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Abstract: Unconstrained optimization problems have a long history in computational mathematics
and have been identified as being among the crucial problems in the fields of applied sciences,
engineering, and management sciences. In this paper, a new variant of the conjugate descent method
for solving unconstrained optimization problems is introduced. The proposed algorithm can be
seen as a modification of the popular conjugate descent (CD) algorithm of Fletcher. The algorithm
of the proposed method is well-defined, and the sequence of the directions of search is shown to
be sufficiently descending. The convergence result of the proposed method is discussed under the
common standard conditions. The proposed algorithm together with some existing ones in the
literature is implemented to solve a collection of benchmark test problems. Numerical experiments
conducted show the performance of the proposed method is very encouraging. Furthermore, an
additional efficiency evaluation is carried out on problems arising from signal processing and it
works well.

Keywords: conjugate descent; conjugate gradient method; unconstrained optimization; line search;
signal processing

MSC: 65K05; 90C30; 90C06; 90C56

1. Introduction

Consider the Euclidean n-dimensional real space equipped with the Euclidean norm
∥ · ∥. Many problems encountered in the sciences, engineering, and management sciences
often take the following structure:

min f (x), x ∈ Rn, (1)

where the continuously smooth function is real-valued and assumed to be bounded below.
Problem (1) is termed an unconstrained optimization problem, and it has attracted consider-
able attention from researchers in the last few decades due to its practical applications [1–7].
One of the popular methods often used to handle (1) is the conjugate gradient (CG) method,
and this method uses the following iterative rule:

x(k+1) := x(k) + α(k)d(k), k ≥ 0, (2)
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where x(k) and x(k+1) are the current and next iterates, respectively. The positive scalar α(k),
known as the step length, and the n× 1 nonzero vector d(k), called the search direction, are
very crucial components of Formula (2). α(k) is generally ascertained using a suitable line
search strategy, which could be exact or inexact. Inexact line search procedures, such as the
generalized Wolfe or strong Wolfe line searches, are the most appealing due to their relative
ease of usage compared to the exact line search. Some of the frequently used inexact line
search conditions have been discussed in Refs. [8,9].

The direction of search, dk, for the minimizer takes the following structure:

d(k) = −g(k) + ψ(k)d(k−1), k ≥ 0, (3)

where g(k) ≡ ▽ f (x(k)). The scalar ψ(k), often known as the CG parameter, usually in-
fluences the behaviour of the search direction. If k = 0, then ψ(k) = 0, otherwise, it is
calculated via suitable formulations. Some of these formulations found in the literature are
presented below:

ψ(k)HS =
g(k)Ty(k−1)

d(k−1)Ty(k−1)
, ψ(k)PRP =

g(k)Ty(k−1)

∥g(k−1)∥2
, ψ(k)LS =

g(k)Ty(k−1)

−g(k−1)Td(k−1)
,

ψ(k)FR =
∥g(k)∥2

∥g(k−1)∥2
, ψ(k)CD =

∥g(k)∥2

−d(k−1)T g(k−1)
, ψ(k)DY =

∥g(k)∥2

d(k−1)Ty(k−1)
,

where HS, PRP, LU, FR, CD, and DY denote Hestenes–Stiefel [10], Polak–Ribiere–Polyak
(PRP) [11,12], Liu–Storey (LS) [13], Fletcher–Reeves (FR) [14], conjugate descent (CD) [15],
and Dai–Yuan (DY) [16], respectively. All these parameters have their pros and cons,
as discussed by different authors. Interested readers may refer to reference [17]. It was
noted in the survey by Hager and Zhang [18] that if the objective function of problem (1)
is strongly convex quadratic and the step length is determined using exact line search,
then the above-listed CG parameters are equivalent in theory. The CD method has been
shown to be sufficiently descending if α(k) satisfies the condition of the strong Wolfe line
search strategy, and consequently, global convergence is achieved. However, Hager and
Zhang [18] noted that there is an example where the norm square of the search direction,
d(k), increases rapidly, which results in the CD method failing to converge for the strong
Wolfe line search in general.

This research focuses its attention on the set of CG methods whose parameters contain
∥g(k)∥2 in their respective numerators. This set of CG methods is characterized by simplic-
ity in implementation and low storage requirements. However, many authors have raised
concerns about their numerical performance as they are affected by jamming phenomena.
Hence, some authors proposed different modifications to mitigate the said shortcomings.
For instance, some authors considered taking the hybrid of two different parameters to
come up with another version that could be numerically efficient. Babaie-Kafaki [17] takes
the HS and DY parameters based on the well-known conjugacy condition. The effect of
the hybridization is evident, as the method performs better than its counterparts numer-
ically. In addition, the author establishes the global convergence of the hybrid method
under some assumptions. Another hybrid CG method found in the literature defines its
CG parameter as the convex combination of CD and LS [19]. The author determines the
convex combination parameter in such a way that the conjugacy condition is satisfied.
Numerical comparisons reveal some superior performance of the hybrid method compared
to some existing algorithms. Another form of modification to these methods is incorpo-
rating spectral parameters into the search direction by multiplying the first term of the
search direction, i.e., −g(k), with a positive parameter that is updated in each iteration.
Xue et al. [20] presented a spectral version of the DY CG method which ensured that the
objective function is descending as the iteration progresses. The global convergence of their
method was established under strong Wolfe conditions. Moreover, the numerical efficiency



Mathematics 2024, 12, 2430 3 of 13

of the method was also demonstrated in experiments involving impulse noise removal.
For more details, readers may refer to the following references [21–29].

Based on the discussions thus far, one sees that research continues to explore ways to
improve the theoretical and numerical efficiency of the existing CG methods. Thus, this
article presents a modification of the CD CG method. Using the strategy of mathematical
induction, the direction of search for the proposed CG method is shown to be descent.
Furthermore, the sequence of the search direction is shown to be bounded, independent of
any additional condition. The global convergence of the proposed method is established
under common assumptions, and numerical experiments on a collection of some benchmark
test problems are encouraging. The applicability of the proposed method is demonstrated
in signal processing.

The rest of the article is organized by presenting the proposed method and its algorithm
as well as its convergence results in the next section. The numerical efficiency of the
proposed algorithm is investigated in Section 3, and subsequently, its application in sparse
signal reconstruction is demonstrated in Section 4. Finally, the concluding remarks are
presented in Section 5.

2. The Proposed Conjugate Descent Variant (CDV) Algorithm and Its
Convergence Result

This section begins by stating the following standard assumption.

Assumption 1. Let x(0) ∈ R denote an initial guess. The objective function f at x ∈ Rn is
bounded below on the level set Z = {x ∈ Rn| f (x(0)) ≥ f (x)}. In addition, throughout some
neighborhood of Z , the function f is smooth and its gradient is Lipchitzian.

Remark 1. One can quickly draw the following remarks from the above Assumption 1.

(i) Given any two different iterates x(k) and x(k−1) in Ẑ , i.e., neighborhood of Z , the gradient of
the objective function satisfies the following inequality:

∥g(x(k))− g(x(k−1))∥ ≤ L∥x(k) − x(k−1)∥, L > 0. (4)

(ii) Also, the sequences of the gradient {g(x(k))} as well as {x(k)} are bounded. That is, we can
find a constant r > 0 such that

∥g(x(k))∥ ≤ r, and ∥x(k)∥ ≤ r, ∀ k. (5)

(iii) Since the objective function is a decreasing function and the sequence of iterates {x(k)}
generated by Algorithm 1 is contained in a bounded region, then {x(k)} converges.

All is now set to present the proposed conjugate descent variant (CDV) algorithm.

Remark 2. Since g(k) and d(k−1) are nonzero vectors, then leveraging the fact that there exists an
α which satisfies the conditions (7) and (8) in a finite number of iterations gives the conclusion that
the CDV Algorithm 1 is well defined.

The following lemma shows that the proposed method is sufficiently descending.
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Algorithm 1: A new Conjugate Descent Variant (CDV) algorithm

Input : x(0) ∈ Rn, σ , δ ∈ (0, 1) such that 0 < δ < σ < 1, tol > 0, α(0) = 1, and
set k := 0.

Output : x(∗)

Compute g(0).
Set

d(0) ←− −g(0) (6)

while ∥g(k)∥ > tol do

Choose, α(k) that satisfy the following conditions:

f (x(k) + α(k)d(k)) ≤ f (k) + δα(k)g(k)Td(k), (7)

g(k+1)Td(k) ≥ σg(k)Td(k), (8)

Compute,

d(k) := −g(k) + ψ(k)d(k−1) (9)

where ψ(k) is defined as

ψ(k) :=
δ∥g(k)∥2

max{δd(k−1)T g(k) − g(k−1)Td(k−1), ∥g(k)∥∥d(k−1)∥}
(10)

Update x(k+1) ←− x(k) + α(k)d(k).
Set k←− k + 1.

end

Lemma 1. Let σ, δ ∈ (0, 1). The sequence of search directions {d(k)} generated by Algorithm 1
is sufficiently descending, that is, we can find a positive constant 0 < z = (1− δ) for which the
condition

g(k)Td(k) ≤ −z∥g(k)∥2, ∀ k, (11)

holds.

Proof. We prove (11) by mathematical induction. Indeed, if k = 0, then from step 2 of
Algorithm 1, we have g(0)Td(0) ≤ −∥g(0)∥2 ≤ −z∥g(0)∥2. That is, (11) holds for k = 0. Now,
assume the condition (11) holds for k− 1, then we have

g(k−1)Td(k−1) ≤ −z∥g(k−1)∥2. (12)

Next, we show that conclusion (11) holds for k. From the curvature condition (8)
and the inequality (12), it is easy to establish that

δd(k−1)T g(k) − d(k−1)T g(k−1) ≥ (σδ− 1)d(k−1)T g(k−1) > 0. (13)

Next, we have two cases.
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Case 1: Let max{δd(k−1)T g(k) − g(k−1)Td(k−1), ∥gk∥∥dk−1∥} = δd(k−1)T g(k)−
g(k−1)Td(k−1), then

g(k)Td(k) = −g(k)T g(k) + ψ(k)g(k)Td(k−1)

≤ −∥g(k)∥2 +
δ∥g(k)∥2

δd(k−1)T g(k) − g(k−1)Td(k−1)
g(k)Td(k−1)

= ∥g(k)∥2

[
−1 +

δg(k)Td(k−1)

δd(k−1)T g(k) − g(k−1)Td(k−1)

]

= ∥g(k)∥2

[
g(k−1)Td(k−1)

δd(k−1)T g(k) − g(k−1)Td(k−1)

]

≤ ∥g(k)∥2

[
g(k−1)Td(k−1)

(σδ− 1)g(k−1)Td(k−1)

]

= − 1
(1− σδ)

∥g(k)∥2

< −(1− δ)∥g(k)∥2.

The last inequality follows from the fact that if a, b ∈ (0, 1), then 1
a > b.

Case 2: Let max{δd(k−1)Tg(k) − g(k−1)Td(k−1), ∥g(k)∥∥d(k−1)∥} = ∥g(k)∥∥d(k−1)∥, then

g(k)Td(k) = −g(k)T g(k) + ψ(k)g(k)Td(k−1)

= −∥g(k)∥2 +
δ∥g(k)∥2

∥g(k)∥∥d(k−1)∥
g(k)Td(k−1)

≤ −∥g(k)∥2 +
δ∥g(k)∥2

∥g(k)∥∥d(k−1)∥
|g(k)Td(k−1)|

≤ −∥g(k)∥2 +
δ∥g(k)∥2

∥g(k)∥∥d(k−1)∥
∥g(k)∥∥d(k−1)∥

= −(1− δ)∥g(k)∥2.

Hence, the proof is complete.

Lemma 2. Suppose the gradient g is Lipschitz continuous. The sequence of search directions {d(k)}
generated by Algorithm 1 is bounded by a positive number.

Proof. From the definition of the CG parameter {ψ(k)}, it holds that

|ψ(k)| ≤ δ∥g(k)∥2

∥g(k)∥∥d(k−1)∥
,

and so,

∥d(k)∥ ≤ ∥g(k)∥+ |ψ(k)|∥d(k−1)∥

≤ ∥g(k)∥+ δ∥g(k)∥2

∥g(k)∥∥d(k−1)∥
∥d(k−1)T∥

= (1 + δ)∥g(k)∥
= (1 + δ)r := r̂.

Hence, the proof is complete.
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Lemma 3. Suppose Lemmas 1 and 2 hold and α(k) satisfies the conditions (7) and (8). Then

∞

∑
k=0

(g(k)Td(k))2

∥d(k)∥2
< +∞. (14)

Proof. The proof follows directly from the work of Zoutendijk [30].

Now, we prove the convergence result of the proposed method.

Theorem 1. Suppose Assumption 1 holds. Let g denote the gradient of the objective function f and
the sequence of iterates {x(k)} be produced by Algorithm 1. Then,

lim
k→∞

inf ∥g(k)∥ = 0. (15)

Proof. If (15) does not hold, then there exists some constant c > 0 for which

∥g(k)∥ ≥ c, k ≥ 0. (16)

Furthermore, squaring both sides of (11) gives

(g(k)Td(k))2 ≥ z2∥g(k)∥4. (17)

If we divide both sides of (17) by ∥d(k)∥2 and take the summation, we have

∞

∑
k=0

(g(k)Td(k))2

∥d(k)∥2
≥ z2

∞

∑
k=0

∥g(k)∥4

∥d(k)∥2
≥ z2

∞

∑
k=0

r4

r̂2 = +∞.

This is a contradiction with (14). Hence, (15) holds.

3. Comparative Experimentation

In this part, we conduct some comparative experimentation between the proposed
CDY algorithm and other sets of algorithms, namely, TTCDDY [31], LSCDCC [32],
ARMIL+ [33], and CD [15], for solving large-scale unconstrained optimization problems
of the form of (1). All the implementation and experiments are carried out on a com-
puter with a 1.60 GHz Intel Core i5-8265U and 20 GB of RAM on the Ubuntu 22.04.4 LTS
operating system.

All the code was written in MATLAB, and then, executed on a personal computer,
which has the above-stated specifications. The choices for the parameters in the implemen-
tation of the CDV are given, while for the rest of the methods, the selection is based on the
reported values of those parameters. In brief, we state those initialized values as follows:

1. CDV algorithm:
The parameters used are σ = 0.01, δ = 0.0001, and tol = 0.000001.

2. TTCDDY algorithm:
The parameters are as reported in [31].

3. ARMIL+ algorithm:
We adopted the initialization of the same values for the parameters as reported in [33].

4. LSCDCC algorithm:
The initialization of the parameters is as reported in [32].

5. CD algorithm[15]:
The parameter ψ(k)CD used is defined in the introduction section and a Wolfe line
search strategy, with σ = 0.01, δ = 0.0001, and tol = 10−6 is adopted

The benchmark problems used in the experimentation are collected from the CUTEr
optimization library [34]. The test problems considered have different starting points and
dimensions ranging from n = 100 to n = 500,000. Also, the names of these test problems
are presented in Table 1.
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Moreover, in implementing these algorithms for all the attempted benchmark test
problems, a stopping criterion corresponding to obtaining a solution with ∥g(k)∥ < tol ∗
(1 + | f (k)|) is used, or when the maximum number of iterations, 2000, is reached.

The performance of any new iterative algorithm is usually compared with some
selected existing algorithms found in the literature based on some standard metrics. These
metrics include ITR (the number of iterations performed by the algorithm), FVAL (the
number of times a function is evaluated before the stopping criteria are attained), and
GVAL (the number of gradient evaluations throughout the iteration process). Meanwhile,
the time taken by an algorithm to complete a given task is also recorded, and it is denoted
by CPU. This information for each algorithm is reported in Table 2.

Looking at the data presented in Table 2, it can be seen that the proposed CDV algo-
rithm recorded no failures, except in 2 cases out of the 58 test problems solved. Interestingly,
the proposed CDV algorithm can serve as an alternative to some problems. This is evident
from the numerical performance of the CDV for problems 15, 27, and 40. This is because
only the CDV algorithm was able to solve these problems within the specified stopping cri-
teria. Considering the above-mentioned metrics of comparison, the CDV method performs
better than its competitors in most cases, based on the reported information in the table.

The results obtained from the experimentation are graphically illustrated in Figure 1
based on the performance profile of Dolan and Moré [35]. It is obvious that the proposed
CDV massively outperforms its competitors with respect to all the metrics considered.
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Figure 1. The figures show the performance of the proposed CDV in comparison with the TTCDDY,
LSCDCC, ARMIL+ and CD algorithms using four comparative metrics: #ITER, #FVAL, #GVal,
and CPU. These performances are indicated on (a), (b), (c), and (d) respectively. The y-axis denotes
the success rate, which is represented by cumulative probability ρ(τ), while the x-axis denoted by τ

representing a metric data for an algorithm in log2 scale.
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Table 1. List of considered benchmark test problems together with their respective dimensions
and starting points written in MATLAB format, where ones(Dim,1):=[1, 1, · · · , Dim], while ze-
ros(Dim,1):=[0, 0, · · · , Dim].

No. Function Name Dimension Initial Points

Dim x(0)

1 COSINE 6000 1.0*ones(Dim,1)
2 COSINE 100,000 1.0*ones(Dim,1)
3 COSINE 500,000 1.0*ones(Dim,1)
4 DIXMAANA 6000 2.0*ones(Dim,1)
5 DIXMAANA 90,000 2.0*ones(Dim,1)
6 DIXMAANB 24,000 2.0*ones(Dim,1)
7 DIXMAANB 48,000 2.0*ones(Dim,1)
8 DIXMAANC 2700 2.0*ones(Dim,1)
9 DIXMAANC 27,000 2.0*ones(Dim,1)
10 DIXMAAND 12,000 2.0*ones(Dim,1)
11 DIXMAAND 90,000 2.0*ones(Dim,1)
12 DIXMAANE 2400 2.0*ones(Dim,1)
13 DQDRTIC 9000 3.0*ones(Dim,1)
14 DQDRTIC 90,000 3.0*ones(Dim,1)
15 DQRTIC 5000 2.0*ones(Dim,1)
16 EDENSCH 7000 zeros(Dim,1)
17 EDENSCH 40,000 zeros(Dim,1)
18 EDENSCH 100,000 zeros(Dim,1)
19 EG2 100 ones(Dim,1)
20 FLETCHCR 1000 zeros(Dim,1)
21 FLETCHCR 50,000 zeros(Dim,1)
22 FLETCHCR 200,000 zeros(Dim,1)
23 GENROSE 10,000 1/(Dim+1)*ones(Dim,1)
24 HIMMELBG 70,000 1.5*ones(Dim,1)
25 PENALTY1 4000 −1.0*ones(Dim,1)
26 PENALTY1 10,000 1.0*ones(Dim,1)
27 QUARTC 4000 2.0*ones(Dim,1)
28 BDEXP 5000 ones(Dim,1)
29 BDEXP 50,000 ones(Dim,1)
30 BDEXP 500,000 ones(Dim,1)
31 EXDENSCHNB 6000 ones(Dim,1)
32 EXDENSCHNB 24,000 ones(Dim,1)
33 GENQUARTIC 9000 ones(Dim,1)
34 GENQUARTIC 90,000 ones(Dim,1)
35 SINE 100,000 ones(Dim,1)
36 SINE 250,000 ones(Dim,1)
37 SINE 500,000 ones(Dim,1)
38 FLETCBV3 100 (1:Dim)/(Dim+1)*ones(Dim,1)
39 NONSCOMP 5000 3.0*ones(Dim,1)
40 NONSCOMP 80,000 3.0*ones(Dim,1)
41 RAYDAN1 500 ones(Dim,1)
42 RAYDAN1 5000 ones(Dim,1)
43 RAYDAN2 2000 ones(Dim,1)
44 RAYDAN2 20,000 ones(Dim,1)
45 RAYDAN2 500,000 ones(Dim,1)
46 DIAGONAL1 800 (1/Dim)*ones(Dim,1)
47 DIAGONAL1 2000 (1/Dim)*ones(Dim,1)
48 DIAGONAL2 8000 (1/(1:Dim))*ones(Dim,1)
49 DIAGONAL3 500 ones(Dim,1)
50 DIAGONAL3 2000 ones(Dim,1)
51 BV 2000 (1:Dim)/(Dim + 1)*((1:Dim)/(Dim + 1) − 1)
52 IE 500 (1:Dim)/(Dim + 1)*((1:Dim)/(Dim + 1) − 1)
53 LIN 100 ones(Dim,1)
54 LIN 1300 ones(Dim,1)
55 OSB2 11 [1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5]
56 PEN2 160 (1/2)*(ones(Dim,1))
57 TRID 500 (−1)*(ones(Dim,1))
58 TRID 8000 (−1)*(ones(Dim,1))
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Table 2. The performance of the proposed CDV algorithm in comparison with the TTCDDY, LSCDCC,
ARMIL+, and CD algorithms on large-scale problems 1 to 58 evaluated based on the following metrics:
#ITER, #FVAL, CPU, and NRM (norm value at an approx. solution). The notation ‘NaN’ indicates
when an algorithm fails to solve a problem within the specified stopping criteria.

No. TTCDDY LSCDCC ARMIL+ CDV CD

ITR/FVAL/GVAL/CPU ITR/FVAL/GVAL/CPU ITR/FVAL/GVAL/CPU ITR/FVAL/GVAL/CPU ITR/FVAL/GVAL/CPU

1 7/73/73/0.459 209/230/230/0.115 222/248/248/0.098 8/83/83/0.053 NaN/NaN/NaN/NaN
2 11/115/115/0.788 834/851/851/5.619 842/861/861/5.284 10/97/97/0.659 NaN/NaN/NaN/NaN
3 7/69/69/2.370 1852/1864/1864/67.264 1852/1864/1864/57.620 7/67/67/2.139 NaN/NaN/NaN/NaN
4 16/177/177/0.475 45/94/94/0.226 77/128/128/0.253 13/143/143/0.274 NaN/NaN/NaN/NaN
5 51/562/562/13.565 140/189/189/4.405 197/253/253/5.941 13/144/144/3.369 NaN/NaN/NaN/NaN
6 10/111/111/0.875 83/135/135/0.956 114/163/163/1.171 10/111/111/0.767 NaN/NaN/NaN/NaN
7 10/111/111/1.498 107/158/158/2.095 168/221/221/2.808 12/128/128/1.641 NaN/NaN/NaN/NaN
8 10/111/111/0.185 36/87/87/0.087 63/115/115/0.112 11/119/119/0.115 NaN/NaN/NaN/NaN
9 11/122/122/0.926 79/129/129/0.971 330/389/389/3.077 12/133/133/1.057 NaN/NaN/NaN/NaN

10 11/122/122/0.542 88/141/141/0.521 109/160/160/0.607 11/122/122/0.467 NaN/NaN/NaN/NaN
11 12/133/133/3.144 133/183/183/4.310 301/360/360/8.511 12/133/133/3.169 NaN/NaN/NaN/NaN
12 240/2618/2618/2.349 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
13 70/771/771/0.123 NaN/NaN/NaN/NaN 1373/1430/1430/0.227 1090/11951/11951/2.018 NaN/NaN/NaN/NaN
14 40/441/441/0.602 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 1282/14045/14045/18.206 NaN/NaN/NaN/NaN
15 26/287/287/0.446 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 26/287/287/0.420 NaN/NaN/NaN/NaN
16 10/111/111/0.226 42/67/67/0.136 80/105/105/0.283 18/199/199/0.473 821/6151/6151/12.415
17 7/77/77/0.781 83/102/102/1.095 139/159/159/1.655 10/111/111/1.059 351/2737/2737/26.945
18 6/62/62/1.511 123/143/143/3.844 765/785/785/19.804 6/61/61/1.543 521/3944/3944/96.132
19 427/4584/4584/0.167 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
20 15/146/146/0.019 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 87/867/867/0.029 616/5216/5216/0.164
21 9/95/95/0.085 44/68/68/0.074 NaN/NaN/NaN/NaN 44/483/483/0.544 639/4894/4894/5.359
22 9/99/99/0.397 32/54/54/0.302 361/382/382/1.784 56/612/612/2.298 692/5190/5190/17.995
23 7/78/78/0.062 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 7/78/78/0.016 NaN/NaN/NaN/NaN
24 10/111/111/0.537 373/374/374/1.389 373/374/374/1.302 10/111/111/0.358 2/13/13/0.046
25 12/133/133/1.524 34/95/95/1.107 34/92/92/1.067 12/133/133/1.496 150/1232/1232/13.970
26 14/155/155/10.717 337/399/399/27.857 328/383/383/26.776 14/155/155/10.735 178/1423/1423/97.388
27 25/276/276/0.312 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 25/276/276/0.290 NaN/NaN/NaN/NaN
28 11/122/122/0.177 27/28/28/0.035 27/28/28/0.032 11/122/122/0.101 2/18/18/0.009
29 12/133/133/0.986 78/79/79/0.620 78/79/79/0.633 12/133/133/0.983 2/22/22/0.109
30 13/144/144/10.223 240/241/241/19.090 240/241/241/17.660 13/144/144/10.324 2/15/15/0.906
31 11/121/121/0.035 61/107/107/0.013 97/148/148/0.016 12/129/129/0.013 NaN/NaN/NaN/NaN
32 76/825/825/0.313 105/151/151/0.076 260/312/312/0.134 10/110/110/0.031 NaN/NaN/NaN/NaN
33 11/122/122/0.062 75/127/127/0.034 92/148/148/0.040 16/177/177/0.041 NaN/NaN/NaN/NaN
34 15/166/166/0.278 123/173/173/0.362 281/336/336/0.612 16/177/177/0.266 NaN/NaN/NaN/NaN
35 8/70/70/0.665 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 14/123/123/1.193 NaN/NaN/NaN/NaN
36 39/357/357/8.745 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 30/300/300/7.311 NaN/NaN/NaN/NaN
37 32/110/110/4.180 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 57/135/135/6.346 NaN/NaN/NaN/NaN
38 4/33/33/0.028 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 7/76/76/0.010 284/1870/1870/0.077
39 163/1744/1744/0.524 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 105/1117/1117/0.126 NaN/NaN/NaN/NaN
40 92/950/950/1.201 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 91/953/953/1.294 NaN/NaN/NaN/NaN
41 NaN/NaN/NaN/NaN 309/336/336/0.011 964/987/987/0.031 473/5090/5090/0.144 NaN/NaN/NaN/NaN
42 NaN/NaN/NaN/NaN 187/209/209/0.078 582/599/599/0.115 295/3134/3134/0.462 NaN/NaN/NaN/NaN
43 6/67/67/0.025 28/52/52/0.006 28/52/52/0.005 6/67/67/0.008 339/2037/2037/0.174
44 4/45/45/0.077 63/77/77/0.198 63/77/77/0.136 4/45/45/0.066 329/1979/1979/2.317
45 4/43/43/1.402 302/314/314/13.846 302/314/314/12.031 4/43/43/1.331 4/28/28/0.973
46 NaN/NaN/NaN/NaN 294/315/315/0.029 NaN/NaN/NaN/NaN 134/1294/1294/0.125 1818/14215/14215/1.351
47 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 725/745/745/0.145 133/1151/1151/0.237 1519/11507/11507/2.318
48 311/3176/3176/2.704 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
49 825/8973/8973/0.605 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 475/5194/5194/0.319 1666/12850/12850/0.749
50 NaN/NaN/NaN/NaN 135/157/157/0.035 987/1020/1020/0.201 234/2544/2544/0.453 1090/8444/8444/1.566
51 104/1132/1132/5.885 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 709/7742/7742/40.712 NaN/NaN/NaN/NaN
52 18/70/70/3.179 12/50/50/2.220 47/89/89/3.926 17/78/78/4.040 NaN/NaN/NaN/NaN
53 1/9/9/0.054 245/269/269/0.194 245/269/269/0.191 1/9/9/0.013 1707/12702/12702/7.174
54 22/102/102/224.403 41/96/96/208.022 41/96/96/193.448 21/99/99/174.088 NaN/NaN/NaN/NaN
55 1815/3663/3663/0.310 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
56 NaN/NaN/NaN/NaN 4/8/8/0.004 12/22/22/0.003 4/16/16/0.004 NaN/NaN/NaN/NaN
57 43/123/123/0.065 70/125/125/0.049 541/593/593/0.271 82/151/151/0.071 NaN/NaN/NaN/NaN
58 69/171/171/13.336 871/929/929/84.611 163/222/222/20.396 476/684/684/61.736 NaN/NaN/NaN/NaN
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4. Application of the Proposed CDV to Signal Recovery

This segment of the paper pertains to signal recovery, in particular compressing
sensing, CS. The problem has received considerable interest among researchers and is
formulated as a sum of two terms: an underdetermined linear least-squares formulation
and a positive scalar, λ, multiple of a non-smooth function such as the l1 regularizer.
The CS problem essentially aims at reconstructing a signal from a sparsely measured vector.
The problem has wide-ranging uses, including file recovery, decoding images, and many
more. The problem can be expressed as an unconstrained optimization as follows:

min
x∈Rn

∥Kx− l∥2
2 + ψg(x) (18)

where K ∈ Rm×n, m ≪ n is often referred to as a sensing matrix, l ∈ Rm is a measure-
ment vector, g(x) denotes a regularization function which is non-smooth, while ψ is the
regularization constant. The task is to recover a sparse signal x ∈ Rn. Since, as men-
tioned above, g(x), for example, ∥ · ∥1, is non-smooth; thus, some smooth approaches that
closely approximate the l1 regularizer were suggested as alternative means for solving
problem (18).

There are some recently introduced smooth approximating functions [36] for absolute
value functions, such as g(x) := x · tanh(x/λ), in which λ is simply a smoothing constant.
It is proved in [36], Theorem 1, that ∥x − g(x)∥1 < λ. Therefore, we can re-express
formulation (18) into its approximate smooth equivalent as

min
x∈Rn

∥Kx− l∥2
2 + ψ

n

∑
j=1

g(xj), (19)

Since the above expression is smooth, the proposed algorithm and other smooth-based
algorithms for unconstrained optimization problems can be used to solve it.

Experimental data generation and initialization. In implementing the proposed CDV
together with an existing algorithm selected for comparison, we chose the dimension of the
signal, n := 212, and set the number of observations, m = µn, with µ = 0.2. Leveraging the
setup put forward in [37], the signal matrix operator K is a Hadamard matrix that is made
up of 1 s and −1 s and its columns are orthogonal. The two algorithms were initialized
with a zero vector, i.e., x̄0 = 0 ∈ Rn. Moreover, the rest of the parameters associated with
solving the CS model (19) are defined as follows:

• The regularized parameter ψ := max{2−10, µ2∥KT l∥∞}, where µ2 = 0.001.
• The positive constant, λ is set to 0.1, as suggested in [36].
• The remaining algorithm-specific parameters remain the same as reported in Section 3,

thus, they are unchanged.

The performances of the proposed CDV and TTCDDY algorithms are measured extensively
using the relative error metric, which is characterized as the following ratio:

∥x̄− xsol∥
∥xsol∥

× 100,

where xsol is the approximate solution of the model (19).
We portray the results that were obtained from running the experiment in Figure 2a–d.

Figure 2a,b represent the initial or original uncorrupted signal and the corrupted version
of the original, respectively. The final outputs or recovered signals obtained by TTCDDY
and CDV, as indicated by marked red circles, are depicted by Figure 2c,d. We can observe
that the CDV algorithm performs considerably better than TTCDDY with respect to the
relative error metric. Thus, agreeing with a similar performance of the CDV algorithm in
the numerical section.



Mathematics 2024, 12, 2430 11 of 13

0 1000 2000 3000 4000 5000

Index [1 n]

-6

-4

-2

0

2

4

6

A
m

p
li

tu
d

e

Original Signal (n=4096, k=164)

(a)

0 200 400 600 800

Index [1 m]

-1

-0.5

0

0.5

1

1.5

A
m

p
li

tu
d

e

Observation (m=819)

(b)

0 1000 2000 3000 4000

Index [1 n]

-6

-4

-2

0

2

4

6

A
m

p
li

tu
d

e

TTCDDY (RelErr=1.6608)

(c)

0 1000 2000 3000 4000

Index [1 n]

-6

-4

-2

0

2

4

6

A
m

p
li

tu
d

e

CDV (RelErr=1.6497)

(d)
Figure 2. The figures show the performance of the proposed CDV in comparison with the TTCDDY
algorithm; the comparison is conducted based on the relative error metric. In which (a) is the diagram
of the original signal (in blue), (b) represent the noisy observation measurement, while the restored
signals by both CDV and TTCDDY in red circles versus the original signal in blue peaks is denoted
by (c) and (d) respectively.

5. Conclusions

In this article, we have presented a new conjugate gradient method (named CDV) that
is a variant of the popular conjugate descent method (often referred to as CD) [15]. We have
extensively discussed the global convergence of the proposed method based on the famous
Wolfe line search strategy as well as some stated standard conditions. The CDV method
was designed to deal with any problem that can take the structure of general unconstrained
optimization problems and has been applied to solve two sets of nonlinear problems,
namely, some benchmark test problems and problems arising from compressive sensing.
The numerical performance and efficiency of the CDV method are superior compared
to some selected CG methods in the literature. Future research should explore how the
CDV algorithm could be modified to avoid the differentiability assumption in order to suit
problems in the form of nonlinear systems of equations, especially when the solution set is
constrained and the underlying function is pseudomonotone [38–41].
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