QKT to first calculating KTV, thereby significantly reducing the computational cost.
The computational complexity of traditional dot product attention is reduced from O(n2d

)
to O(nd2). In scenarios where n≫ d, this complexity can be approximated as linear O(n).

3.4.1. Definition of Traditional Dot Product Attention Method

The key component of the Transformer is self-attention, which effectively captures
dependencies between different positions in a sequence. Each element in the sequence is
weighted based on the importance of other elements. Typically, this is computed using the
dot product attention function [26]:

Q = EWQ, K = EWK, V = EWV

Attention(Q, K, V) = softmax
(

QKT
√

d

)
V (6)

where E ∈ Rn×d represents the input sequence matrix, Q = EWQ, K = EWK, V = EWV

respectively, denote queries, keys, and values.
{

WQ, WK, WV
}
∈ Rd×d are three projection

matrices, with
√

d as a scaling factor. The softmax function is applied row-wise to QKT.

3.4.2. Generalization of Kernel-Based Dot Product Attention

Assuming matrix D represents the output of Equation (6), where the ith row of D
is denoted as Di, Equation (6) can be generalized for attention computation under any
similarity function:

Di =

(
Sim(Qi ,Km)Vi

∑n
j=1 Sim(Qi ,Kj)

)n

m=1
(7)

where Qi = (Qi1, Qi2, . . . ,Qid) represents the ith row of matrix Q, Kj =
(

Kj1, Kj2, . . . ,Kjd

)T

represents the jth column of matrix KT, and Vi = (Vi1, Vi2, . . . ,Vid) represents the ith
row of matrix V, where i ∈ (1, 2 . . . , n). f =(f(x))n

x=1 denotes the content of vector f as
f =(f(1), f(2), . . . , f(n)). Equation (6) is equivalent to Equation (7) using Softmax atten-
tion, where the similarity measure is Sim(Q, K)= exp(QKT/

√
d
)

. Sim(Q, K) calculates

the similarity between all queries and keys, and since Q, K ∈ Rn×d, the product of Q
and K leads to O(n2) computational complexity. Recent studies have aimed to reduce

Mathematics 2024, 12, 2391 7 of 16

computational costs by introducing carefully designed kernel functions as approximations
of the original similarity function. Specifically, Sim

(
Qi, Kj

)
can be further generalized as

Sim
(
Qi, Kj

)
= ϕ(Qi)ϕ(Kj

)T, transforming Equation (7) into:

Di =

(
ϕ(Qi)ϕ(Km)TVi

∑n
j=1 ϕ(Qi)ϕ(Kj)

T

)n

m=1
(8)

Equation (8) continues to simplify:

Di =

(
ϕ(Qi)ϕ(Km)TVi

ϕ(Qi)∑
n
j=1 ϕ(Kj)

T

)n

m=1
(9)

It can be observed that, by extending the original similarity function Sim
(
Qi, Kj

)
to

ϕ(Qi)ϕ(Kj
)T, the computation of attention can prioritize the calculation of KTV. Since

KT ∈ Rd×n and V ∈ Rn×d, the complexity of the product between KT and V is O(d2).
In scenarios where n ≫ d, the computational complexity of kernel-based dot product
calculation can be approximated as O(n), significantly reducing the computational cost
compared to traditional dot product attention.

3.4.3. Linear Attention Mechanism

From the above reasoning, it is evident that achieving linear computational com-
plexity in attention mechanisms hinges on determining an appropriate kernel function,
specifically using ϕ(Q)ϕ(K)T to replace the traditional dot product attention opera-
tion Sim(Q, K). Blin employs an effective method of attention to replace traditional
dot product attention, specifically using the Softmax function as the kernel function
(ϕ(Q)ϕ(K)T = σrow(Q)σcol(K)T). This transforms the single Softmax operation in tra-
ditional dot product attention into two separate Softmax operations. Verified to be a
straightforward and effective replacement for traditional dot product attention, the follow-
ing equation describes the effective attention mechanism:

E(Q, K, V) = σrow(Q)
(
σcol(K)TV

)
(10)

where σrow(·) and σrow(·) apply the Softmax function along each row or column of the
matrix, respectively. Effective attention essentially selects the Softmax function as the kernel
function, transforming the single Softmax operation in traditional dot product attention
into two separate Softmax operations. This transformation changes the execution order
of dot product operations from QKTV to Q

(
KTV

)
, thereby reducing computational costs.

Although this transformation is not entirely equivalent, in practice, their effects are very
similar. The main propertes of σrow

(
QKT) are that the sum of each row is 1 and the

elements in each row are non-negative. The matrix σrow(Q)σcol(K)T also possesses these
properties, which has been confirmed in previous studies.

The Softmax function tends to globally attend to the entire sequence, but its global
nature may lead to neglecting local information when capturing long-range dependencies.
Additionally, the exponential nature of Softmax may cause attention weights to overly
focus on a few items in the sequence, exaggerating their importance and neglecting others,
resulting in information loss. To address the limitations of the Softmax function, this
paper proposes a simple and effective improvement: integrating a Depthwise Convolution
(DWC) module into the attention matrix. The DWC module helps the model to capture
local structures and relationships more comprehensively within the sequence, enabling the
attention mechanism to compute attention weights based not only on exponential functions,
but also on richer local features. Figure 3 contrasts traditional dot product attention with
the linear attention mechanism. The final output representation of the linear attention
mechanism is:

D = σrow(Q)
(
σcol(K)TV

)
+ DWC(V) (11)

Mathematics 2024, 12, 2391 8 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 16

representation of the attention layer. Additionally, multiple attention functions can be
used in parallel to enhance model expressiveness D←MultiHead(E).

Feedforward Neural Network: Since the linear attention layer primarily operates on
linear projections, a feedforward neural network is introduced to impart non-linear char-
acteristics to the model:

𝐓𝐓𝑖𝑖 = FFN(𝐃𝐃𝑖𝑖) = ReLU�𝐃𝐃𝑖𝑖𝐖𝐖(1) + 𝐛𝐛(1)�𝐖𝐖(2) + 𝐛𝐛(2) (12)

Here, W(1),W(2)
∈Rd×d are weight matrices and b(1),b(2)

∈Rd are learnable bias vectors.
Di and Ti represent the behavioral representations of the ith item in D and T, respectively.

Finally, to accurately capture deep representations of user behavior, a strategy of stacking
Transformer layers is employed, where the definition of the Lth layer is as follows:

𝐃𝐃(L) = LA�𝐓𝐓(L−1)� (13)

𝐓𝐓𝑖𝑖
(L) = FFN�𝐃𝐃𝑖𝑖

(L)� (14)

Here, D(1)=D, T(1)=T, LA represents the linear attention layer. In addition, residual
connections [27], dropout [28], and layer normalization techniques [29] can be applied to
ensure stability and expedite convergence during training. Here, this paper succinctly
summarizes the final output of the Transformer layer as T(L).

Figure 3. Comparison between dot product attention and linear attention.

3.5. Bidirectional KL Divergence Loss
Using the item-embedding method from Section 3.3, two sequence embeddings

E�1 and E�2, which have been padded using RandomPad, are formed. These embeddings,
E�1 and E�2, are then input into the Transformer architecture based on the linear attention
mechanism, as described in Section 3.4. This process ultimately yields two output repre-
sentations T1

(L) and T2
(L). To understand the relationship between users and items in se-

quence recommendation, a similarity function (such as the dot product) can be used to
measure the distance between user output representations and item representations. Spe-
cifically, for the user output representations T1

(L) and T2
(L), we compute corresponding

similarity probability distributions P(T1
(L)) and P(T2

(L)) to predict the next item of inter-
est for user u. The specific formula is as follows:

P�𝐓𝐓(L);α� = exp�𝐓𝐓(L)et+1
+ �

exp�𝐓𝐓(L)et+1
+ �+∑ exp�𝐓𝐓(L)et+1

− �et+1
− ∈𝐕𝐕

 (15)

𝓛𝓛seq = −logP�𝐓𝐓(L);α� (16)

Here, et+1
+ represents a positive sample, et+1

- represents a randomly sampled nega-
tive sample from the item set V, and α represents all trainable parameters in the model.
𝓛𝓛seq represents the sequence loss function.

E:
n×d

Input

Q:
n×d

V:
n×d

KT:d×n σ(QKT):
n×n

V:
n×d

D:
n×d

Output

E:
n×d

Input

n×d

V:
n×d

σ(KT):d×n D:
n×d

Output

 Dot-Product Attention

n×d d×d += DWC(V):
n×d =

σ(Q):

σ(Q): σ(KT)V:

 Linear Attention

Figure 3. Comparison between dot product attention and linear attention.

Here, Q = EWQ, K = EWK, V = EWV represent queries, keys, and values, respec-
tively, where

{
WQ, WK, WV

}
∈ Rd×d are three projection matrices. D denotes the output

representation of the attention layer. Additionally, multiple attention functions can be used
in parallel to enhance model expressiveness D← MultiHead(E).

Feedforward Neural Network: Since the linear attention layer primarily operates
on linear projections, a feedforward neural network is introduced to impart non-linear
characteristics to the model:

Ti = FFN(Di) = ReLU
(

DiW(1) + b(1)
)

W(2) + b(2) (12)

Here, W(1), W(2) ∈ Rd×d are weight matrices and b(1), b(2) ∈ Rd are learnable bias
vectors. Di and Ti represent the behavioral representations of the ith item in D and T,
respectively.

Finally, to accurately capture deep representations of user behavior, a strategy of
stacking Transformer layers is employed, where the definition of the Lth layer is as follows:

D(L) = LA
(

T(L−1)
)

(13)

T(L)
i = FFN

(
D(L)

i

)
(14)

Here, D(1) = D, T(1) = T, LA represents the linear attention layer. In addition,
residual connections [27], dropout [28], and layer normalization techniques [29] can be
applied to ensure stability and expedite convergence during training. Here, this paper
succinctly summarizes the final output of the Transformer layer as T(L).

3.5. Bidirectional KL Divergence Loss

Using the item-embedding method from Section 3.3, two sequence embeddings Ê1 and
Ê2, which have been padded using RandomPad, are formed. These embeddings, Ê1 and Ê2,
are then input into the Transformer architecture based on the linear attention mechanism,
as described in Section 3.4. This process ultimately yields two output representations
T1

(L) and T2
(L). To understand the relationship between users and items in sequence

recommendation, a similarity function (such as the dot product) can be used to measure
the distance between user output representations and item representations. Specifically,
for the user output representations T1

(L) and T2
(L), we compute corresponding similarity

Mathematics 2024, 12, 2391 9 of 16

probability distributions P(T1
(L)) and P(T2

(L)) to predict the next item of interest for user
u. The specific formula is as follows:

P
(

T(L);α
)
=

exp
(

T(L)e+t+1

)
exp

(
T(L)e+t+1

)
+ ∑e−t+1∈V exp

(
T(L)e−t+1

) (15)

Lseq = −logP
(

T(L);α
)

(16)

Here, e+t+1 represents a positive sample, e−t+1 represents a randomly sampled negative
sample from the item set V, and α represents all trainable parameters in the model. Lseq
represents the sequence loss function.

After applying Equation (15) to the user output representations T1
(L) and T2

(L), we
obtain two different similarity probability distributions P(T1) and P(T2). Blin introduces
bidirectional KL divergence loss to regularize these two different similarity distributions.
Figure 4 illustrates a specific example, showing the process of an auxiliary learning task
executed by Blin for a simple user interaction sequence Su= [s1, s2]. The numbers 1⃝– 6⃝
indicate the sequence of steps. Before introducing the bidirectional KL divergence loss, let
us first define the KL divergence. For two probability distributions P(x) and Q(x), the KL
divergence is defined as:

DKL(P||Q) = ∑x P(x)log
(

P(x)
Q(x)

)
(17)

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 16

After applying Equation (15) to the user output representations T1
(L) and T2

(L), we
obtain two different similarity probability distributions P(T1) and P(T2). Blin introduces
bidirectional KL divergence loss to regularize these two different similarity distributions.
Figure 4 illustrates a specific example, showing the process of an auxiliary learning task
executed by Blin for a simple user interaction sequence Su=[s1,s2]. The numbers ①–⑥
indicate the sequence of steps. Before introducing the bidirectional KL divergence loss, let
us first define the KL divergence. For two probability distributions P(x) and Q(x), the KL
divergence is defined as:

DKL(P||Q) = ∑ P(x) log �P(x)
Q(x)

�x (17)

KL divergence measures the expected amount of additional information required to
represent P(x) using the probability distribution Q(x) given the probability distribution
P(x), and is commonly used to measure the difference between two probability distribu-
tions. While bidirectional KL divergence can take into account the two-way difference be-
tween two distributions at the same time and is more comprehensive in terms of optimi-
zation objectives, bidirectional KL divergence loss is defined as follows:

𝓛𝓛bkl = 1
2

(DKL(P(𝐓𝐓1
(L);α)||DKL(P(𝐓𝐓2

(L);α)) + DKL(P(𝐓𝐓2
(L);α)||DKL(P(𝐓𝐓1

(L);α))) (18)

Bidirectional KL divergence loss helps in measuring the difference between two
probability distributions. By minimizing this metric, the difference between the two dis-
tributions can be reduced. In other words, using the bidirectional KL divergence loss com-
bines the KL divergences between the two distributions and their mutual information,
aiding the model in learning a target distribution that better aligns with expectations.

Figure 4. Auxiliary learning task, where LATM Layer denotes the Transformer layer that replaces
traditional dot product attention with a linear attention mechanism.

3.6. Model Training
As shown in Figure 1, the Blin model adopts a multitask training strategy, jointly

optimizing the sequence recommendation prediction task and auxiliary learning tasks.
The sequence loss and the final training objective are defined as follows:

𝓛𝓛seq = −1
2
�logP�𝐓𝐓1

(L);α� + logP�𝐓𝐓2
(L);α�� (19)

LATM Layer

s2s1000000

s2s10s2s10s2s100

s2s1

s2s1

①RandomPad(α=1)

①RandomPad(α=2)

②Embedding Layer

②Embedding Layer

③input

③input ④output

④output item Embedding

P1

P2

⑤Calculate the
probabil ity distribution

⑤Calculate the

probabil ity distribution

⑥ Bidirectional
KL divergence Loss

1Ê

2Ê

)(
1

LT

)(
2

LT

Figure 4. Auxiliary learning task, where LATM Layer denotes the Transformer layer that replaces
traditional dot product attention with a linear attention mechanism.

KL divergence measures the expected amount of additional information required to
represent P(x) using the probability distribution Q(x) given the probability distribution
P(x), and is commonly used to measure the difference between two probability distribu-
tions. While bidirectional KL divergence can take into account the two-way difference
between two distributions at the same time and is more comprehensive in terms of opti-
mization objectives, bidirectional KL divergence loss is defined as follows:

Lbkl =
1
2

(
DKL

(
P
(

T1
(L);α

)∣∣∣∣∣∣DKL

(
P
(

T2
(L);α

))
+ DKL

(
P
(

T2
(L);α

)∣∣∣∣∣∣DKL

(
P
(

T1
(L);α

)))
(18)

Mathematics 2024, 12, 2391 10 of 16

Bidirectional KL divergence loss helps in measuring the difference between two
probability distributions. By minimizing this metric, the difference between the two
distributions can be reduced. In other words, using the bidirectional KL divergence loss
combines the KL divergences between the two distributions and their mutual information,
aiding the model in learning a target distribution that better aligns with expectations.

3.6. Model Training

As shown in Figure 1, the Blin model adopts a multitask training strategy, jointly
optimizing the sequence recommendation prediction task and auxiliary learning tasks. The
sequence loss and the final training objective are defined as follows:

Lseq = −1
2

(
logP

(
T1

(L);α
)
+ logP

(
T2

(L);α
))

(19)

L = Lseq + λLbkl (20)

where Lseq is the sequence loss, L is the total loss function of the model, and λ is the
hyperparameter controlling the intensity of the bidirectional KL divergence loss.

4. Experiments
4.1. Datasets

To validate the effectiveness of the model, experiments were conducted on four widely
used public datasets, including three short-sequence datasets (Beauty, Sports, Yelp) and one
long-sequence dataset (ML-1M). A brief introduction of these datasets is provided below:

• Amazon: The Amazon dataset is a large-scale dataset that records user reviews of prod-
ucts on the Amazon website, making it a classic dataset for recommendation systems.
We selected Beauty and Sports as two different datasets from the Amazon dataset.

• Yelp: The Yelp dataset is a well-known open-source dataset obtained through a
business platform.

• MovieLens-1M (ML-1M): ML-1M is a dense movie recommendation dataset widely
used for evaluating recommendation algorithms.

For all the datasets, to ensure data quality, preprocessing was performed by removing
users and items with fewer than five interactions. The interaction records of each user were
aggregated and sorted based on timestamps to obtain each user’s interaction sequence.
For each user, their two most recent interactions were used as the test set and validation
set, respectively, while their remaining interactions were used as the training set. Table 1
provides the statistics of the four training sets.

Table 1. Dataset Statistics.

Dataset Users Items Interactions Sparsity

Beauty 22,363 12,101 198,502 99.73%
Sports 35,958 18,357 296,337 99.95%
Yelp 30,431 20,033 316,354 99.95%

ML-1M 6041 3417 999,611 95.16%

4.2. Evaluation Metrics

This study employs two widely used evaluation metrics in recommendation systems:
Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG).

• HR@K: HR@K is a metric used to measure the recall rate. Specifically, HR@K evaluates
the proportion of the top K positions in the recommendation list that successfully “hit”
the user’s true preference items.

• NDCG@K: NDCG@K focuses more on the ranking performance of recommendations.
In NDCG@K, not only should the recommended items match the user’s true interests,
but the items ranked higher should also match the user’s higher interest levels.

Mathematics 2024, 12, 2391 11 of 16

4.3. Comparison Methods

We select the following models as baseline models for comparison:

• GRU4Rec [3]: An RNN-based method that introduces Gated Recurrent Units (GRUs)
to explore the dependencies between items in a sequence.

• Caser [2]: A CNN-based method that uses horizontal and vertical convolution to
model users’ dynamic preferences.

• SASRec [5]: The first method to introduce Transformers into sequential recommen-
dation, modeling user behavior sequences based on a unidirectional self-attention
mechanism.

• TiSASRec [14]: Builds on SASRec by incorporating absolute positions and the time
intervals between items for sequence modeling.

• CL4SRec [15]: Proposes various data augmentation methods to construct contrastive
learning tasks, adding a contrastive learning objective to the original SASRec objective.

• LinRec [30]: A Transformer-based sequential recommendation model that proposes L2-
normalized linear attention mechanisms to reduce the computational cost of traditional
attention.

• MStein [31]: Calculates the Wasserstein distance between augmented sequences as a self-
supervised learning framework for mutual information in sequential recommendation.

4.4. Experimental Details

We implemented Blin and the baseline methods using the PyTorch framework. For all
methods, the training batch size was fixed at 256, and the Adam optimizer with a learning
rate of 0.001 was used. The embedding dimension size was set to 64, and the maximum
sequence length was set to 100. For methods involving attention mechanisms, the number
of attention heads and attention layers were both set to 2. The dropout rate for each dataset
was set to 0.5. Other hyperparameters for each baseline were configured according to the
original papers. For the hyperparameters in our proposed Blin method, λ was set to 2.

4.5. Overall Performance

The performances of all the methods on the three datasets are shown in Table 2, with
the best results in each row highlighted in bold. From a comparison of the experimental
results, the following conclusions can be drawn:

Table 2. Overall performance, the best result for each row is indicated in bold.

Datasets Metric GRU4Rec Caser SASRec TiSASRec CL4SRec Linrec MStein Blin

Beauty

HR@10 0.1601 0.1498 0.2775 0.2788 0.2931 0.2772 0.3184 0.3319
HR@20 0.2172 0.2012 0.3572 0.3606 0.3648 0.3558 0.3876 0.4051

NDCG@10 0.1013 0.0966 0.1752 0.1794 0.1906 0.1774 0.2122 0.2218
NDCG@20 0.1152 0.1078 0.1961 0.1989 0.2102 0.1978 0.2294 0.2446

Sports

HR@10 0.1526 0.1453 0.2763 0.2782 0.2854 0.2766 0.2988 0.3112
HR@20 0.2322 0.2221 0.3769 0.3794 0.3780 0.3762 0.3941 0.4102

NDCG@10 0.0824 0.0813 0.1574 0.1581 0.1739 0.1597 0.1824 0.1911
NDCG@20 0.1037 0.1015 0.1836 0.1846 0.1964 0.1859 0.2067 0.2158

Yelp

HR@10 0.2569 0.2546 0.4243 0.4244 0.4462 0.4239 0.4772 0.4894
HR@20 0.4273 0.4252 0.5988 0.5902 0.6003 0.5978 0.6281 0.6403

NDCG@10 0.1253 0.1234 0.2349 0.2448 0.2652 0.2366 0.2846 0.2944
NDCG@20 0.1684 0.1666 0.2796 0.2803 0.3048 0.2842 0.3235 0.3369

ML-1M

HR@10 0.3322 0.3145 0.5588 0.5609 0.5811 0.5626 0.6068 0.5701
HR@20 0.4301 0.4028 0.6747 0.6842 0.7024 0.6807 0.7252 0.6884

NDCG@10 0.1823 0.1726 0.3022 0.3084 0.3232 0.3068 0.3371 0.3124
NDCG@20 0.2269 0.2165 0.3846 0.3928 0.4142 0.3892 0.4308 0.3985

Mathematics 2024, 12, 2391 12 of 16

Firstly, it can be observed that Transformer-based methods (SASRec and TiSASRec)
consistently outperform traditional machine learning methods (GRU4Rec and Caser). This
result highlights the superiority of self-attention mechanisms in capturing the global de-
pendencies in sequence modeling. Additionally, methods based on contrastive learning
(CL4SRec and MStein) consistently perform better than other methods. This is because
data augmentation effectively mitigates the data sparsity problem, and contrastive learn-
ing methods capture more meaningful features in the sequence by maximizing mutual
information, thereby improving the performance of sequential recommendations.

The proposed Blin method demonstrates a superior performance across all evaluation
metrics and datasets when compared to all baseline methods on the short-sequence datasets
(Beauty, Sports, and Yelp). Unlike the other baseline methods, Blin employs a RandomPad
strategy for padding during the sequence-filling stage instead of traditional zero-padding.
This approach improves the utilization of the input space compared to traditional methods.
To address the increased computational cost due to padding enhancement, the linear
attention mechanism is used to significantly reduce the computational complexity of
traditional dot product operations. Additionally, the DWC module is incorporated to help
the model capture richer local features. Ultimately, the bidirectional KL divergence loss
regularizes the probability distributions obtained from different sequence representations,
helping the model to learn a target distribution that better aligns with expectations.

It is noteworthy that Blin’s performance on the ML-1M dataset did not meet expec-
tations. This may have been due to the limitations of Blin in handling long-sequence
datasets. The RandomPad padding strategy loses its effectiveness when dealing with long
sequences. In the ML-1M dataset, the average number of user interactions exceeds 160,
and even with the maximum sequence length set to 200, most user interaction sequences
still lack sufficient space for RandomPad padding. Additionally, RandomPad padding
might interfere with the model’s ability to capture long-term user preferences, which also
affects Blin’s performance. Nonetheless, Blin still outperforms other models in terms of its
overall performance.

4.6. Ablation Study

To validate the effectiveness of different components of Blin, this paper constructs
the following variants and conducts ablation experiments. All experimental variants are
evaluated on the Beauty dataset, and the experimental results are shown in Table 3.

Table 3. Ablation study on Beauty dataset.

Model HR@10 NDCG@10

(A) Blin-ZC 0.3167 0.2088
(B) Blin-D 0.3278 0.2196
(C) Blin-DWC 0.3256 0.2178
(D) Blin-BKL 0.3198 0.2114
(E) Blin 0.3319 0.2218

• Blin-ZC: Removes the RandomPad padding method and replaces it with traditional
zero-padding, using item cropping as the sequence data augmentation method.

• Blin-D: Replaces the linear attention mechanism used in this paper with a traditional
attention mechanism.

• Blin-DWC: Removes the DWC module from the linear attention mechanism.
• Blin-BKL: Removes the auxiliary learning task and relies solely on sequence loss for

model training.

By comparing (A) and (E), it is observed that removing the RandomPad padding
method significantly reduces the model performance. This is because RandomPad utilizes
idle input space to provide more samples for the model and pays more attention to long-tail
items, thereby helping the model to learn better user representations. Comparing (B–C)

Mathematics 2024, 12, 2391 13 of 16

with (E), it is evident that replacing the linear attention mechanism with a traditional dot
product attention mechanism results in a decreased model performance. This is primarily
because the DWC module can alleviate the information loss issue inherent in Softmax,
helping the model to obtain richer local features and, thus, compute better attention weights.
By comparing (D) and (E), it is found that removing the auxiliary learning task from the
Blin model leads to a significant performance decrease. This indicates that bidirectional KL
divergence loss contributes significantly to model performance; regularizing the probability
distributions obtained from different sequence outputs via bidirectional KL divergence loss
helps the model to learn target distributions that better match expectations.

4.7. Hyperparameter Study

In this section, the impact of the auxiliary learning task on the model performance
is studied by sequentially setting parameter λ to {0.1, 0.5, 1, 2, 3}. HR@10 and NDCG@10
are used as evaluation metrics, and experiments are conducted on the Beauty and Sports
datasets. The experimental results are shown in Figure 5.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16

different sequence outputs via bidirectional KL divergence loss helps the model to learn target
distributions that better match expectations.

4.7. Hyperparameter Study
In this section, the impact of the auxiliary learning task on the model performance is

studied by sequentially setting parameter λ to {0.1, 0.5, 1, 2, 3}. HR@10 and NDCG@10 are
used as evaluation metrics, and experiments are conducted on the Beauty and Sports da-
tasets. The experimental results are shown in Figure 5.

Figure 5. Impact of λ values on model performance.

By observing the changes in the curves of Figure 5, it is observed that the value of λ
exhibits a trend of an increasing performance followed by a decrease. Specifically, the
model performance peaks when λ is around 2. This result further confirms the effective-
ness of the auxiliary learning task; through bidirectional KL divergence loss, the model
indeed learns more valuable target distributions.

4.8. Computational Cost Analysis
To study the improvement in the model computational efficiency by the linear atten-

tion mechanism discussed in Section 3.4.3, we integrate the linear attention mechanism
into the classic Transformer sequence models SASRec and BERT4Rec. GPU memory usage
and training time are selected as computational cost indicators, with the training time
measured by the time taken for the model to run 10 epochs. All experiments are conducted
on the ML-1M dataset, and the final experimental results are shown in Figure 6.

Figure 6. Comparison of computational costs.

From Figure 6, it is observed that models using the linear attention mechanism signifi-
cantly reduce the GPU memory usage and training time compared to the initial models. This

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.20

0.24

0.28

0.32

Beauty
 HR@10
 NDCG@10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.16

0.20

0.24

0.28

0.32

Sports
 HR@10
 NDCG@10

SASRec BERT4Rec
0

5

10

15

20

25

G
PU

(G
)

 dot-product attention
 Linear attention

GPU memory

SASRec BERT4Rec
0

10

20

30

40

50

tim
es

(m
in

)

Training time
 dot-product attention
 Linear attention

Figure 5. Impact of λ values on model performance.

By observing the changes in the curves of Figure 5, it is observed that the value of
λ exhibits a trend of an increasing performance followed by a decrease. Specifically, the
model performance peaks when λ is around 2. This result further confirms the effectiveness
of the auxiliary learning task; through bidirectional KL divergence loss, the model indeed
learns more valuable target distributions.

4.8. Computational Cost Analysis

To study the improvement in the model computational efficiency by the linear attention
mechanism discussed in Section 3.4.3, we integrate the linear attention mechanism into
the classic Transformer sequence models SASRec and BERT4Rec. GPU memory usage and
training time are selected as computational cost indicators, with the training time measured
by the time taken for the model to run 10 epochs. All experiments are conducted on the
ML-1M dataset, and the final experimental results are shown in Figure 6.

From Figure 6, it is observed that models using the linear attention mechanism signifi-
cantly reduce the GPU memory usage and training time compared to the initial models.
This indicates that the linear attention mechanism used in the Blin model effectively miti-
gates the high computational costs associated with traditional dot product operations.

Mathematics 2024, 12, 2391 14 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16

different sequence outputs via bidirectional KL divergence loss helps the model to learn target
distributions that better match expectations.

4.7. Hyperparameter Study
In this section, the impact of the auxiliary learning task on the model performance is

studied by sequentially setting parameter λ to {0.1, 0.5, 1, 2, 3}. HR@10 and NDCG@10 are
used as evaluation metrics, and experiments are conducted on the Beauty and Sports da-
tasets. The experimental results are shown in Figure 5.

Figure 5. Impact of λ values on model performance.

By observing the changes in the curves of Figure 5, it is observed that the value of λ
exhibits a trend of an increasing performance followed by a decrease. Specifically, the
model performance peaks when λ is around 2. This result further confirms the effective-
ness of the auxiliary learning task; through bidirectional KL divergence loss, the model
indeed learns more valuable target distributions.

4.8. Computational Cost Analysis
To study the improvement in the model computational efficiency by the linear atten-

tion mechanism discussed in Section 3.4.3, we integrate the linear attention mechanism
into the classic Transformer sequence models SASRec and BERT4Rec. GPU memory usage
and training time are selected as computational cost indicators, with the training time
measured by the time taken for the model to run 10 epochs. All experiments are conducted
on the ML-1M dataset, and the final experimental results are shown in Figure 6.

Figure 6. Comparison of computational costs.

From Figure 6, it is observed that models using the linear attention mechanism signifi-
cantly reduce the GPU memory usage and training time compared to the initial models. This

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.20

0.24

0.28

0.32

Beauty
 HR@10
 NDCG@10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.16

0.20

0.24

0.28

0.32

Sports
 HR@10
 NDCG@10

SASRec BERT4Rec
0

5

10

15

20

25

G
PU

(G
)

 dot-product attention
 Linear attention

GPU memory

SASRec BERT4Rec
0

10

20

30

40

50

tim
es

(m
in

)

Training time
 dot-product attention
 Linear attention

Figure 6. Comparison of computational costs.

5. Conclusions and Outlook
5.1. Conclusions

The Blin model proposed in this paper significantly improves the issues of data
sparsity, sequence padding space utilization, the computational complexity of attention
mechanisms, and the limitations of a single loss function in sequence recommendation
through innovative RandomPad and linear attention mechanisms. By employing the
RandomPad padding method, Blin overcomes the inefficiency of traditional zero-padding
strategies and addresses data sparsity. Combined with the linear attention mechanism, Blin
reduces the computational complexity of handling long sequences from O(n2) to nearly
linear O(n), greatly enhancing computational efficiency while maintaining traditional
attention learning capabilities. The introduction of bidirectional KL divergence loss as an
auxiliary task enhances the regularization effect of probability distributions across different
sequence representations, further improving the accuracy of the model predictions.

The innovation of the Blin model lies not only in its technical breakthroughs, but also
in its effective response to longstanding issues in sequence recommendation systems. Blin’s
success validates the feasibility and effectiveness of introducing multitask learning and
linear attention mechanisms in sequence recommendation tasks. By integrating random
repetitive padding and linear attention mechanisms, Blin offers new insights for addressing
data sparsity and computational complexity issues.

5.2. Outlook

Despite the significant progress Blin has made in addressing data sparsity and com-
putational complexity in sequence recommendation, there are areas that warrant further
exploration. Firstly, when the initial user sequence length is greater than or equal to half of
the maximum sequence length that the Blin model can handle, the padding times α will
always be zero, rendering the RandomPad padding method ineffective. Considering the
limitations of the RandomPad padding method in handling long sequences, future research
should focus on improving Blin’s padding strategy for long sequence datasets. Secondly,
with the increasing application of graph neural networks in sequence recommendation, inte-
grating graph neural networks with the Blin model to leverage graph structure information
for enhancing sequence modeling capabilities is a promising direction to explore. Finally,
extensive research on auxiliary learning in sequence recommendation has demonstrated
its effectiveness in improving model performance, highlighting the significant potential of
optimizing recommendation systems through additional tasks. Future research can further
explore and improve the design of auxiliary tasks in sequence recommendation to enhance
the performance and applicability of sequence recommendation models.

Mathematics 2024, 12, 2391 15 of 16

Author Contributions: Methodology, Y.B.; validation, Y.B. and H.W.; formal analysis, Y.B.; investi-
gation, Y.B. and H.W.; writing—original draft preparation, Y.B.; writing—review and editing, Y.B.
and H.W.; supervision, H.W. and J.H.; All authors have read and agreed to the published version
of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China under Grant
82160347.

Data Availability Statement: This study utilized publicly available datasets for experimental research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, S.; Hu, L.; Wang, Y.; Cao, L.; Sheng, Q.Z.; Orgun, M. Sequential recommender systems: Challenges, progress and prospects.

In Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019;
pp. 6332–6338.

2. Tang, J.; Wang, K. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, Los Angeles, CA, USA, 5–9 February 2018; pp. 565–573.

3. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based Recommendations with Recurrent Neural Networks. arXiv 2015,
arXiv:1511.06939.

4. Zhang, S.; Chen, L.; Wang, C.; Li, S.; Xiong, H. Temporal Graph Contrastive Learning for Sequential Recommendation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38,
pp. 9359–9367.

5. Kang, W.C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the 2018 IEEE International Conference on
Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 197–206.

6. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential recommendation with bidirectional encoder
representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019; pp. 1441–1450.

7. Dang, Y.; Yang, E.; Guo, G.; Jiang, L.; Wang, X.; Xu, X.; Sun, Q.; Liu, H. TiCoSeRec: Augmenting data to uniform sequences by
time intervals for effective recommendation. IEEE Trans. Knowl. Data Eng. 2023, 36, 2686–2700. [CrossRef]

8. Dang, Y.; Yang, E.; Guo, G.; Jiang, L.; Wang, X.; Xu, X.; Sun, Q.; Liu, H. Uniform sequence better: Time interval aware data
augmentation for sequential recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC,
USA, 7–14 February 2023; Volume 37, pp. 4225–4232.

9. Dang, Y.; Liu, Y.; Yang, E.; Guo, G.; Jiang, L.; Wang, X.; Zhao, J. Repeated Padding as Data Augmentation for Sequential
Recommendation. arXiv 2024, arXiv:2403.06372.

10. Adler, A.; Tang, J.; Polyanskiy, Y. Quantization of random distributions under KL divergence. In Proceedings of the 2021 IEEE
International Symposium on Information Theory (ISIT), Virtual, 12–20 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2762–2767.

11. Chong, L.; Liu, X.; Zheng, R.; Zhang, L.; Liang, X.; Li, J.; Wu, L.; Zhang, M.; Lin, L. CT4Rec: Simple yet Effective Consistency
Training for Sequential Recommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 3901–3913.

12. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized markov chains for next-basket recommendation. In
Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 811–820.

13. Zhang, T.; Zhao, P.; Liu, Y.; Sheng, V.S.; Xu, J.; Wang, D.; Liu, G.; Zhou, X. Feature-level deeper self-attention network for
sequential recommendation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, 10–16 August 2019; pp. 4320–4326.

14. Li, J.; Wang, Y.; McAuley, J. Time interval aware self-attention for sequential recommendation. In Proceedings of the 13th
International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; pp. 322–330.

15. Xie, X.; Sun, F.; Liu, Z.; Wu, S.; Gao, J.; Zhang, J.; Ding, B.; Cui, B. Contrastive learning for sequential recommendation. In
Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Virtual, 9–12 May 2022; IEEE: Piscataway,
NJ, USA, 2022; pp. 1259–1273.

16. Liu, Z.; Chen, Y.; Li, J.; Yu, P.S.; McAuley, J.; Xiong, C. Contrastive self-supervised sequential recommendation with robust
augmentation. arXiv 2021, arXiv:2108.06479.

17. Qiu, R.; Huang, Z.; Yin, H.; Wang, Z. Contrastive learning for representation degeneration problem in sequential recommendation.
In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February
2022; pp. 813–823.

18. Zhang, Y.; Liu, Y.; Xu, Y.; Xiong, H.; Lei, C.; He, W.; Cui, L.; Miao, C. Enhancing sequential recommendation with graph contrastive
learning. arXiv 2022, arXiv:2205.14837.

19. Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.; Kaiser, L.;
et al. Rethinking Attention with Performers. arXiv 2020, arXiv:2009.14794.

https://doi.org/10.1109/TKDE.2023.3324312

Mathematics 2024, 12, 2391 16 of 16

20. Li, R.; Su, J.; Duan, C.; Zheng, S. Linear attention mechanism: An efficient attention for semantic segmentation. arXiv 2020,
arXiv:2007.14902.

21. Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are rnns: Fast autoregressive transformers with linear attention.
In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 5156–5165.

22. Shen, Z.; Zhang, M.; Zhao, H.; Yi, S.; Li, H. Efficient attention: Attention with linear complexities. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3531–3539.

23. Bolya, D.; Fu, C.Y.; Dai, X.; Zhang, P.; Hoffman, J. Hydra attention: Efficient attention with many heads. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022;
pp. 35–49.

24. Han, D.; Pan, X.; Han, Y.; Song, S.; Huang, G. Flatten transformer: Vision transformer using focused linear attention. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 5961–5971.

25. Guo, J.; Chen, X.; Tang, Y.; Wang, Y. SLAB: Efficient Transformers with Simplified Linear Attention and Progressive Re-
parameterized Batch Normalization. arXiv 2024, arXiv:2405.11582.

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

29. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
30. Liu, L.; Cai, L.; Zhang, C.; Zhao, X.; Gao, J.; Wang, W.; Lv, Y.; Fan, W.; Wang, Y.; He, M.; et al. Linrec: Linear attention mechanism

for long-term sequential recommender systems. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 289–299.

31. Fan, Z.; Liu, Z.; Peng, H.; Yu, P.S. Mutual wasserstein discrepancy minimization for sequential recommendation. In Proceedings
of the ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023; pp. 1375–1385.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Sequence-Based Recommendation
	Linear Attention Mechanisms

	Methodology
	Problem Statement
	RandomPad
	Embedding Layer
	Transformer Layer
	Definition of Traditional Dot Product Attention Method
	Generalization of Kernel-Based Dot Product Attention
	Linear Attention Mechanism

	Bidirectional KL Divergence Loss
	Model Training

	Experiments
	Datasets
	Evaluation Metrics
	Comparison Methods
	Experimental Details
	Overall Performance
	Ablation Study
	Hyperparameter Study
	Computational Cost Analysis

	Conclusions and Outlook
	Conclusions
	Outlook

	References

