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Abstract: A new numerical method for solving Volterra linear convolution integral equations (CVIEs)
of the second kind is presented in this work. This new approach uses first-order infinite impulse
response digital filters method (IIRFM). Three convolutive kernels were analyzed, the unit kernel
and two singular kernels: the logarithmic and generalized Abel kernels. The IIRFM is based on the
combined use of the Laplace transformation, a first-order decomposition, and a bilinear transfor-
mation. This approach often leads to simple analytical expressions of the approximate solutions,
enabling efficient numerical calculation, even using single-precision floating-point numbers. When
compared with the method of homotopic perturbations with Laplace transformation (HPM-L), the
IIRFM approach does not present, in linear cases, the convergence difficulties inherent to iterative
approaches. Unlike most solution methods based on the Laplace transform, the IIRFM has the dual
advantage of not requiring the calculation of the Laplace transform of the source function, and of not
requiring the systematic calculation of inverse Laplace transforms.

Keywords: linear Volterra integral equations; unit, logarithmic, and generalized Abel kernels; infinite
impulse response filters (IIR); homotopic perturbation method (HPM)
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1. Introduction

In the present work, a new method is presented for the numerical solution of the
convolutive Volterra integral equations (CVIEs) of the second kind, written in the follow-
ing form:

uλ, f (t) = f (t) + λ
∫ t

0
K(t, t′)

{
aLuλ, f (t′) + aNLNL

[
uλ, f (t′)

]}
dt′, (1)

where K(t, t′) is the kernel of the integral equation; f (t) is a source function assumed
to be continuous; λ, aL, aNL ∈ R are parameters; NL[uλ, f (t)] is a non-linear operator
of the desired solution uλ, f (t). These integral equations are used in a wide variety of
scientific areas, such as point mechanics (Abel’s problem), fluid mechanics (water waves
scattering, [1]), electrochemistry (voltammetry, [2]), as well as heat transfer (see Section 4).

The linear situation, which is the only one studied in this first paper, corresponds
to aNL = 0, in which case we find Volterra’s linear integral equations of the second type,
defined, for t ⩾ 0 and aL = 1 [3], by:

uλ, f (t) = f (t) + λ
∫ t

0
K(t, t′)uλ, f (t′)dt′. (2)

The present paper studies a particularly important class of Volterra integral equations
of the second type, which involves convolutional kernels, depending only upon the differ-
ence t − t′, and written in the general form K(t, t′) = K(t − t′). Three kinds of convolution
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kernels are studied in the present work: the unit kernel K(t, t′) = 1; generalized Abel’s
kernel K(t, t′) = 1/(t − t′)α with 0 < α < 1 and logarithmic kernel K(t, t′) = ln(|t − t′|).
The last two convolution kernels share the property of being singular at t = t′.

Note that using the generalized Abel kernel in Volterra’s integral Equation (2) leads to
the generalized Abel integral equation of the second kind, as follows:

uλ,α, f (t) = f (t) + λ
∫ t

0

uλ,α, f (t′)
(t − t′)α dt′. (3)

A general analytical solution exists in closed form for Abel’s integral equation, involv-
ing the calculation (explicit or numerical) of an integral and a series of functions (see [4]
(p. 142)):

uλ,α, f (t) = f (t) +
∫ t

0
R(t–t′) f (t′)dt′, with R(t) =

∞

∑
n=1

[
λΓ(1 − α)t1−α

]n

tΓ[n(1 − α)]
, (4)

where Γ(z) =
∫ ∞

0 e−xxz−1dx is the Euler gamma function. Result (4) will provide analytical
reference solutions for some of the numerical results that will be calculated in this work.

Several approaches based on the Laplace transformation have already been proposed
to solve analytically or numerically Volterra (CVIE) or Abel (CAIE) second-kind linear
convolution integral equations. In [5,6], the Homotopic Perturbation Method (HPM) and
the Laplace transformation were used to numerically determine the solution of various
convolution Abel integral equations of the second kind. In [7], systems of coupled convolu-
tive Abel integral equations have been solved numerically using the homotopic analysis
method (HAM) introduced by Lio [8,9], coupled with the Laplace transformation. In [10],
Bairwa et al. used the q-homotopic analysis and Laplace transformation method (q-HATM)
to numerically solve various CAIEs.

All these approaches generally assume that there is an analytical expression for the
source function f (t). There are, however, situations where it is not possible to obtain
this expression; for example, when f (t) is a noisy signal or the result of an experimental
measurement. In such cases, the IIR filters method presented here can be very useful for
determining the numerical solution of the linear convolution Volterra equations.

The main objective of the present study is therefore to apply the first-order infinite
impulse response filters method (IIRFM) proposed by Heyd et al. [11,12] to numerically
solve linear Volterra convolutive integral equations of the second kind. The use of infinite
impulse response (IIR) digital filters is usually limited to linear time-invariant systems
(LTISs), whose dynamics are described by linear ordinary differential equations with
constant coefficients, or equivalently by Laplace transfer functions expressed as polynomial
fractions. The results presented in this paper make it possible, for the first time, to extend
the field of application of IIR filters to linear systems described by Volterra convolutive
integral equations of the second kind, which are involved in a wide range of scientific fields,
including heat transfer, for example.

This new approach has the great advantage of being non-iterative, which means it
has none of the convergence problems inherent in iterative methods. In addition, for some
Volterra integral equations, the IIRFM can lead to an analytical expression of the approx-
imate numerical solution, making the calculation very efficient compared with iterative
numerical methods.

The results obtained with the IIRFM are compared in this paper with those provided
by other numerical approaches, including the homotopic perturbation method with Laplace
transformation (HPM-L), the Daubechies wavelet method of Mouley et al. [13], and the
polynomial approximation method of Singha et al. [14].

Several new results have been obtained in this work using the IIRFM, such as a
very efficient numerical calculation of the function gλ(t) = 1 + erf(λ

√
πt) when λ < 0

(see Section 3.2.1) and this even using single-precision floating-point numbers. This new
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approach to calculating the erf(λ
√

πt) function could be very usefully incorporated into
the free codes currently available, Python, Julia, Octave, and Scilab.

The remainder of this paper is organized as follows. The foundations of the IIRFM
and HPM-L methods are outlined in Section 2. The mechanism of the IIRFM is illustrated
in Section 3 by numerically solving various linear CVIEs of the second kind. The results
obtained by the IIRFM are also compared with those provided by different numerical
approaches. Finally, two examples of linear CVIEs used in heat transfers are solved in
Section 4 using the IIRFM method.

2. IIRFM and HPM-L Numerical Methods

The two numerical approaches used in this work to solve the integral Equation (2)
are outlined in this paragraph, and the main steps involved in their implementation are
recalled or introduced here.

2.1. First-Order IIR Filters Method (IIRFM)

The IIRFM consists of numerically solving Equation (2) in discrete time, using suf-
ficiently precise recurrence relations, which are deduced from successive applications
of the Laplace transformation, a first-order partial fractions decomposition and of a
bilinear transformation.

This method is particularly well suited to solving convolutional linear integral equa-
tions (CVIEs), but also ordinary differential equations (ODEs), integro-differential equations
(IDEs), and parabolic partial differential equations (PDEs). Each of these differential or
integral problems is assumed to be linear and to have constant coefficients.

2.1.1. Principle of the IIRFM Method

The IIRFM consists schematically of replacing each of the differential or integral
problems mentioned above, by a set of M independent, first-order, exact, or approximate
ordinary differential problems.

Let (Σ) be a differential (or integral), linear and invariant problem of the previously
mentioned kinds. Let f (t) be the excitation (or source function) and uλ, f (t) the response
(or solution) of the problem (Σ) to the excitation f (t), for a set of constant λ coefficients
(see Figure 1).

(a)
f (t) uλ, f (t)(Σ)

F(
∫

uλ, f , uλ, f , u̇λ, f , f , λ, t) = 0

(b)
f (s) uλ, f (s)(Σ)

uλ, f (s) = H(s) f (s)

Figure 1. Differential or integral, linear, and invariant problems. (a) Schematic representation in
direct space. (b) Schematic representation in Laplace space.

Let us symbolically denote F(
∫

uλ, f , uλ, f , u̇λ, f , f , λ, t) = 0 the equation that governs
the dynamics of (Σ) in direct space (see Figure 1a). To simplify the presentation, we assume
at this stage that the initial condition on uλ, f (t) is null: uλ, f (0) = 0. Since the functional
relationship F = 0 is linear and has constant coefficients, the Laplace transformation L can
be applied to it. This gives the algebraic relationship uλ, f (s) = H(s) f (s), which governs
the dynamics of (Σ) in the Laplace space, where H(s) is the Laplace transfer function of
the system (see Figure 1b), with uλ, f (s) = L[uλ,t(t)] and f (s) = L[ f (t)].

To transform the equation F(
∫

uλ, f , uλ, f , u̇λ, f , f , λ, t) = 0 into M independent, linear,
first-order ODEs with constant coefficients, the function H(s)− C0, with C0 as a constant,
is first approximated by a rational fraction RFM(s) of the following form:

RFM(s) =
∑M−1

n=0 hn(λ)sn

∑M
m=0 ℓm(λ)sm

, (5)
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where {hn, ℓm} is a set of 2M + 1 constant real coefficients, determined by interpolation (by
least squares or Chebyshev for example) or approximation (of Padé for example) of the
H(s)− C0 function. Note that the value of the constant C0 depends on the problem under
consideration. In the case of linear convolutional Volterra integral equations of the second
kind (CVIE), which will be examined in detail later in this work, the value C0 = 1 is chosen.

The rational fraction RFM(s) is then decomposed, by partial fractions decomposition,
in the usual form, as follows:

RFM(s) =
N1

∑
i=1

ri
s − pi

+
N2

∑
j=1

cj + djs
ej + f js + gjs2 ,

=
N1

∑
i=1

H1
i (s) +

N2

∑
j=1

H2
j (s),

(6)

where N1 + 2N2 = M and cj, dj, ej, f j, gj, ri, pi are real constants. Note that it is assumed
here that the multiplicity νi of each pole pi is unity. This property is usually guaranteed
by the fact that the poles are approximated and are calculated numerically here. Finally,
each second-order transfer function H2

j is decomposed into single complex elements, in
the following form:

H2
j (s) =

αj + iβ j

s − zj
+

αj − iβ j

s − z∗j
, (7)

where zj = xj + iyj and z∗j = xj − iyj are the complex conjugate roots (with yj ̸= 0) of
the polynomial equation ej + f js + gjs2 = 0. The real constants αj and β j are αj = dj/2
and β j = − 1

2 (cj + djxj)/yj, respectively. The previous results can be combined by writing
RFM(s) as a combination of M first-order transfer functions with complex coefficients,
as follows:

RFM(s) =
M

∑
i=1

aM,i(λ)

bM,i(λ) + s
, (8)

where aM,i(λ), bM,i(λ) ∈ Z. Finally, the exact H(s) transfer function of the system is
replaced by a transfer function HM(s) written in the following form:

HM(s) = C0 +
M

∑
i=1

aM,i(λ)

bM,i(λ) + s
. (9)

This is a founding result of the IIRFM. Note that in certain situations, the transfer function
HM(s) may coincide with the exact transfer function (see for example Section 3.1).

Using result (9), the approximate solution uIIR,M
λ, f (s) can be expressed in the Laplace

space as

uIIR,M
λ, f (s) = HM(s) f (s) = C0 f (s) +

M

∑
i=1

aM,i(λ)

bM,i(λ) + s
f (s), (10)

which can also be written as uIIR,M
λ, f (s) = uIIR,M

λ, f ,0 (s) + ∑M
i=1 uIIR,M

λ, f ,i>0(s), with

uIIR,M
λ, f ,0 (s) = C0 f (s) and uIIR,M

λ, f ,i>0(s) =
aM,i(λ)

bM,i(λ) + s
f (s), (11)

which are the approximate partial solutions of the problem in the Laplace space.
The approximate solution uIIR,M

λ, f (t) of the problem in the direct space remains to be
determined. Several approaches are possible (without being exhaustive):
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1. It is possible to consider that each first-order partial transfer function aM,i(λ)/[bM,i(λ)
+ s] corresponds to the Laplace transform of a first-order linear ODE with constant
coefficients and zero initial condition, for i = 1, 2, · · · , M:

aM,i(λ)

bM,i(λ) + s
=

uIIR,M
λ, f ,i>0(s)

f (s)
⇔ u̇IIR,M

λ, f ,i>0(t) + bM,i(λ)u
IIR,M
λ, f ,i>0(t) = aM,i(λ) f (t), (12)

where uIIR,M
λ, f ,i>0(0) = 0. The partial solutions uIIR,M

λ, f ,i>0(t) are obtained by applying the
method of variation of constants, giving

uIIR,M
λ, f (t) = C0 f (t) +

M

∑
i=1

aM,i(λ)
∫ t

0
f (t′)e−[bM,i(λ)(t−t′)]dt′. (13)

Depending on the expression of f (t), the M convolutional integrals figuring in (13)
will be calculated analytically or numerically.

2. Noting that L−1[
aM,i(λ)

bM,i(λ)+s ] = aM,i(λ)e−bM,i(λ)t, the result (13) can be found directly by
applying the convolution theorem.

3. Finally, it is also possible to transform ordinary differential Equation (12) into partial
recurrence relations by applying a bilinear transformation s → 2

Te
z−1
z+1 [12] to each

partial transfer function aM,i(λ)/[bM,i(λ) + s]. It follows that the partial solution
uIIR,M

λ, f ,i>0(tk) verifies the following recurrence relation for tk = kTe, k ⩾ 1, i = 1, · · · , M

and uIIR,M
λ, f ,i>0(t0) = 0:

∣∣∣∣∣∣∣
uIIR,M

λ, f ,0 (tk) = C0 f (tk) and uIIR,M
λ, f ,0 (t0) = 0,

uIIR,M
λ, f ,i>0(tk) =

2−TebM,i(λ)
2+TebM,i(λ)

uIIR,M
λ, f ,i>0(tk−1) +

aM,i(λ)
2+TebM,i(λ)

[ f (tk) + f (tk−1)],
(14)

where Te > 0 is the calculation step.

This latter approach will be discussed in detail in the remainder of this paper, which
focuses on the numerical solution of linear convolutional Volterra integral equations of the
second type (CVIE), for which it is recalled that C0 = 1.

2.1.2. Application of the IIRFM to the Case of Second-Kind CVIEs

The different steps of the IIRFM are schematically as follows:

Step 1. The Laplace transformation (L) is applied to Equation (1):

L[(1)] ⇒ uλ, f (s) = f (s) + λL
[∫ t

0
K(t − t′)

{
aLuλ, f (t′) + aNLNL

[
uλ, f (t′)

]}
dt′
]

, (15)

with uλ, f (s) = L[uλ, f (t)] and f (s) = L[ f (t)]. Using the convolution theorem,
the Laplace transform of the previous integral can be written as follows:

L
[∫ t

0
K(t − t′)

{
aLuλ, f (t′) + aNLNL

[
uλ, f (t′)

]}
dt′
]

= K(s)×
{

aLuλ, f (s) + aNLNL
[
uλ, f

]
(s)
}

,
(16)

where K(s) = L[K(t, 0)] and NL[uλ, f ](s) = L{NL[uλ, f (t)]}, of which the ana-
lytical expression is usually unknown.
This gives the following expression for uλ, f (s):

uλ, f (s) =
1

1 − λaLK(s)
f (s) +

λaNLK(s)
1 − λaLK(s)

NL[uλ, f ](s). (17)
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Let us write HL(s, λ) = 1/(1−λaLK(s)) and HNL(s, λ) = λaNLK(s)/(1−λaLK(s)).
Three of the following situations are possible:

(a) aNL = 0 and aL = 1: this is the linear situation, for which the Volterra
problem of the second kind can be described as a linear dynamics system
with Laplace transfer function HL(s, λ) = uλ, f (s)/ f (s) = 1/(1 − λK(s)).
With the exception of the special case of the unit kernel K(t, t′) = 1, note
that the transfer function HL(s, λ) does not have the usual form of a
quotient of polynomials in s, as it is usually the case for LTIS. Several
examples of linear situations are presented in Section 3.

(b) aNL = 1 and aL = 0: the result is a purely non-linear situation. To solve
the problem numerically, the expression of the Laplace transform
NL[uλ, f ](s) must be specified. Various approaches can be considered for
this purpose, such as the Adomian polynomials method [15,16].

(c) aNL ̸= 0 and aL ̸= 0: this is a hybrid situation, in which the IIRFM numer-
ical solution uses both the Laplace transfer function and the Adomian
polynomials approach.
We now explain the next steps of the IIRFM, but only in the case of the
linear situation (aNL = 0 and aL = 1).

Step 2. To solve the linear Volterra problem using the transfer function HL(s, λ), it is
first rewritten as a linear combination of M + 1 first-order transfer functions
(first-order partial fractions decomposition, noted FOD):

HM
L (s, λ) = 1 +

M

∑
i=1

aM,i(λ)

bM,i(λ) + s
, (18)

with aM,i, bM,i ∈ Z. This particular expression (other expressions are possible)
of the transfer function HL(s, λ) is the founding point of the IIRFM applied to
second-kind CVIEs. By introducing M + 1 partial transfer functions HM

L,i(s, λ),
we can rewrite Equation (18) as HM

L (s, λ) = ∑M
i=0 HM

L,i(s, λ) with HM
L,0(s, λ) = 1.

With these notations, uλ, f (s) can still be written as:

uλ, f (s) =
M

∑
i=0

HM
L,i(s, λ) f (s) =

M

∑
i=0

uλ, f ,i(s). (19)

Depending on the convolution kernel considered, Equation (18) can be an exact
form (see Section 3.1) or an approximation of HL(s, λ) (see Sections 3.2, 3.3 and 4).
In the latter case, coefficients aM,i and bM,i are determined by rational interpola-
tion of the function G(s, λ) = HL(s, λ)− 1. We will come back to this point later.
The choice of (18) ensures that the approximate form HM

L (s, λ) tends to be 1 for
s → ∞, as does the exact form HL(s, λ) for the convolution kernels considered
in this study, unit, generalized Abel, and logarithmic. This also reduces the
interpolation interval to a set of s values close to 0, as will be shown later.
The solution obtained by the IIRFM is now denoted by uIIR,M

λ, f (t).

Step 3. A bilinear transformation s → 2
Te

z−1
z+1 ([12]) is applied to the transfer function

HM
L (s, λ), where Te ∈ R+ is a uniform time step (or sampling period) and z

is the complex number introduced in the definition of the z-transform (noted
here Z) of a discrete-time signal x(kTe): Z [x(kTe)] = x(z) = ∑∞

k=0 x(kTe)z−k,
with k ∈ N. After a few algebraic manipulations, we obtain the following z
transfer function:

HM
L (z, λ) = 1 +

M

∑
i=1

AM,i + AM,iz−1

1 − BM,iz−1 =
M

∑
i=0

HM
L,i(z, λ), (20)
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with HM
L,0(z, λ) = 1, HM

L,i>0(z, λ) = (AM,i + AM,iz−1)/(1 − BM,iz−1),
AM,i = aM,iTe/(2 + bM,iTe), BM,i = (2 − bM,iTe)/(2 + bM,iTe) and bM,iTe ̸= −2.
The z-transform uIIR,M

λ, f (z) obtained by the IIRFM satisfies the following relations:

uIIR,M
λ, f (z) = HM

L (z, λ) f (z) =
M

∑
i=0

HM
L,i(z, λ) f (z), (21)

where f (z) = Z [ f (kTe)] is the z-transform of the source function f (t). The solu-
tion uIIR,M

λ, f (z) can be further decomposed into a sum of M + 1 partial solutions,

as follows: uIIR,M
λ, f (z) = ∑M

i=0 uIIR,M
λ, f ,i (z) with uIIR,M

λ, f ,i (z) = HM
L,i(z, λ) f (z).

Step 4. The solution is calculated in the discrete time space using recurrence relations
deduced from transfer function (20). In order not to unnecessarily complicate
the theoretical developments in this paragraph, it is assumed here that the
function f (t) is zero at the initial instant, which also imposes a zero initial
condition for the solution: uλ, f (0) = 0. The case of a non-zero initial condi-
tion will be considered later in this work (see Section “Exponential Source Term
f (t) = e−t”). The discrete-time solution at time tk = kTe is denoted by
uIIR,M

λ, f (kTe) = ∑M
i=0 uIIR,M

λ, f ,i (kTe).
Using time-shifting properties Z [x((k − m)Te)] = z−mZ [x(kTe)] and linearity
Z [amx(kTe)] = amZ [x(kTe)] of the z-transform, the following M + 1 partial
recurrence relations are obtained:∣∣∣∣∣∣∣∣

uIIR,M
λ, f ,0 (kTe) = f (kTe) ∀k > 0 and uIIR,M

λ, f ,0 (0) = 0,

uIIR,M
λ, f ,i ̸=0(kTe) = BM,iu

IIR,M
λ, f ,i ̸=0((k − 1)Te) + AM,i[ f (kTe) + f ((k − 1)Te)], ∀k ⩾ 1,

with uIIR,M
λ, f ,i ̸=0(0) = 0.

(22)

Note that the second recurrence relation of (22) leads to the following explicit
expression for the partial solution uIIR,M

λ, f ,i ̸=0(kTe):

uIIR,M
λ, f ,i ̸=0(kTe) = AM,i

k−1

∑
j=0

Bk−(j+1)
M,i [ f (jTe) + f ((j + 1)Te)]. (23)

This is a particularly important result of this study. Depending on the expression
of the source term f (t), the expression of Equation (23) can be further simplified,
as will be seen with some of the examples to be studied in Section 3.
The complete solution uIIR,M

λ, f (kTe) provided at time tk = kTe by the IIRFM is
therefore of the following general form:

uIIR,M
λ, f (kTe) = f (kTe) +

M

∑
i=1

AM,i

k−1

∑
j=0

Bk−(j+1)
M,i [ f (jTe) + f ((j + 1)Te)]. (24)

In the most general case, the calculation of uIIR,M
λ, f (kTe) involves two sums, with a

total of M × k terms. As a result, calculation times can become significant as k
increases. However, these calculation times can be significantly reduced when
an explicit expression ΞM,i(k, Te, BM,i, f ) of ∑k−1

j=0 Bk−(j+1)
M,i [ f (jTe) + f ((j + 1)Te)]

exists. In this case, the numerical solution uIIR,M
λ, f (kTe) can be written as

uIIR,M
λ, f (kTe) = f (kTe) +

M

∑
i=1

AM,iΞM,i(k, Te, BM,i, f ), (25)
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and then the calculation only involves a single sum of M terms, which signifi-
cantly reduces computation times.

Equations (24) and (25) are the key results of the IIRFM applied to the numerical
solution of linear CVIEs of the second kind. In contrast to the method of homotopic pertur-
bations with Laplace transformation (HPM-L), which will be presented in the following
paragraph, it is not necessary with the IIRFM to calculate the Laplace transform f (s) of the
source function f (t) in order to numerically solve the problem under consideration. This is
a considerable advantage of the IIRFM, as there are situations where the calculation of f (s)
is not possible. This is the case, for example, if f (t) includes a random component (like
noise) or is the result of experimental measurements.

The block diagram shown in Figure 2 summarizes the main steps of the IIRFM as
applied to the numerical solution of linear CVIEs of the second kind.

uλ, f (t) = f (t) + λ
∫ t

0 K(t − t′)uλ, f (t′)dt′

LT

uλ, f (s) = HL(s, λ) f (s) with HL(s, λ) = 1
1−λK(s)

FOD

HM
L (s, λ) = 1 + ∑M

i=1
aM,i(λ)

bM,i(λ)+s

BLT

uIIR,M
λ, f (z) = ∑M

i=0 HM
L,i(z, λ) f (z)

IIRFM

uIIR,M
λ, f (kTe) = f (kTe) + ∑M

i=1 AM,i ∑k−1
j=0 Bk−(j+1)

M,i [ f (jTe) + f ((j + 1)Te)]

Figure 2. Main steps of the IIRFM, as applied to the numerical solution of linear CVIEs (aL = 1
and aNL = 0) of the second kind, with LT: Laplace transform; FOD: first-order partial fractions
decomposition; BLT: bilinear transformation; IIRFM: final result of the IIRFM method.

2.2. Homotopic Peturbation Method with Laplace Transform (HPM-L)

In what follows, some of the results obtained by the IIRFM will be compared, among oth-
ers, with the results provided by the homotopic perturbation method with Laplace trans-
formation (HPM-L), an approach that also relies on an initial application of the Laplace
transformation to Equation (2). We therefore recall the main results that define this method
in the linear case only (aNL = 0 and aL = 1).

The homotopic perturbation method (HPM) was introduced by He [17–19] to solve
ordinary differential equations (ODEs) or partial differential equations (PDEs), whether
linear or non-linear. This method can also be applied to the case of linear CVIEs of type
(2) and to ordinary integro-differential equations. In the present case, the HPM approach
consists first of constructing a homotopy H(v, p) associated with Equation (2), where
p ∈ [0, 1] is an embedded parameter and v is an approximate solution to Equation (2).
The homotopy is constructed in such a way that at the limit where p → 1, the solution v
of the homotopic equation H(v, p) = 0 converges to the solution u of the problem under
consideration. The method of homotopic perturbations with Laplace transform (HPM-L)
used in this work consists of using the Laplace integral transformation L in the homotopy
construction process. It is possible to construct H(v, p) directly from the Laplace transform
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of a differential Equation [20], which is generally well suited to the case of non-steady PDEs.
In the case of EDOs and CVIEs, it is generally preferable to rewrite the equations using the
direct L and inverse L−1 Laplace transformations [21,22]:

L[(2)] ⇒ L
[
uλ, f (t)

]
= L[ f (t)] + λL[K(t, 0)]×L

[
uλ, f (t)

]
. (26)

By noting L[K(t, 0)] = K(s), the Laplace transform of (2) can be written in the follow-
ing form:

L
[
uλ, f (t)

]
= L[ f (t)] + λK(s)×L

[
uλ, f (t)

]
. (27)

It remains to apply the inverse Laplace transformation L−1 to algebraic Equation (27),
which leads to the following statement for uλ, f (t):

uλ, f (t) = f (t) + λL−1
{

K(s)×L
[
uλ, f (t)

]}
. (28)

Finally, from (28) the following H(v, p) homotopy can be constructed:

H(v, p) = v(t)− f (t)− pλL−1{K(s)×L[v(t)]
}

, (29)

which verifies the following relations:∣∣∣∣ H(v, 0) = 0 ⇒ v(t) = f (t),
H(v, 1) = 0 ⇒ v(t) = f (t) + λL−1{K(s)×L[v(t)]

}
.

(30)

The second equation in (30) shows that the solution to the homotopic equation
H(v, 1) = 0 is indeed the solution to the initial problem (2). To solve this homotopic
equation, the perturbation method is generally used, which consists of writing the solution
vH(t, p) of (29) as a series expansion of the embedded parameter p, as follows:

vH(t, p) =
∞

∑
n=0

pnvn(t). (31)

Assuming that series (31) is convergent, we then have the following result:

v(t) = lim
p→1

vH(t, p) = v0(t) + v1(t) + · · ·+ vn(t) + · · · . (32)

Two situations can be encountered:

1. limp→1 vH(t, p) converges to a closed form, in which case the homotopic perturbation
method leads to an analytic solution of Equation (2);

2. There is no known closed form of limp→1 vH(t, p), in which case the series is generally
truncated at the NH + 1 first terms and the solution of the problem is written in the
following approximate form:

vNH(t) =
NH

∑
n=0

vn(t). (33)

It is the last situation that is of particular interest in the present work, because even
if series (32) is convergent, the value of the parameter λ can considerably influence the
speed of convergence of vNH(t). Situations may therefore arise where the number NH + 1
of terms to be considered may become numerically prohibitive, making the HPM-L method
imprecise, inoperative, or very difficult to implement.
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The vn(t) functions are obtained by incorporating Equation (31) into the homotopic
equation H(v, p) = 0. Using the linearity of the Laplace transformation, the following
recurrence relation of the given problem is obtained as follows:

∞

∑
n=0

pnvn(t) = f (t) + λ
∞

∑
n=0

pn+1L−1{K(s)×L[vn(t)]
}

. (34)

By identifying the different powers of p, we deduce the equations verified by the
following vn(t) functions:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n = 0 : v0(t) = f (t),
n = 1 : v1(t) = λL−1{K(s)×L[v0(t)]

}
,

n = 2 : v2(t) = λL−1{K(s)×L[v1(t)]
}

,
...

...
n = N : vN(t) = λL−1{K(s)×L[vN−1(t)]

}
,

...
...

(35)

In the following section, the IIRFM and HPM-L methods are used to numerically solve
various linear CVIEs of the second kind.

3. Linear Convolutive Volterra Integral Equations of the Second Kind

Several linear examples (aL = 1 and aNL = 0) that allow one to compare the relative
accuracies and efficiencies of the HPM-L and IIRFM numerical methods (see Section 3.1)
are presented in this paragraph. The IIRFM is also compared with other recent numerical
approaches (see Sections 3.2.3 and 3.2.4).

3.1. Unit Kernel

To obtain an analytical solution of the linear Volterra integral equation with unit kernel
K(t, t′) = 1, we derive Equation (3) with respect to t, and then integrate the resulting
ordinary equation using the variation of constants method. After integration by parts, we
obtain the following expression for the solution uλ, f (t):

uλ, f (t) = f (t) + λ
∫ t

0
eλ(t−t′) f (t′)dt′. (36)

This equation is of the form of Equation (4), with R(t) = λeλt.

3.1.1. Monomial Source Term f (t) = tn

We first consider a monomial source term f (t) = tn, which leads to a relatively simple
analytical expression for the solution, denoted here by uλ,tn(t):

uλ,tn(t) = tn
{

1 +
eλt

(λt)n [Γ(n + 1)− Γ(n + 1, λt)]
}

, (37)

where Γ(n, z) =
∫ ∞

z xn−1e−xdx is the incomplete gamma function and Γ(n + 1) = Γ(n +
1, 0). For t ∈ R+ and n ∈ N, Equation (37) admits the following Maclaurin series expansion:

uλ,tn ,m(t) = tn +
λtn+1

n + 1
+

λ2tn+2

(n + 1)(n + 2)
+ · · ·+ λmtm+n

(n + 1) · · · (n + m)
+ O(tm+n+1). (38)

Note that in the special case where n = 1, the analytical solution uλ,t(t) is given by the
following expression, deduced from (37):

uλ,t(t) =
eλt − 1

λ
, (39)
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whose limit for t → ∞ tends to 1/|λ| when λ < 0.

Numerical Solution by the IIRFM

The application of the IIRFM presented in Section 2.1, leads in the present case to the
following relations, with K(s) = 1/s and HL(s, λ) = s/(s − λ):

L
[
uλ, f (t)

]
= HL(s, λ)L[ f (t)] ⇒ L

[
uλ, f (t)

]
=

s
s − λ

L[ f (t)]. (40)

For the case f (t) = tn, one finds L[ f (t)] = Γ(n + 1)s−(n+1), in which case it is possible
to analytically invert the Laplace transform (40), giving back the analytical result (37).

Rather than an analytical solution, we are looking here for a numerical solution,
designated by uIIR

λ, f , deduced from relation (40). To this end, the bilinear transformation

s → 2
Te

z−1
z+1 is applied to the Laplace transfer function HL(s, λ) = s/(s − λ), without having

to calculate the Laplace transform of the source function f (t). The application of the bilinear
transformation leads to the following z-transfer function:

HL(z, λ) =
uIIR

λ, f (z)

f (z)
=

1 − z−1(
1 − λTe

2

)
−
(

1 + λTe
2

)
z−1

. (41)

Using time-shifting properties TZ[x((k − m)Te)] = z−mTZ[x(kTe)] and linearity
TZ[amx(kTe)] = amTZ[x(kTe)] of the z-transform, we obtain the recurrence relation satisfied
by the solution uIIR

λ, f (tk) at the following discrete time tk = kTe:

uIIR
λ, f (tk) =

1 + λTe
2

1 − λTe
2

uIIR
λ, f (tk−1) +

f (tk)− f (tk−1)

1 − λTe
2

, (42)

where uIIR
λ, f (t0) = 0 and Te ∈ R+ is the sample period, satisfying Te ̸= 2/|λ|.

In the specific case f (t) = tn considered in this paragraph, f (tk) − f (tk−1) can be
assimilated to Te f ′(tk) = nTn

e kn−1. It is then possible to derive an approximate explicit
expression of uIIR

λ,tn(tk), which will be denoted by ũIIR
λ,tn(tk)

ũIIR
λ,tn(tk) = nTn

e

[
w−kLi1−n(w)

1 − λTe
2

− Φ(w, 1 − n, k + 1)
1 + λTe

2

]
, (43)

where w = (2 − λTe)/(2 + λTe); Lim(w) = ∑∞
p=1 wp/pm is the polylogarithm function and

Φ(w, a, b) = ∑∞
p=0 wp/(p + b)a is the Lerch transcendent function. These two functions are

analytically extended for |w| > 1.

Exact Solution by Homotopic Perturbation Method with Laplace Transformation (HPM-L)

The application of the HPM-L method presented in Section 2.2 leads in the present case
to the following relationships, deduced from results (35) and from the Laplace transform
L(tn) = Γ(n + 1)/sn+1:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 : v0(t) = tn,
1 : v1(t) = λL−1[L(tn)s−1] = λΓ(n + 1)L−1(s−n−2) = λ

Γ(n+1)
Γ(n+2) tn+1,

⇒ v1(t) = λtn+1

n+1 ,

2 : v2(t) = λL−1
[
L
(

λtn+1

n+1

)
s−1
]
= λ2

n+1 Γ(n + 2)L−1(s−n−3) = λ2

n+1
Γ(n+2)
Γ(n+3) tn+2,

⇒ v2(t) = λ2tn+2

(n+1)(n+2) ,
...

...
m : vm(t) = λL−1

{
L
[

λm−1tn+m−1

(n+1)(n+2)···(n+m−1)

]
s−1
}
= λm

(n+1)(n+2)···(n+m−1)
Γ(n+m)

Γ(n+m+1) tn+m,

⇒ vm(t) = λmtn+m

(n+1)···(n+m)
,

...
...

The v(t) solution obtained by the HPM-L method is therefore written here, according
to relation (32)

v(t) = tn +
λtn+1

n + 1
+

λ2tn+2

(n + 1)(n + 2)
+ · · ·+ λmtn+m

(n + 1) · · · (n + m)
+ · · · ,

= n!tn
∞

∑
m=0

(λt)m

(n + m)!
. (44)

Since ∑∞
m=1

(λt)m

(n+m)! = eλt(λt)−n[Γ(n + 1)− Γ(n + 1, λt)]/Γ(n + 1), we find analytical
result (37).

Approximate Numerical Solutions for f (t) = t

The approximate numerical solutions obtained by the HPM-L and IIRFM methods,
respectively, are now compared in the case where f (t) = t.

The HPM-L approximate numerical solution is obtained by truncating (44) at rank
NH. Table 1 shows the absolute errors ε∞

NH
(5|λ|) = |uλ,t(5|λ|) − vNH(5|λ|)| obtained

when t = 5|λ|, between the analytical value uλ,t(5|λ|) and the approximation vNH(5|λ|),
for different values of NH, when the parameter λ takes the values ±0.5, ±1.0 and ±1.5.

Table 1. Influence of λ parameter on absolute error ε∞
NH

(5|λ|) = |uλ,t(5|λ|)− vNH (5|λ|)| committed
at t = 5|λ| with the HPM-L method, when K(t, t′) = 1, f (t) = t and for different values of NH.
Numbers in parentheses indicate multiplying powers of ten.

NH= 3 5 7 15 20 30

|λ| = 0.5 2.67144(−1) 1.28311(−2) 3.42505(−4) 3.66374(−12) 8.88178(−16) -
|λ| = 1.0 1.09080(+1) 5.69965(+1) 1.97941(+1) 1.02417(−2) 1.20352(−5) 6.82121(−13)
|λ| = 1.5 5.10447(+4) 4.95956(+4) 4.47047(+4) 5.46097(+3) 3.04954(+2) 4.77714(−2)

For |λ| = 0.5, 1.0, and 1.5, the results gathered in Table 1 show that the absolute error
ε∞

NH
(5|λ|) is less than 0.01 for the respective truncation orders NH ⩾ 6, 16, and 32. These

results (as well as all the other results gathered in Table 1) show the influence of the value of
λ on the speed of convergence of the HPM-L method. In particular, the larger the value of
|λ|, the slower the convergence of the HPM-L method here. Figure 3a,b shows the evolution
of the approximate solution vNH(t) as a function of t, for n = 1 and, respectively, for λ = 1
and λ = 1.5, for different values of NH. The numerical results (dashed curves) provided by
the HPM-L method are compared with the analytical solutions (solid curves) u1,t(t) and
u1.5,t(t). These figures clearly show that the number NH of terms, required to obtain an
approximate solution vNH(t) converging to the analytical solution uλ,1(t), increases with
the value of λ. From a numerical point of view, this can be a definite handicap for the
HPM-L approach, especially when there is no closed form of the solution.
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Figure 3. Dashed lines show the evolution of vNH (t) as a function of t for n = 1, different values of λ,
and different values of NH: (a) λ = 1 and NH = 3, 5, 7, 9; (b) λ = 1.5 and NH = 5, 9, 13, 17.

We are now looking for the numerical solution ũIIR
λ, f (tk) at tk = kTe, using the IIRFM.

In the case of a unit kernel and for f (t) = t, result (43) takes on the following expression,
valid whatever the sign of λ:

ũIIR
λ,t (tk) =

1
λ

(
2 + λTe

2 − λTe

)k
− 1

λ
. (45)

This is a particularly simple expression, whose accuracy depends, for a given value of
λ, on the choice of the value of Te. Note that limtk→∞ ũIIR

λ,t (tk) → 1/|λ| when λ < 0, which
is consistent with the exact result of (39). Table 2 gathers the absolute errors ε∞

Te
(5|λ|) =

|uλ,t(5|λ|)− ũIIR
λ,t (5|λ|)| obtained when tk = 5|λ|, between the analytical value uλ,t(5|λ|)

and the approximate result ũIIR
λ,t (5|λ|), for different values of Te, when λ takes the values

±0.5, ±1.0, and ±1.5.

Table 2. Influence of λ on absolute error ε∞
Te
(5|λ|) = |uλ,t(5|λ|)− ũIIR

λ,t (5|λ|)| at tk = 5|λ| using IIRFM,
when α = 0, f (t) = t and different values of Te. Numbers in parentheses indicate multiplying powers
of ten.

Te= 10−1 10−3 10−5 Te= 10−1 10−3 10−5

λ = −0.5 1.49258(−4) 1.49218(−8) 1.50691(−11) λ = 0.5 1.81881(−3) 1.8179(−7) 1.32737(−10)
λ = −1.0 2.80584(−5) 2.80777(−9) 2.58013(−11) λ = 1.0 6.20611(−1) 6.18386(−5) 2.5262(−8)
λ = −1.5 1.81606(−7) 1.81704(−11) 3.11284(−12) λ = 1.5 1.09635(+3) 1.08113(−1) 8.04227(−6)

The analysis of the results gathered in Table 2 shows that the IIRFM leads to highly
accurate results for negative values of λ, even for sampling periods as large as Te = 0.1.
This is a very interesting result. As Equation (45) is simpler than Equation (39), which
includes the incomplete gamma special function, it is also easier to implement numerically,
and poses no particular convergence problems.

Figure 4 shows the variations of relative errors εNM
r (t) = |uNM(t)/uλ,t(t)− 1| as a

function of t, where (NM) stands for “numerical method”, with NM≡HPM-L or IIRFM.
The value of λ is negative here and equals λ = −1.5. The calculation step is the same for
both numerical approaches and is equal to δt = Te = 10−2. For NH = 15, we can clearly
see from Figure 4 that the IIRFM performs significantly better than the HPM-L method as t
deviates from zero.
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Figure 4. Relative errors as a function of t, when α = 0, f (t) = t, and λ = −1.5: (a) εHPM-L
r (t) with

NH = 15 and Te = 10−2; (b) εIIRFM
r (t) with Te = 10−2.

Since vNH(t) has the same form as the Maclaurin series expansion (38), the approx-
imate solution provided by the HPM-L method is very accurate in the vicinity of t = 0,
as shown in Figure 4a, even for small values of NH. In contrast, as soon as t deviates
from the origin, the number NH of terms required to obtain a precise numerical value
must increase accordingly, which can prove to be a problem from the point of view of
numerical calculation (particularly in terms of calculation time). The numerical behavior of
the IIRFM is very different from that of the HPM-L method. Indeed, as shown in Figure 4b,
the accuracy of (45) increases with tk = kTe when λ < 0.

Figure 5 shows the variations in the relative errors εHPM-L
r (t) and εIIRFM

r (t) as a function
of t, when the parameter λ is positive and equal to λ = 1.5, with all other quantities having
the same values as those used for Figure 4. Even though the accuracy of the IIRFM decreases
this time as tk deviates from the origin, it remains more accurate than the HPM-L method.
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λ = 1.5, NH = 15, Te = 10−2
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Figure 5. Relative errors as a function of t, when K(t, t′) = 1, f (t) = t, and λ = 1.5: (a) εHPM-L
r (t)

with NH = 15 and Te = 10−2; (b) εIIRFM
r (t) with Te = 10−2.

The order of accuracy n of the IIRFM approximation can be evaluated by computing
the absolute value of the difference ũIIR

λ,t (tk)− uλ,t(tk), as a function of the sampling period
Te. Using the expressions (39) and (45), we obtain

εk(Te) =
∣∣∣ũIIR

λ,t (tk)− uλ,t(tk)
∣∣∣ = 1

|λ|

∣∣∣∣∣ekλTe −
(

2 + λTe

2 − λTe

)k
∣∣∣∣∣. (46)

Figure 6 shows the evolution of εk(Te) as a function of Te ∈ [10−5, 10−1], when tk = 1 and
λ = 1. It can be seen from Figure 6 that the IIRFM approach is a second-order accuracy
method in the present case.
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Figure 6. Absolute error εk(Te) as a function of Te, when K(t, t′) = 1, f (t) = t, λ = 1, and tk = 1.

In conclusion, it should be noted that, whatever the sign of λ, the accuracy of the
IIRFM can be improved by reducing Te. This is not the case with the results obtained by
the HPM-L method, whose accuracy is independent of Te.

3.1.2. Exponential Source Term f (t) = e−t

As a preamble to this paragraph, it should be noted that it is not necessary for the
initial condition on the solution to be null in order to apply the IIRFM in the case of the
unit kernel.

The developments of the previous paragraph are repeated, but this time in the case
of a source term f (t) of exponential form. In this case, there is also an analytical solution
uλ,e−t(t) of Equation (3), which is

uλ,e−t(t) =

∣∣∣∣∣ e−t+λeλt

1+λ when λ ̸= −1,
(1 − t)e−t when λ = −1.

(47)

The most general case, where λ ̸= −1, is considered in the following. For t ∈ R+,
Equation (47) admits a Maclaurin series expansion uλ,e−t ,m(t) of the following form to
order m:

uλ,e−t ,m(t) =
m

∑
n=0

(−1)m + λm+1

(λ + 1)m!
tm + O(tm+1). (48)

Numerical Solution by the IIRFM

Since the transfer function H(z, λ) associated with Equation (3) is independent of
the source function f (t), the numerical solution uIIR

λ,e−t of the present problem still verifies
recurrence relation (42). Equating the difference f (tk)− f (tk−1) with the function Te f ′(tk) =
−Tee−kTe , it is also possible to find here an approximate explicit expression for the series
uIIR,Te

λ,e−t (tk), an expression which is denoted by ũIIR
λ,e−t(tk), as follows:

ũIIR,Te
λ,e−t (tk) =

e−tk ω′ −
(

1 + ω′
ω

)
ω1−tk/Te + eTe ω−tk/Te

eTe − ω
, (49)

where ω = (2 − λTe)/(2 + λTe), and ω′ = 2Te/(2 + λTe), with Te ̸= −2/λ. Note that here
ũIIR,Te

λ,e−t (0) = f (0) = 1.
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Solution by the HPM-L Method

The application of the HPM-L method leads to the following relationships:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 : v0(t) = e−t,
1 : v1(t) = λL−1[L(e−t)s−1] = λL−1

(
1

s+s2

)
,

⇒ v1(t) = λ
(
1 − e−t),

2 : v2(t) = λL−1{L[λ(1 − e−t)]s−1} = λ2L−1
(

1
s2 − 1

s+s2

)
,

⇒ v2(t) = λ2(t − 1 + e−t),
3 : v3(t) = λL−1{L[λ2(t − 1 + e−t)]s−1} = λ3L−1

(
1
s3 − 1

s2 +
1

s+s2

)
,

⇒ v3(t) = λ3
(

1 − t + 1
2 t2 − e−t

)
,

...
...

m : vm(t) = λL−1
{
L
[
λm−1

(
(−1)m−2 ∑m−2

k=0
(−1)k

k! tk + (−1)m−1e−t
)]

s−1
}

,

= λmL−1
[
(−1)m−2 ∑m−2

k=0
(−1)k

sk+2 + (−1)m−1

s+s2

]
,

⇒ vm(t) = λm
[
(−1)m−1 ∑m−1

k=0
(−1)k

k! tk + (−1)me−t
]
,

...
...

(50)

The solution v(t) obtained by the HPM-L method is therefore written here, according
to equations (32) and (50):

v(t) =
∞

∑
m=0

vm(t) =
∞

∑
m=0

λm

[
(−1)m−1

m−1

∑
k=0

(−1)k

k!
tk + (−1)me−t

]
. (51)

An approximate form of the solution, denoted by vNH(t), is obtained by truncating
series (51) at a rank NH < ∞.

Numerical Results and Discussion

Figure 7a represents the numerical results obtained by the HPM-L (result (51)) and
IIRFM (result (49)) methods, for f (t) = e−t, λ = 5, Te = 10−2, and t ∈ It = [0, 5], using
the semi-logarithmic representation. It can be seen that relatively high NH truncation
orders have to be used for the numerical solution vNH(t) provided by the HPM-L method
to converge to the exact solution (47) with acceptable accuracy over the entire interval
It. In contrast, it is observed that the numerical solution ũIIR,Te

λ,e−t provides a very accurate
approximation of the exact solution uλ(t) over the entire interval It = [0, 5], even for a time
step as large as Te = 10−2.
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Figure 7. IIRFM and HPM-L numerical results when K(t, t′) = 1, f (t) = e−t, Te = 10−2, and
NH = 5, 15, and 20: (a) λ = 5 and (b) λ = −5.
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The observations made in the previous discussion for λ = 5 are even more evident
when the value λ = −5 is chosen. As shown in Figure 7b, convergence of the HPM-L
method is slow in the case where λ = −5. In the present case, no finite value of NH could
be found that allows the series vNH(t) to converge to the exact solution uλ,e−t(t) on the
interval It = [0, 5] without using a convergence acceleration procedure. In contrast, we can
observe that the IIRFM approach again gives a very accurate numerical approximation on
It, whatever the value of λ. It was also observed that the HPM-L method became unusable
here from a numerical point when λ ⩽ −10.

In the present case, the IIRFM approach was found to be a first-order accuracy method.

3.2. Abel’s Kernel (with α = 1/2)

In the case of Abel’s kernel, one obtains K(s) = Γ(1 − α)/s1−α, and the transfer
function HL(s, λ) is then given by

HL(s, λ) =
1

1 − λΓ(1 − α)sα−1 . (52)

The results of Section 2 are applied here to the case α = 1/2, for different source terms
f (t) and different values of the parameter λ. Only the IIRFM approach is developed in
detail in this section. To differentiate the results of this paragraph from those obtained in
the previous paragraph for K(t, t′) = 1, we now agree to index all useful functions by the
value of α.

In the present case, the Laplace transfer function HL, 1
2
(s, λ) of Abel’s problem is given,

from Equation (17), by

HL, 1
2
(s, λ) =

√
s√

s − λ
√

π
. (53)

In contrast to the case where K(t, t′) = 1 studied in Section 3.1, there is no exact
expression here for HL, 1

2
(s, λ) in the form of a quotient of polynomials in s. To apply the

IIRFM in the present case, the function G 1
2
(s, λ) = HL, 1

2
(s, λ)− 1 needs to be approximated

by a rational fraction as accurate as possible. Several approaches make obtaining this
approximation possible. In [23], an approximation of the transfer function was obtained
using the least-squares method, while in [11,24] the rational fraction was constructed
using Padé approximants. The second approach generally allows the construction of a
very precise rational fraction, but mainly in the vicinity of a given point of the Laplace
space. In order to obtain an accurate description over an extended domain of the Laplace
space, and thus over an extended domain of the direct time space, a Chebyshev rational
interpolation of the function G 1

2
(s, λ), has been carried out here over a suitably chosen

interpolation interval Is = [si, s f ]. The Is interval is adjusted to obtain the best possible
numerical resolution of Equation (3) over the entire time domain. This makes it possible to
predict, with comparable accuracies, the behaviors of the solution of Equation (3) at both
long and short times.

3.2.1. IIRFM Approach When α = 1/2 and λ ⩽ 0

Situations where λ ⩽ 0 are first considered. In this case, the denominator of the exact
transfer function HL, 1

2
(s, λ) has no root with a positive real part, and therefore, HL, 1

2
(s, λ)

has no discontinuity for s ∈ R+. The function G 1
2
(s, λ) = HL, 1

2
(s, λ)− 1 is approximated

in this case by a rational fraction noted as RFM
c (s, λ) in the following form:

RFM
c (s, λ) =

∑M−1
i=0 a′M,i

(
1
2 , λ
)

si

1 + ∑M
i=1 b′M,i

(
1
2 , λ
)

si
. (54)
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The 2M coefficients
{

a′M,i, b′M,i

}
of the rational approximation RFM

c (s, λ) are deter-
mined using a Chebyshev rational interpolation [12] of the function G 1

2
(s, λ) = HL, 1

2
(s, λ)−

1, on the interpolation interval Is = [si, s f ], using a {sk} interpolation grid of the Gauss–
Chebyshev type (composed of the zeros of first kind Chebyshev polynomials), as follows:

sk =
1
2

(
si + s f

)
+

1
2

(
s f − si

)
cos
[
(2k − 1)π

4M

]
, for k = 1, 2, · · · , 2M. (55)

First-order partial fraction decomposition of (54) leads to writing the approximate
transfer function HM

L, 1
2
(s, λ) as a linear combination of first-order transfer functions of

type (18), as follows:

HM
L, 1

2
(s, λ) = 1 +

M

∑
i=1

aM,i

(
1
2 , λ
)

bM,i

(
1
2 , λ
)
+ s

, (56)

where the 2M coefficients {aM,i, bM,i} are expressed as functions of the 2M coefficients
{a′M,i, b′M,i}.

As an example, an approximate expression of H 1
2
(s, λ) has been calculated as (56) for

λ = −3/2, with s ∈ [0, 5] and M = 8. The coefficient values {a8,i, b8,i} obtained in this case
are gathered in Table 3.

Table 3. Coefficient values {a8,i, b8,i} obtained by Chebyshev rational interpolation on Is = [0, 5]
when α = 1/2, λ = −3/2, and M = 8. Numbers in parentheses indicate multiplying powers of ten.

i 1 2 3 4 5 6 7 8

a8,i −1.1929(−3) −1.0196(−2) −4.3171(−2) −1.4132(−1) −4.2352(−1) −1.3087 −5.0193 −53.639
b8,i 2.5442(−2) 1.5704(−1) 5.1737(−1) 1.3474 3.2497 8.2163 26.753 259.97

The relative error εr
H = |HL, 1

2

(
s,− 3

2
)
/H8

L, 1
2

(
s,− 3

2
)
− 1| obtained when Is = [0, 5] is

shown as an insert to Figure 8. It can be seen that the rational approximation proposed
here is very accurate over the Is domain and remains highly accurate for s ∈ [5, 100]. This
accuracy could be further improved by increasing the value of M, within the limits of
stability of the transfer function HM

L, 1
2
(s, λ).
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1 2
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exact (53) Chebyshev approximation (56)
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s

εr H

λ = −3/2, M = 8, s f = 5

Figure 8. Exact transfer function HL, 1
2

(
s,− 3

2

)
and its Chebyshev rational approximation H8

L, 1
2

(
s,− 3

2

)
calculated using the interpolation interval Is = [0, 5]. The insert shows the relative error εr

H committed
on the rational approximation for s ∈ [0, 100].
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Monomial Source Term f (t) = tn

In the case of a monomial source term, f (0) = 0 induces u(0) = 0. Unlike the case of
the unit kernel studied in Section 3.1, there is no simple expression here for the analytical
solution when α = 1/2. Only the case n = 1 admits a relatively simple analytical solution,
noted uλ, 1

2 ,t, which will be used here to test the operation of the IIRFM approach as follows:

uλ, 1
2 ,t(t) =

eπλ2t
[
1 + erf

(
λ
√

πt
)]

− 2λ
√

t − 1

πλ2 , (57)

where erf(x) is the error function. The numerical solution provided by the IIRFM is given
by Equation (25), for which we can propose the following explicit expression when f (t) = t:

uIIR,M
λ, 1

2 ,t
(tk) = tk +

M

∑
i=1

AM,i

2tk − Te + TeBtk/Te
M,i (1 + BM,i)− BM,i(Te + 2tk)

(BM,i − 1)2

, (58)

where it is recalled that AM,i = aM,iTe/(2 + bM,iTe) and BM,i = (2 − bM,iTe)/(2 + bM,iTe).
The values of coefficients {aM,i, bM,i} are given in Table 3 when M = 8.

Figure 9a shows the variations of u− 3
2 , 1

2 ,t(t) given by (57) when λ = −3/2 and

uIIR,8
− 3

2 , 1
2 ,t
(t) given by (58), as functions of t, when f (t) = t, M = 8, t ∈ [0, 50] and Te = 0.05.

(a)
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α = 1/2, λ = −3/2, Te = 0.05, f (t) = t

exact (57)
IIRFM (58), M = 8

(b)
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Figure 9. (a) Analytical solution (57) and numerical IIRFM solution (58) when f (t) = t, α = 1/2,

λ = −3/2, M = 8, and Te = 0.05. (b) Function gλ(t) = 1 + erf
(

λ
√

πt
)

when λ = −3/2 and

t ∈ [4.4, 5].

The curves shown in Figure 9 were plotted using a Python code (version 3.8.5) calling
on the numpy and scipy.special libraries, using single-precision floating-point numbers.
In Figure 9a, expansion of the domain corresponding to the interval t ∈ [4.4, 5] reveals
anomalous discontinuities in the graphical representation of the analytical solution (57),
whereas the numerical solution (Equation (58), dashed curve) provided by the IIRFM is
continuous, as expected. Note that these discontinuities are also found in the graphical
representation (see Figure 9b) of the function gλ(t), defined by:

gλ(t) = 1 + erf
(

λ
√

πt
)

. (59)

The same numerical problem is observed with the free codes octave-8.4.0,
scilab-2023.0.0 and julia-1.10.4 and other proprietary softwares used with single-
precision floating-point numbers. The reason for this anomalous behavior lies in the
internal evaluation of the function gλ(t) when λ

√
πt ≲ −5, as shown by Figure 9b.

The Julia-1.10.4 code of Listing 1 graphically illustrates the pathological behavior of the
function gλ(t).
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Listing 1. Julia-1.10.4 code illustrating the pathological behavior of gλ(t).

using SpecialFunctions, Plots
function gL(t; La = -1.5)

return 1 + erf(La*(pi*t)^0.5)
end
plot(t->gL(t, La = -1.5), 4.4, 5.5)

The IIRFM approach introduced in this work can be exploited to propose an approxi-
mation to the function gλ(t) that exhibits smooth numerical behavior in single precision,
for any value of t ⩾ 0 and for any value of λ, whether positive or negative. To this end,
the function gλ(t) is first rewritten using expression (57):

gλ(t) = e−πλ2t
[
πλ2uλ, 1

2 ,t(t) + 1 + 2λ
√

t
]
.

By replacing the function uλ, 1
2 ,t(t) by its IIRFM approximation (58), we finally obtain

an approximate form of the function gλ(t), noted here as gIIR,M
λ :

gIIR,M
λ (tk) = e−πλ2tk

[
πλ2uIIR,M

λ, 1
2 ,t

(tk) + 1 + 2λ
√

tk

]
, (60)

where tk = kTe ⩾ 0. Figure 9b shows the quality of the IIRFM approximation (60) for the
gλ(t) function.

The present approach therefore provides an efficient numerical approximation of the
gλ(t) function, which does not suffer in single precision from the anomalous discontinuities
present in various free or proprietary codes.

Sinusoidal Source Term f (t) = sin(t)

This is another source term that ensures a zero initial condition. An analytical expres-
sion uλ, 1

2 , f (t) of the solution also exists here:

uλ, 1
2 , f (t) =

πλ2eπλ2tgλ(t)
π2λ4 + 1

+

√
2πλFS

(√
2
π t
)[

πλ2 sin(t) + cos(t)
]

π2λ4 + 1

−

[√
2πλFC

(√
2
π t
)
+ 1
][

πλ2 cos(t)− sin(t)
]

π2λ4 + 1
, (61)

where FC and FS are the Fresnel integrals, defined by FS(x) =
∫ x

0 sin
(
πt2/2

)
dt and

FC(x) =
∫ x

0 cos
(
πt2/2

)
dt. The gλ(t) function with pathological numerical behavior in

single precision is again found here. It has also been possible to determine here an explicit
expression for the IIRFM numerical solution, as follows:

uIIR,M
λ, 1

2 , f
(tk) = sin(tk) + 2 cos

(
Te

2

)
FM,Te(tk), (62)

with FM,Te(tk) given by

FM,Te(tk) =
M

∑
i=1

AM,i

(BM,i + 1)Btk/Te
M,i sin

(
Te
2

)
− BM,i sin

(
tk +

Te
2

)
+ sin

(
tk − Te

2

)
[BM,i − cos(Te)]

2 + sin2(Te)
, (63)

where AM,i and BM,i have the same expressions as in previous examples.
Figure 10a compares the plots obtained using analytical (61) and numerical IIRFM (62)

solutions. The problem of artificial discontinuities in the graphical representation of the
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analytical solution, due to the presence of the function gλ(t) in (61), is very pronounced
here in the vicinity of t ≈ 5. These defects are not present in the plot obtained by the IIRFM
(dashed line), which here gives better numerical results in single precision than using the
analytical expression.

(a)
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Figure 10. (a) Analytical solution (61) and numerical IIRFM solution (62) when f (t) = sin(t), α = 1/2,
λ = −3/2, M = 8, and Te = 0.05. (b) Analytical solution (64) and numerical IIRFM solution (71)
when f (t) = e−t, α = 1/2, λ = −3/2, M = 8, and Te = 0.05.

Exponential Source Term f (t) = e−t

For this last example, the case of a non-zero initial condition is considered, since here
uλ, 1

2 , f (0) = f (0) = 1. Using Equation (4), it is possible to find an analytical solution to the

problem (3) when f (t) = e−t and α = 1/2, whose expression is as follows:

uλ, 1
2 ,e−t(t) = 2λDF

(√
t
)
+

πλ2eπλ2tgλ(t) + e−t
[
1 − π3/2λ3erfi

(√
t
)]

1 + πλ2 , (64)

where DF(x) = e−x2 ∫ x
0 ey2

dy is the Dawson function and erfi(x) = erf(ix)/i is the imag-
inary error function, with i2 = −1. The presence of the function gλ(t) in the analytical
expression of the solution leads, as shown in Figure 10b, to considerable difficulties in
graphically representing the function uλ, 1

2 ,e−t(t) given by Equation (64) in single precision.
When α ̸= 0, applying the IIRFM to numerically solve Equation (3) assumes the initial

condition on the solution to be null. If α ̸= 0 and the initial condition is non-zero but
finite, then we introduce the auxiliary functions vλ,α, f0(t) and wλ,α, f (0)(t), which satisfy the
following auxiliary integral equations:∣∣∣∣∣∣ vλ,α, f0(t) = f0(t) + λ

∫ t
0

vλ,α, f0
(t′)

(t−t′)α dt′,

wλ,α, f (0)(t) = f (0) + λ
∫ t

0
wλ,α, f (0)(t

′)

(t−t′)α dt′,
(65)

with f0(t) = f (t)− f (0). The uλ,α, f (t) solution sought is written as uλ,α, f (t) = vλ,α, f0(t) +
wλ,α, f (0)(t), which satisfies Equation (3), with the initial condition uλ,α, f (0) = f (0). Two
important special cases should be noted: firstly, in the case where f (0) = 0, the result
is wλ,α, f (0)(t) = 0, and the situation with zero initial condition studied in the previous
paragraphs is retrieved. On the other hand, when f (t) = C = cste, in this case f0(t) = 0
results in vλ,α, f0(t) = 0.

The calculation of vλ,α, f0(t) by the IIRFM has already been described in previous
paragraphs, with f0(0) = 0 ⇒ vλ,α, f0(0) = 0. General result (24) is still applicable and
it is also possible to find here an explicit expression of the IIRFM numerical solution for
f (t) = e−t ⇒ f0(t) = e−t − 1, which holds for α = 1/2, as follows:
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vIIR,M
λ, 1

2 , f0
(tk) = e−tk − 1

+
M

∑
i=1

AM,i
(1 − BM,i)

(
1 + eTe

)
e−tk − 2

(
1 − eTe BM,i

)
+ Btk/Te

M,i (1 + BM,i)
(
1 − eTe

)
(1 − BM,i)(1 − eTe BM,i)

.
(66)

There remains the need to explain the calculation of wλ,α, f (0)(t). Since the source
term f (0) is constant here, the auxiliary solution wλ,α, f (0)(t) can always be written as
wλ,α, f (0)(t) = f (0)w0

λ,α(t), where the function w0
λ,α(t) is independent of the expression

of the source term f (t) considered in the integral Equation (3). This means that there is
only one possible function w0

λ,α(t) for a given set of parameters (α, λ). More precisely,
the function w0

λ,α(t) is given by the following inverse Laplace transform:

w0
λ,α(t) = L−1

[
1

s − λΓ(1 − α)sα

]
. (67)

Depending on the value taken by α, different approaches can be adopted to calculate
w0

λ,α(t). In the case of the present paragraph where α = 1/2, the inverse Laplace transform
(67) can be computed explicitly and leads to the following analytical expression of w0

λ, 1
2
(t):

w0
λ, 1

2
(t) = eλ2πt

[
1 + erf

(
λ
√

πt
)]

= eπλ2tgλ(t). (68)

Finally, the IIRFM solution of the initial problem is written here for f (t) = e−t and
α = 1/2:

uIIR,M
λ, 1

2 ,e−t(tk) = vIIR,M
λ, 1

2 , f0
(tk) + f (0)eπλ2tk gλ(tk), (69)

where vIIR,M
λ, 1

2 , f0
is given by (66). This expression of uIIR,M

λ, 1
2 ,e−t involves the function gλ(t), whose

anomalous numerical behavior in single precision has been highlighted in the previous
paragraphs for λ

√
πt ≲ −5. Equation (69) is therefore acceptable as long as 0 ⩽ t ⩽ 1

π

( 5
λ

)2
.

When t > 1
π

( 5
λ

)2
, we recommend not using the analytical expression of the function gλ(t),

but rather resorting to the following numerical form:

uIIR,M
λ, 1

2 ,e−t(tk) = vIIR,M
λ, 1

2 , f0
(tk) + f (0)eπλ2tk gIIR,M

λ (tk). (70)

Result (60) finally allows to write uIIR,M
λ, 1

2 ,e−t(tk) in a fully numerical form:

uIIR,M
λ, 1

2 ,e−t(tk) = vIIR,M
λ, 1

2 , f0
(tk) + f (0)

[
πλ2uIIR,M

λ, 1
2 ,t

(tk) + 1 + 2λ
√

tk

]
, (71)

where vIIR,M
λ, 1

2 , f0
(tk) is given by (66) and uIIR,M

λ, 1
2 ,t

(tk) is given by (58). This result is particularly

interesting, since it holds (for the Abelian kernel α = 1/2) whatever the value of λ ⩽ 0 and
whatever the expression of f (t), provided that f (0) is finite. Note that this result does not
involve any numerical inversion of Laplace transforms, and that it generalizes the IIRFM
for solving Abel integral equations of the second kind for α = 1/2, to the case of non-zero
but finite initial conditions.

Constant Term Source f (t) = C

In the present case, we consider f0(t) = f (t)− f (0) = 0 and f (0) = C, leading to the
following expressions for the auxiliary functions vλ,α, f0(t) and wλ,α, f (0)(t):∣∣∣∣∣∣ vλ,α, f0(t) = λ

∫ t
0

vλ,α, f0
(t′)

(t−t′)α dt′ = 0,

wλ,α, f (0)(t) = C + λ
∫ t

0
wλ,α, f (0)(t

′)

(t−t′)α dt′.
(72)



Mathematics 2024, 12, 2416 23 of 35

The analytical solution of the problem is deduced from the developments of Section
“Exponential Source Term f (t) = e−t”:

uλ, 1
2 ,C(t) = eπλ2t

[
1 + erf

(
λ
√

πt
)]

. (73)

The expression for the IIRFM solution is deduced from Section “Exponential Source
Term f (t) = e−t” for the present case, as follows:

uIIR,M
λ, 1

2 ,C
(tk) = C

[
πλ2uIIR,M

λ, 1
2 ,t

(tk) + 1 + 2λ
√

tk

]
. (74)

3.2.2. IIRFM Approach When α = 1/2 and λ > 0

When λ > 0, the denominator of the Laplace transfer function Hα(s, λ) admits a posi-
tive root sλ, whose expression is sλ = λΓ(1 − α)1/(1−α). The transfer function HL,α(s, λ) in
this case presents a singularity at s = sλ. To allow a precise determination of the coefficients
aM,i and bM,i of Equation (18), despite the singularity at sλ, we first calculate a Chebyshev
rational interpolation (denoted by RFM

c ) of the function (s − sλ)× [HL,α(s, λ)− 1]. This
interpolation is written as

RFM
c {(s − sλ)× [HL,α(s, λ)− 1]} =

∑M−1
i=0 a′M,i(α, λ)si

1 + ∑M−1
i=1 b′M,i(α, λ)si

. (75)

The following approximate form HM
L,α(s, λ) of the transfer function HL,α(s, λ)

is deduced:

HM
L,α(s, λ) = 1 +

∑M−1
i=0 a′M,i(α, λ)si

∑M
i=0 b′′M,i(α, λ)si

, (76)

with b′′M,0 = −sλ, b′′M,1 = 1 − b′M,1sλ, b′′M,M = b′M,M−1 and b′′M,m = b′M,m−1 − b′M,msλ for
m ∈ [2, M − 1]. Further developments are strictly identical to those exposed in the previous
paragraphs for λ < 0 and will therefore not be repeated here. Note also that all the
results established in Section “Exponential Source Term f (t) = e−t” remain applicable here,
but with λ > 0.

As an example, let us consider the case where f (t) = e−t, α = λ = 1/2, for which it is
found that sλ ≈ 0.7853982. The rational approximation (75) has in this case been calculated
over the interpolation interval Is = [sλ, 5sλ], for M = 4. Figure 11a shows the analytical (64)
and numerical IIRFM (71) solutions in the present case, for t ∈ [0, 3] and Te = 5 × 10−3.
Figure 11b shows the relative error εr = 100 × (uIIR,4

1
2 , 1

2 ,e−t /u 1
2 , 1

2 ,e−t − 1) in %, as a function of

t. The correspondence between analytical and IIRFM resolutions is excellent, even for the
low M value considered here.

3.2.3. Comparison of the IIRFM with the Mouley et al. [13] Approach

In this section, the IIRFM is applied to the numerical solution of two second-kind
Abel linear integral equations, which Mouley et al. have studied using a recent numerical
method based on an approximation involving Daubechies wavelets [13]. The accuracy of
the results provided by the two methods is compared on two examples, for different orders
of approximation (see Tables 4 and 5).

First Example

Consider the following Abel integral equation of the second kind (there is a typograph-
ical error in the paper by Mouley et al. where 16

5 t5/2 is found in place of 16
15 t5/2):

u(t) = t2 +
16
15

t
5
2 −

∫ t

0

u(t′)√
t − t′

dt′, (77)
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which admits as analytical solution the function u(t) = t2. This is a convolutive integral
equation of the form (3), with α = 1/2, λ = −1, f (t) = t2 + 16

15 t5/2, and u(0) = 0.
The developments of Section 3.2.1 are therefore directly applicable to the numerical solution
of this integral equation using the IIRFM method.

(a)

0 1 2 3
0

2

4

6

8

10

t

u λ
,α

,f
(t
)

α = λ = 1/2, f (t) = e−t, M = 4

exact (64)
IIRFM (69)

(b)

0 1 2 3

−5

0

5

·10−3

t
ε r
(t
)

(%
)

α = λ = 1/2, f (t) = e−t, M = 4

Figure 11. IIRFM solution of Equation (3), for λ = α = 1/2, f (t) = e−t, Te = 5 × 10−3, and
M = 4. (a) Changes in analytical and numerical solutions as a function of t. (b) Relative error
εr = 100 × (uIIR,4

1
2 , 1

2 ,e−t /u 1
2 , 1

2 ,e−t − 1) in %.

Table 4 gathers the absolute errors ε
j
Dau =

∣∣∣u(t)− uj
Dau(t)

∣∣∣ committed using the

Mouley et al. method and absolute errors εM
IIR =

∣∣u(t)− uM
IIR(t)

∣∣ committed using the IIRFM
(with Is = [0, 15] and Te = 10−3), for different values of t ∈ [0, 1], different resolutions j,
and for different approximation orders M.

Table 4. Absolute errors in the numerical resolution of (77) using the Mouley et al. [13] and IIRFM
methods (with Is = [0, 15] and Te = 10−3).

ε
j
Dau × 106 εM

IIR × 106

t Exact Values j = 4 j = 6 j = 8 M = 4 M = 6 M = 8

0.125 0.015625 117 1 0 1 0 0
0.25 0.062500 37 1 0 2 0 0

0.375 0.140625 22 0 0 12 0 0
0.5 0.250000 16 0 0 3 1 0

0.625 0.390625 12 0 0 23 1 0
0.75 0.562500 10 0 0 37 1 0

0.875 0.765625 8 0 0 21 1 0

It can be seen from these results that the accuracies obtained with the IIRFM are, in the
case of integral Equation (77), quite comparable with those provided by the method of
Mouley et al. [13].

Second Example

Let us now consider the following Abel integral equation of the second kind, also
studied by Mouley et al. in [13]:

u(t) =
1√

t + 1
+

π

8
− 1

4
sin−1

(
1 − t
1 + t

)
− 1

4

∫ t

0

u(t′)√
t − t′

dt′, (78)

of which the analytical solution is u(t) = 1/
√

t + 1. This is still a convolutive integral
equation of the form (3), with α = 1/2, λ = −1/4, f (t) = 1/

√
t + 1 + π

8 − 1
4 sin−1

(
1−t
1+t

)
,

and u(0) = 1.
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Table 5 gathers the absolute errors ε
j
Dau and εM

IIR committed by numerically calculating
the solution of (78), for different values of t ∈ [0, 1], for different resolutions j, and different
approximation orders M.

Table 5. Absolute errors ε in the numerical resolution of (78) using the Mouley et al. [13] and IIRFM
methods (with Is = [0, 15] and Te = 10−3).

ε
j
Dau × 106 εM

IIR × 106

t 1/
√

t + 1 j = 4 j = 6 j = 8 M = 4 M = 6 M = 8

0.125 0.942809 21,732 4370 1074 29 3 3
0.25 0.894427 10,739 2774 683 28 3 1
0.375 0.852803 8568 2091 515 15 1 1

0.5 0.816497 6971 1695 417 32 1 1
0.625 0.784465 5890 1433 353 9 2 1
0.75 0.755929 5113 1244 307 27 1 1
0.875 0.730297 4522 1101 271 54 1 0

This time, it was found that the accuracy of the numerical resolution of (78) by the
IIRFM (with Is = [0, 15] and Te = 10−3) is much better than the accuracy allowed by the
method of Mouley et al., which uses Daubechy wavelets. Despite the greater complexity of
the source function f (t) considered in this second example, the accuracy obtained here with
the IIRFM remains comparable to that obtained with the same method for the previous
example. This is a clear advantage of the IIRFM in the present case, as it is found that the
accuracy depends relatively little on the complexity of the source function f (t).

3.2.4. Comparison of the IIRFM with the Singha et al. [14] Approach

In the present section, the results obtained with the IIRFM are compared with the
numerical results obtained using Laguerre polynomials Li of order i [14], at approximation
order M = 5:

uM
S (t) =

M

∑
i=0

ℓiLi(t), (79)

where uM
S (t) is the approximation of Singha et al.

The accuracy of the results provided by the two methods is compared in two examples
proposed by Singha et al. in [14].

First Example

Consider the following Abel integral equation of the second kind:

u(t) =
πt
2

+
√

t −
∫ t

0

u(t′)√
t − t′

dt′, (80)

of which analytical solution is u(t) =
√

t. This is a convolutive integral equation of the
form (3), with α = 1/2, λ = −1, f (t) = πt

2 +
√

t, and u(0) = 0. Table 6 gathers the absolute
errors ε committed by numerically calculating the solution of (80), with the polynomial
method proposed by Singha et al. [14] and with the IIRFM, for different values of t ∈ [0, 2],
and for the same order of approximation M = 5.

The results in Table 6 clearly demonstrate the benefits of the IIRFM for the numerical
resolution of (80). For each value of t considered, the IIRFM is always much more accurate
here than the approach proposed by Singha et al. [14].
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The values of the Laguerre approximation uM
S (t) = ∑M

i=0 ℓiLi(t) have been calculated
here using the {ℓi} coefficient values of Singha et al. [14]:

{ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5} =
√

π ×
{

1
2

,−1
4

,− 1
16

,− 1
32

,− 5
256

,− 7
512

}
. (81)

Table 6. Absolute errors ε in the numerical resolution of (80) by the Laguerre approximation (Singha
et al. [14]) and by the IIRFM (with Is = [0, 15] and Te = 10−3), and for the same order of approximation
M = 5.

Approximated Solutions Absolute Errors: ε × 106

t
√

t Laguerre IIRFM Laguerre IIRFM

0.2 0.44721360 0.42222142 0.44717924 24,992 34
0.4 0.63245553 0.60061467 0.63247236 31,841 17
0.6 0.77459667 0.75640000 0.77454516 18,197 52
0.8 0.89442719 0.89246899 0.89446429 1958 37
1.0 1.00000000 1.01148725 1.00009060 11,487 91
2.0 1.41421356 1.42927171 1.41397446 15,058 239

Second Example

Consider the following Abel integral equation of the second kind:

u(t) =
√

π
Γ
( 5

4
)

Γ
( 7

4
) t

3
4 + t

1
4 −

∫ t

0

u(t′)√
t − t′

dt′, (82)

which admits the analytical solution u(t) = t1/4. This is a convolutive integral equation of

the form (3), with α = 1/2, λ = −1, f (t) =
√

π
Γ( 5

4 )
Γ( 7

4 )
t

3
4 + t

1
4 and u(0) = 0. Table 7 gathers

the absolute errors ε committed by numerically calculating the solution of (78) with the
polynomial method of Singha et al. [14] and with the IIRFM, for different values of t ∈ [0, 2],
and for the same order of approximation M = 5.

It can also be seen here that the numerical resolution of Equation (82) by the IIRFM
remains overall more accurate than the resolution made with the numerical method of
Singha et al., and for which the absolute error suffers significant variations over the range
of t values studied.

The values of the Laguerre approximation uM
S (t) = ∑M

i=0 ℓiLi(t) have been calculated
here using the {ℓi} coefficient values of Singha et al. [14]:

{ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5} = {0.906402,−0.226601,−0.084975,−0.049569,−0.0340787,−0.025559} (83)

Table 7. Absolute errors ε in the numerical resolution of (82) by the Laguerre approximation (Singha
et al. [14]) and by the IIRFM (with Is = [0, 15] and Te = 10−3), and for the same order of approximation
M = 5.

Approximated Solutions Absolute Errors: ε × 106

t t1/4 Laguerre IIRFM Laguerre IIRFM

0.2 0.66874030 0.63419588 0.66876039 34,544 20
0.4 0.79527073 0.75840545 0.79527721 38,653 6
0.6 0.88011174 0.86140153 0.88004956 18,710 62
0.8 0.94574161 0.94609498 0.94584299 353 101
1.0 1.00000000 1.01516222 1.00013177 15,162 132
2.0 1.18920712 1.20439817 1.18901343 15,191 194
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3.3. Logarithmic Kernel

We now consider the case of a logarithmic kernel K(t, t′) = ln(|t − t′|), for which
K(s) = −[γ + ln(s)]/s. The Laplace transfer function HL(s, λ) associated with Equa-
tion (2) becomes

HL(s, λ) =
1

1 + λ[γ + ln(s)]/s
, (84)

where γ ≈ 0.577216 is the Euler constant. The transfer function HL(s, λ) in this case admits
a pole sλ, which is the root of the non linear equation e−γ = ses/λ, given by the Lambert W
function: sλ = λW(e−γ/λ). The same process is used here as in Section 3.2.2, for which
it is recalled that the first step consists of calculating a rational Chebyshev interpolation
(noted RFM

c ) of the function (s − sλ)× [H(s, λ)− 1].
In the following paragraphs, two examples of IIRFM solving Equation (2) with loga-

rithmic kernel are presented when λ = 1. Refer to Sections 3.2.1 and 3.2.2 for details of the
different steps involved in implementing the IIRFM in the present case.

3.3.1. First Example: f (t) = t + 1
4 t2[3 − 2 ln(t)]

Equation (2) admits in the present case the following analytical solution u1, f (t) = t,
with zero initial condition.

Figure 12 compares the numerical results obtained with the IIRFM (for an order of
approximation M = 5) with the results obtained with the analytical solution. The relative
error shown in Figure 12b here remains quite small, especially for increasing values of
t, attesting to the stability of the IIRFM in this case, despite the presence of a pole in the
transfer function HL(s, λ).

(a)

0 2 4 6 8 10
0

2

4
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8
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t

u 1
,f
(t
)

exact: u1, f (t) = t
IIRFM solution

(b)

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

t

ε r
(t
)

(%
)

Figure 12. IIRFM resolution of Equation (2) considering a logarithmic kernel, with λ = 1, f (t) =

t + 1
4 t2[3 − 2 ln(t)], Te = 10−2, M = 5, and an interpolation interval Is = [sλ, 5sλ]. (a) Changes in the

analytical and numerical solutions as a function of t. (b) Relative error εr = 100 × (uIIR,5
1, f /u1, f − 1) in %.

3.3.2. Second Example: f (t) = 1 − e−t/τ + λ[t + (τ − t) ln(t)]+

λτe−t/τ
(

γ − ln(τ) + iπ +
∫ ∞
−t/τ

e−x

x dx
)

Equation (2) admits in the present case the following analytical solution u1, f (t) =

1 − e−t/τ . Figure 12 compares the numerical results obtained with the IIRFM (for an order
of approximation M = 5) with the results obtained with the analytical solution. Despite
the relative complexity of the f (t) source function considered in this example, the IIRFM
provides stable and accurate numerical results, as illustrated by the variations in relative
error shown in Figure 13b.
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(a)
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exact: u1, f (t) = 1 − e−t/τ

IIRFM solution

(b)
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Figure 13. IIRFM resolution of Equation (2), considering a logarithmic kernel, with λ = 1, f (t) =
1 − e−t/τ + λ[t + (τ − t) ln(t)] + λτe−t/τ

(
γ − ln(τ) + iπ +

∫ ∞
−t/τ

e−x

x dx
)

, Te = 2.5 × 10−2, M = 5,

τ = 1/2, and an interpolation interval Is = [sλ, 5sλ]. (a) Changes in the analytical and numerical
solutions as a function of t. (b) Relative error εr = 100 × (uIIR,5

1, f /u1, f − 1) in %.

4. Basic Applications in Thermics

To conclude this study, the IIRFM is applied to the numerical solution of two basic
thermal problems: the study of the temperature time evolution of a source point placed in
a homogeneous infinite solid medium (see Section 4.1), and the study of the time evolution
of the surface temperature of a semi-infinite solid when radiative heat transfers can be
neglected (see Section 4.2).

4.1. Heat Point Source

Consider a punctual heat source placed at a point M′ of Cartesian coordinates (x′, y′, z′),
within a stationary, homogeneous, and opaque solid medium (m) of constant physical
properties. At each time t, the temperature T(x, y, z, t) of the medium at a point M with
coordinates (x, y, z) is written as T(M, t) = T0 + v(M, t), with v(M, 0) = 0 K. Noting
Q̇(M′, t′) the thermal power emitted by the source point placed at M′, and the temperature
variation v(M, t) is given by the following integral [25]:

v(M, t) =
1

8ρc(πκ)3/2

∫ t

0
Q̇(M′, t′)

e
− r2

4κ(t−t′)

(t − t′)3/2 dt′, (85)

where r2 = (x − x′)2 + (y − y′)2 + (z − z′)2; κ = k/ρc > 0 is the thermal diffusivity of
(m); k, ρ, and c are the thermal conductivity, density, and specific heat of (m), respectively.
It is also assumed that thermal power is generated by the Joule effect and is written
as Q̇(M′, t′) = R(M′, t′)i2(t′), where R(M′, t′) is the electrical resistance of the source
point and i(t) is the electrical intensity of the heating current. In the present example,
the resistance of the source point is assumed to vary linearly with temperature, as is usually
the case for examples with metallic materials:

R(M′, t′) = R0
[
1 + αTv(M′, t′)

]
, (86)

where αT ⩾ 0 is the temperature coefficient of the source point. From Equation (85),
the temperature v(M, t) is given in this case by the following relation:

v(M, t) =
R0

8ρc(πκ)3/2

∫ t

0
i2(t′)

e
− r2

4κ(t−t′)

(t − t′)3/2 dt′ +
αT R0

8ρc(πκ)3/2

∫ t

0
i2(t′)v(M′, t′)

e
− r2

4κ(t−t′)

(t − t′)3/2 dt′. (87)

Assuming that the point source is spherical, with a radius being a very small compared
to the dimensions of the medium (m), located at the origin of the coordinates, the uniform
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temperature v(t) of the point source verifies the following integral equation deduced
from (87) :

v(t) =
R0

8ρc(πκ)3/2

∫ t

0
i2(t′)

e
− τa

(t−t′)

(t − t′)3/2 dt′ +
αT R0

8ρc(πκ)3/2

∫ t

0
i2(t′)v(t′)

e
− τa

(t−t′)

(t − t′)3/2 dt′, (88)

where τa = a2/4κ. Assuming that the heating current of the point source is of constant
intensity i(t) = I0, the temperature v(t) is now given by the following linear Volterra
integral equation of the second kind:

v(t) =
R0 I2

0

8ρc(πκ)3/2

∫ t

0

e
− τa

(t−t′)

(t − t′)3/2 dt′ +
αT R0 I2

0

8ρc(πκ)3/2

∫ t

0
v(t′)

e
− τa

(t−t′)

(t − t′)3/2 dt′, (89)

which is of the form (2), with:

λ =
αT R0 I2

0

8ρc(πκ)3/2 > 0; f (t) =
λ

αT

∫ t

0

e
− τa

(t−t′)

(t − t′)3/2 dt′; K(t, t′) =
e
− τa

(t−t′)

(t − t′)3/2 . (90)

To the best of our knowledge, integral Equation (89) has no analytical solution, so
we propose to solve it numerically using the IIRFM, following the various steps shown in
Figure 2.

Using the result L[e−τa/t/t3/2] =
√

π/τae−2
√

sτa , the Laplace transfer function HL(s, λ)
of the temperature v(t) is written as follows, according to (17):

HL(s, λ) =
1

1 − λ
√

π/τae−2
√

sτa
. (91)

Note that the denominator of the transfer function (91) can have a pole sλ, given by
the following relationship:

sλ =
ln
(
λ
√

π/τa
)2

4τa
when

1
λ

√
τa

π
< 1. (92)

The transfer function (91) is then decomposed into the form (18), using a Chebyshev
rational interpolation. Applying the bilinear transformation finally leads to the result (24),
which is written here:

vIIR,M
λ, f (pTe) = f (pTe) +

M

∑
i=1

AM,i

p−1

∑
j=0

Bp−(j+1)
M,i [ f (jTe) + f ((j + 1)Te)], (93)

with:

f (jTe) =
λ

αT

∫ jTe

0

e
− τa

(jTe−t′)

(jTe − t′)3/2 dt′ =
R0 I2

0
4πka

erfc
(√

τa

jTe

)
, (94)

where the coefficients AM,i and BM,i have the usual expressions introduced in the previous
paragraphs. Note that in the limit where αT → 0 (case of constant electrical resistance),
the temperature v(t) is then identified with the function f (t).

Figure 14 shows the time variations in temperature v(t) of a heat point source
with radius a = 0.5 mm, immersed in ethylene glycol at rest, at room temperature
(ρ = 1113.5 kg/m3, k = 0.254 W/m/K, c = 2380 J/K/kg). The electrical heating cur-
rent considered had a constant intensity I0 = 250 mA and the temperature coefficient of
the point source was αT = 0.0039 K−1, for an electrical resistance R0 = 1 Ω. The Cheby-
shev interpolation HM

L (s, λ) was calculated with M = 4, over the interpolation interval
Is = [0, 5]Hz−1. The maximal relative error εmax

r committed on the approximation of
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HL(s, λ) was in this case εmax
r = 0.058 % for s ∈ [10−2, 102]Hz−1. The sampling period was

Te = 0.01 s.

0 1 2 3 4
0

5

10

15

20

25

t (s)

v(
t)

(K
)

αT ̸= 0 αT = 0

Figure 14. Time changes in the temperature v(t) of a Joule-heated source point at constant intensity,
calculated using the IIRFM (relations (93) and (94)).

From the results shown in Figure 14, it can be seen that the temperature coefficient
αT has a non-negligible influence on the time evolution of the source point temperature.
When the influence of αT is taken into account, the self-heating of the source point leads to
an increase in its electrical resistance (because αT is positive), and so at constant heating
intensity, this leads to an increase in the Joule heating power and consequently in its
temperature v(t), compared to the situation where αT = 0. These observations could be
applied to various methods of the thermal characterization of materials.

4.2. Surface Temperature of Semi-Infinite Solids

The IIRFM is now applied to the solution of the linear integral equation verified by
the interface temperature of a semi-infinite isotropic solid (defined by x > 0), of uniform
initial temperature Ti, subjected to mixed (or Robin, see Figure 15a) boundary conditions at
x = 0.

(a)

x
0

n0
e

T∞

Ti

t↑
q′′

e =h(T0−T∞)n0
e

u∞

(b)

t (s)Ti
0

T(0, t)

T∞

200

Figure 15. Temperature of a semi-infinite solid (x > 0) with constant Robin boundary conditions
at x = 0, due to a fluid flowing at constant velocity u∞ and temperature T∞ far from the solid,
with constant Newton coefficient h. (a) Temperature profiles at different times, for T∞ > Ti. (b) Time
evolution of the T(0, t) surface temperature when T∞ = cste. The symbols correspond to the analytical
solution (100) and the solid line to the numerical solution (102) obtained by the IIRFM method.

The temperature field θ(x, t) = T(x, t)− Ti in this case satisfies the usual heat equation
without a source term, as follows:

∂θ

∂t
= κ

∂2θ

∂x2 with θ(x, 0) = 0 and θ(+∞, t) < ∞, (95)
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where κ = k/ρc > 0 is the thermal diffusivity of the solid, assumed constant. Applying
the Laplace transformation to Equation (95) leads to the ordinary differential equation
dx2 θ̄(x, s) − s

κ θ̄(x, s) = 0, of which the solution is written in the general form θ̄(x, s) =

Ae−
√

s/κx + Be
√

s/κx, with θ̄(x, s) = L[θ(x, t)]. The finite boundary condition θ(+∞, t) < ∞
implies B = 0 here.

Let us note q′′
e (0, t) = q′′e (t)n0

e , the heat flux exchanged by the solid with the external
fluid at x = 0. The continuity of heat fluxes at the interface x = 0 is written as q′′

e (0, t) =
−k∂n0

e
Tn0

e = −k∂n0
e
θn0

e . Applying the Laplace transformation to the continuity relation
leads to the following expression for θ̄(x, s) :

θ̄(x, s) = −
√

κ

k
q̄′′e (s)

e−
√

s/κx
√

s
, (96)

where q̄′′e (s) = L[q′′e (t)]. By recalling that L−1
[
e−β

√
s/
√

s
]
= e−β2/4t/

√
πt and applying

the convolution theorem, it is possible to invert θ̄(x, s) and write θ(x, t) in the form of the
following convolution integral:

θ(x, t) = −1
k

√
κ

π

∫ t

0

q′′e (τ)
(t − τ)1/2 e−

x2
4κ(t−τ) dτ. (97)

Finally, using Newton’s law q′′
e (0, t) = h[θ(0, t)− θ∞(t)]n0

e leads to the following
expression of θ(x, t):

θ(x, t) =
h
k

√
κ

π

∫ t

0

θ∞(τ)− θ(0, τ)

(t − τ)1/2 e−
x2

4κ(t−τ) dτ, (98)

where the Newton coefficient h is assumed to be constant. According to result (98),
the surface temperature θ(0, t) finally verifies the following Abel integral equation of
the second kind:

θ(0, t) = f (t) + λ
∫ t

0

θ(0, τ)

(t − τ)1/2 dτ, (99)

with λ = − h
k

√
κ
π < 0 and f (t) = h

k

√
κ
π

∫ t
0

θ∞(τ)
(t−τ)1/2 dτ.

In the following paragraphs, Equation (99) is solved by the IIRFM for two different
expressions of the temperature T∞(t) of the fluid far from the solid wall.

4.2.1. First Application: T∞(t) = cste

First, consider the usual case where the temperature T∞ of the fluid far from the solid
wall x = 0 is constant. In this case, it is found that f (t) = 2h

k θ∞
√

κ/π
√

t = f∞tn with n =
1/2 and θ∞ = T∞ − Ti. Equation (99) then admits an analytical solution θa(t) = T(0, t)− Ti
involving the complementary error function:

θa(t)
θ∞

= 1 − exp
(

h2κt
k2

)
erfc

(
h
√

κt
k

)
. (100)

Equation (99) is solved in the following by the IIRFM, using the general result
(24). First of all, it is possible here to determine an explicit expression ΞN,i for the sum

∑k−1
j=0 Bk−(j+1)

N,i [ f (jTe) + f ((j + 1)Te)], in the general case where f (t) = f∞tn:

ΞN,i(k, Te, BN,i, f ) = f∞Tn
e

{
Bk−1

N,i (1 + BN,i)Li−n

(
B−1

N,i

)
+ kn − (1 + B−1

N,i)Φ
(

B−1
N,i,−n, k

)}
, (101)
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where the polylogarithm Li and transcendent Lerch Φ functions were defined in Section 3.1.1.
Using result (101) with n = 1/2, the following explicit expression is obtained for the IIRFM
solution to the problem (99), at time tk = kTe (with k ⩾ 1):

θIIR,N√
t f∞

(tk)

f∞
√

Te
=

√
k+

N

∑
i=1

AN,i

[
Bk−1

N,i (1 + BN,i)Li− 1
2

(
B−1

N,i

)
+
√

k − (1 + B−1
N,i)Φ

(
B−1

N,i,−
1
2

, k
)]

.

(102)

The thermal problem (99), of calculating the surface temperature of a semi-infinite solid
surrounded by a fluid, is solved using result (102) for the following physical properties:
k = 40 W · K−1 · m−1; ρ = 7850 kg · m−3; c = 490 J · K−1 · kg−1; κ = 1.04 · 10−5 m2 · s−1;
for Newton coefficient h = 100 W · K−1 · m−2; t ∈ [0, 200] s; and Te = 1 s. Numerical
(continuous line) and analytical results ( + symbols) are shown in Figure 15b. From this
figure it can be seen that there is a good correspondence between the IIRFM numerical
solution and the analytical solution. This good agreement is confirmed by the low values
of the maximal error εIIR

∞,Nt
= 1.41 · 10−4 K and root mean square error εIIR

2,Nt
= 1.58 · 10−5 K,

with

εIIR
2,Nt

=

√√√√ 1
Nt + 1

Nt

∑
k=0

(
θa(tk)− θIIR,N√

t f∞
(tk)

)2
and εIIR

∞,Nt
= max

S

∣∣∣θa − θIIR,N√
t f∞

∣∣∣, (103)

where S is the set of points
{(

tk, θIIR,N√
t f∞

(tk)
)Nt

n=0

}
obtained using the IIRFM method.

4.2.2. Second Application: T∞(t) = T̂∞ sin(ωt)

Thermal problem (99) is still considered, but now for a sinusoidal temperature T∞(t)
with pulsation ω: T∞(t) = T̂∞ sin(ωt), all other things being equal to what was considered
in the previous example. The f (t) function in Equation (99) becomes here

f (t) = −λθ̂∞

∫ t

0

sin(ωτ)

(t − τ)1/2 dτ,

= −λθ̂∞

√
π

ω

[
FC

(√
2ωt
π

)
sin(ωt)− FS

(√
2ωt
π

)
cos(ωt)

]
,

(104)

where λ = − h
k

√
κ/π; θ̂∞ = T̂∞ − Ti; FC and FS are the Fresnel integrals. An analytical

solution θa(t) also exists here, and can be obtained by inverting the Laplace transform
θ̄(0, s) = θ̂∞ω

s2+ω2 /
(

1 + k
√

s
h
√

κ

)
:

θa(t)
θ̂∞

=

h4κ2 sin(ωt) + h2k2κω

[
cos(ωt)− e

h2κt
k2 erfc

(
h
√

κt
k

)]
h4κ2 + k4ω2

+
hk
√

2κω

h4κ2 + k4ω2 FC

(√
2ωt
π

)[
k2ω sin(ωt)− h2κ cos(ωt)

]
− hk

√
2κω

h4κ2 + k4ω2 FS

(√
2ωt
π

)[
h2κ sin(ωt) + k2ω cos(ωt)

]
.

(105)

Figure 16 compares the numerical results (solid line) obtained by the IIRFM to the
results provided (black dashes) by the analytical expression (105), when ω = 2π/Th
with Th = 12 h and t ∈ [0, t f = 6Th]. The correspondence between the results pro-
vided by the IIRFM and the analytical solution is again very good, with maximum error
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εIIR
∞,Nt

= 3.72 · 10−3 K and root mean square error εIIR
2,Nt

= 1.25 · 10−3 K, calculated for a
sampling period Te = 216 s.

0 2 4 6

−θ̂∞

0

θ̂∞

t/Th

θ(
0,

t)

θ∞(t) IIRFM (105)

Figure 16. Time changes in the surface temperature θ(0, t) of a semi-infinite solid, for sinusoidal
variations θ∞(t) = θ̂∞ sin(ωt) of the fluid temperature far from the solid and for a constant flow
velocity u∞.

5. Conclusions

In this work, the first-order infinite impulse response filters method (IIRFM), usually
reserved for the study of linear ordinary differential equations with constant coefficients,
has been extended to the numerical solution of various linear Volterra convolution integral
equations (VCIE) of the second kind. A wide variety of examples have been studied,
illustrating the great flexibility of the IIRFM. Three types of convolutive kernels were
discussed in detail in this work: unit, Abel, and logarithmic kernels.

In the case of the unit kernel, the IIRFM was compared to the homotopic perturbation
method with Laplace transform (HPM-L). The HPM-L method has the great advantage of
leading, for certain special cases, to an analytic solution of the linear convolutive Volterra
integral equation of the second kind. However, due to its iterative nature, the numerical
version of the HPM-L method may exhibit convergence speeds that are far too low to
allow, in the absence of an analytical solution, an efficient numerical resolution of certain
VCIEs. In contrast, we have observed that the IIRFM leads, in the case of the unit kernel,
to numerical solutions that do not exhibit convergence problems. In many cases, it has
also been possible to provide a simple, highly efficient analytical expression for the IIRFM
numerical solution.

In the case of the Abel kernel, the numerical results provided by the IIRFM approach
have been compared with the results provided by various recent numerical methods
(Daubechies wavelets and approximations based on Laguerre polynomials). For most
of the comparisons examined, the IIRFM proved to be the best-performing and most
consistent overall.

Finally, the IIRFM has been applied to the numerical solution of Volterra integral
equations of the second kind encountered in two linear thermal problems. In addition,
a new approximate expression for the pathological function gλ(t) = 1 + erf(λ

√
πt) has

been proposed, giving accurate results for λ < 0, even using single-precision floating-
point numbers.

In a forthcoming paper, the IIRFM will be extended to the numerical solution of the
non-linear Volterra convolution integral equations of the second kind. It will also be very
interesting to consider the application of the IIRFM to fractional differential or integral
equations [26].
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HPM Homotopy Perturbation Method
HPM-L Homotopy Perturbation Method with Laplace Transform
IIR Infinite Impulse Response
IIRFM Infinite Impulse Response First-Order Filters Method
ODE Ordinary Differential Equation
OIDE Ordinary Integro-Differential Equation
LT Laplace Transformation
LTIS Linear Time Invariant Systems
PDE Partial Differential Equation
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