
Citation: Jin, J.; Zhan, W.; Li, H.; Ding,

Y.; Li, J. A Dynamic Behavior

Verification Method for Composite

Smart Contracts Based on Model

Checking. Mathematics 2024, 12, 2431.

https://doi.org/10.3390/

math12152431

Academic Editors: Vincenzo Vespri

and Antanas Cenys

Received: 16 June 2024

Revised: 19 July 2024

Accepted: 1 August 2024

Published: 5 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Dynamic Behavior Verification Method for Composite Smart
Contracts Based on Model Checking
Jun Jin 1 , Wenhao Zhan 1, Haisheng Li 2, Yi Ding 1 and Jie Li 1,3,4,*

1 School of Information, Beijing Wuzi University, Beijing 101149, China
2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University,

Beijing 100048, China
3 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
4 Yunnan Key Laboratory of Blockchain Application Technology, Kunming 650233, China
* Correspondence: lijiebwu@163.com

Abstract: A composite smart contract can execute smart contracts that may belong to other owners
or companies through external calls, bringing more security challenges to blockchain applications.
Traditional static verification methods are inadequate for analyzing the dynamic execution of these
contracts, resulting in misjudgment and omission issues. Therefore, this paper proposes a model
checking approach based on dynamic behavior that verifies the security and business logic of
composite smart contracts. Utilizing automata, the method models contracts, users, attackers, and
extracts properties, focusing on six types of common security vulnerabilities. A thorough case study
and experimental evaluation demonstrate the method’s efficiency in identifying vulnerabilities and
ensuring alignment with business requirements. The UPPAAL tool is employed for comprehensive
verification, proving its effectiveness in enhancing smart contract security.

Keywords: smart contracts; model checking; solidity; UPPAAL; formal methods; security vulnerabilities

MSC: 03B70

1. Introduction

Blockchain is a distributed ledger shared between peer-to-peer network nodes that
follows a certain consensus protocol [1], allowing transactions to be processed without
the need for a trusted third party. Therefore, business activities can be completed in an
efficient manner. In addition, the immutability of blockchain also ensures distributed
trust, and any transaction stored in the blockchain cannot be tampered with. All historical
transactions are auditable and traceable [2]. The initial popularity of blockchain technology
is attributed to Bitcoin [3], which uses decentralized, untrusted systems to record cryptocur-
rency transactions on distributed ledgers. Subsequently, Ethereum [4] ushered in the era of
blockchain 2.0, expanding the functionality and applications of blockchain by introducing
smart contracts. In blockchain application scenarios, smart contracts refer to computer
programs that run in a blockchain environment and can be automatically executed. Most
smart contracts are written in Turing complete languages such as Solidity [5], Go, Java, etc.

With the rapid development of blockchain smart contracts, their application in the
financial field is becoming increasingly widespread, and attacks against smart contracts
are also increasing. Some attacks triggered by contract vulnerabilities have caused huge
losses [6–9]. For example, the famous Decentralized Autonomous Organization (DAO)
attack is due to a significant flaw in smart contracts, which separated over 3 million Ethers
from the DAO resource pool, resulting in an economic loss of USD 60 million [10]. Obvi-
ously, the security and correctness of smart contracts are very crucial. Formal verification
methods use mathematical models and reasoning to make them more rigorous and reli-
able [11]. Symbolic execution [12], Theorem proving [13], model checking tools [14], and

Mathematics 2024, 12, 2431. https://doi.org/10.3390/math12152431 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12152431
https://doi.org/10.3390/math12152431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-1858-3075
https://orcid.org/0000-0002-1170-6776
https://doi.org/10.3390/math12152431
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12152431?type=check_update&version=3

Mathematics 2024, 12, 2431 2 of 24

some other approaches [15,16] are proposed, but they mainly consider the verification of
one smart contract. Complex business logic needs the collaborative invocation among
several smart contracts. Thus, in the context of composite smart contracts, the other calling
and called smart contracts are usually unknown, meaning the composite smart contracts
brings more complex security issues. The authors of [17] only verify the correctness of
whether the business logic meets the users’ requirements. Some works [18] are focused on
the verification of security issues. However, the approach is based on the static analysis.
For composite smart contracts where other external contracts are called during contract
execution, the static analysis fails to reflect the execution process of the vulnerability and
cannot be fully applicable.

Therefore, this paper adopts a model checking method to simulate the dynamic execu-
tion process of composite contracts, for the verification of security-vulnerable properties
and business logic properties of composite smart contracts. UPPAAL model checker [19]
offers an intuitive, graphically integrated environment for modeling, verifying, and simu-
lating real-time systems. It use the more rigorous and efficient computation tree logic (CTL)
to specify the properties of composite smart contracts. Thus, our method uses UPPAAL for
modeling and verification. The contribution of this paper is as follows:

(1) We take six types of security vulnerabilities in blockchain smart contracts as examples,
including reentrancy, access control, privileged functions exposure, cross-contract
invocation, denial of service, and miner privilege. A modeling approach based on
the execution semantics of Solidity code is proposed. This method not only models
composite contracts but also constructs models for users and potential attackers.

(2) A method for the dynamic behavior analysis and verification of composite contracts
is proposed. We simulate and analyze the dynamic calling process of the contracts
that triggers the aforementioned security vulnerabilities, identify the location of
the vulnerability code, and derive specific security vulnerability and business logic
verification properties.

(3) We use UPPAAL to model a financial composite smart contract case, verify the security
and correctness of smart contracts with security and business logic properties, and
evaluate the verification time. The two results demonstrate the effectiveness of
our method.

The second section of this paper introduces the relevant work in the field of formal
verification of smart contracts. Section 3 proposes the automaton modeling process for
Solidity smart contracts and the formal specification of six types of security vulnerability
properties. Section 4 takes smart contract financial services as a case study for modeling,
defines security vulnerability properties and business logic properties, verifies the model,
and conducts result analysis. Finally, a summary and outlook are presented in Section 5.

2. Related Work

Since the 2016 DAO incident that led to the Ethereum hard fork, formal verification
research of smart contracts has gained increasing popularity. Formal verification technol-
ogy has practical significance in ensuring the correctness and security of smart contracts.
The verification of smart contracts initially focused solely on correctness. In [15,16], the
authors used the model checker Spin to verify correctness, to understand whether smart
contracts comply with the specifications for given behaviors and some properties like
state accessibility, no deadlock, and no livelock. In [20], the authors proposed a method
for correctness verification of composite smart contracts, but it does not address security
vulnerabilities. In [17], the authors proposed a graphical notation to specify the interac-
tion between contracts, as well as a framework for verifying, generating, and deploying
multiple smart contracts. However, this paper focused on the contract interaction and
deployment, so it did not specify security properties from the perspective of normal typical
vulnerabilities. Almakhour et al. [18] used FSM to model composite smart contracts to
verify both correctness and security properties, but did not consider the external user
interactions or invocations by other smart contracts. Nam et al. [21] utilized the ATL to

Mathematics 2024, 12, 2431 3 of 24

analyze smart contracts on the blockchain, representing the interactions between users
and smart contracts as a two-player game, and employed model checker for multi-agent
systems (MCMAS) to verify relevant properties. Chen et al. [22] focused on arithmetic
bugs detection with higher precision and recall, such as integer over/under flows and
division-by-zeros. These works did not consider correctness verification.

There is also research on automated verification methods and tools for smart contracts,
capable of validating contracts from various perspectives. For instance, Oyente [12], as a
pioneer in smart contract verification, employed a variety of static analysis techniques for
contract validation. Tools like DefectChecker [23] utilized symbolic execution to accomplish
automated verification of contracts, while SPCon [24] primarily focused on identifying
vulnerabilities in access control, and Wang et al. [25] predominantly detected flaws present
in token contracts.

Smart contracts also have a temporal nature, meaning there are some time constraint
issues that are influenced by time. For instance, the miner’s privilege vulnerability occurs
because miners can alter timestamps, thereby gaining indirect control over the execution of
smart contracts. The aforementioned studies and tools are incapable of handling security
verification with temporal constraints. Zhao et al. [26] proposed the use of timed automata
for modeling contracts and then employing the UPPAAL tool to verify temporal properties.

Nevertheless, most of the verification approaches conduct static analysis of contracts,
which cannot reflect the actual execution process of composite contracts, and few works
have focused on verification with time constraints. Therefore, this paper proposes a
dynamic method based on contract execution logic to verify the security and correctness
of composite smart contracts. This method, based on the automaton model and model
checking techniques, models and verifies composite smart contracts, respectively, and is
capable of discovering six types of significant security vulnerabilities within composite
smart contracts, as well as correctness issues that do not conform to the users’ business logic
requirements. Finally, CTL formula is used to represent all properties and all properties
are verified using the UPPAAL checker. This method is validated using a set of different
Solidity smart contracts.

3. Composite Contract Model and Verification Method

Model checking is one of the most commonly used methods in the field of formal
verification, typically divided into three stages: system modeling, specification, and veri-
fication. During the system modeling phase, a finite state machine (FSM) pattern, which
is recommended for developing smart contracts, is suitable for modeling the behavior of
smart contracts [27]. FSMs are a specific type of automaton. The concept of an automaton is
broader and not limited to a finite set of states. In the specification phase, modal logics such
as linear temporal logic (LTL), CTL, and alternating-time temporal logic (ATL) are often
employed to describe various requirements of the system, including its applications and
safety. The verification phase is used to ascertain whether the system model conforms to the
properties that the system should possess. If it does not conform, the system is considered
to have corresponding issues that require modification, re-modeling, and re-verification.

The method proposed in this paper for the dynamic behavior of composite smart
contracts is based on automata and model checking. The entire process is divided into
three stages: 1⃝ automata modeling, 2⃝ property formalization, and 3⃝ property verifica-
tion. It includes four main components, namely, Solidity source code, automaton model,
verification properties, and model checking tool UPPAAL. The framework of our research
method is shown in Figure 1.

Mathematics 2024, 12, 2431 4 of 24

Mathematics 2024, 12, 2431 4 of 24

verification properties, and model checking tool UPPAAL. The framework of our research

method is shown in Figure 1.

Figure 1. Outline of our verification framework.

In order to describe the dynamic behavior of the contract execution process, this pa-

per models each Solidity contract as a time automaton, and in addition to modeling a

corresponding number of timed automata, composite smart contracts also need to model

other contracts that interact with them. For example, contracts and users can call other

contracts, and the dynamic behavior of their business logic or execution process is closely

related to the behavior of the called contract. Therefore, these individuals also need to be

modeled as automata. After modeling, the purpose of verifying the composite contract

can be achieved by verifying whether the automaton satisfies certain conditions, referred

to as properties in the following text. The correct operation of composite contracts de-

pends on accurate and errorfree business logic, which must meet business needs without

security issues. This paper establishes a time automaton model for the contract and the

initiator based on the dynamic behavior of contract execution, based on some common

security vulnerabilities of smart contracts. Then, a set of business logic properties and se-

curity vulnerability properties are defined according to the application requirements and

key vulnerabilities of the contract, and CTL is used to represent all the business and secu-

rity properties that need to be satisfied. Finally, by verifying whether the model meets the

above properties, we can verify whether the composite contract meets business require-

ments and whether there are any security vulnerabilities. Because the system properties

to be described and validated include time, the UPPAAL model checking tool is used to

implement modeling and define and validate all properties.

3.1. Smart Contract Automata Model

An automaton is a mathematical model that represents a set of states, along with the

transitions and actions among them. If represented graphically, an automaton’s states are

depicted as nodes, with the transitions between states represented as edges. State transi-

tions are triggered when certain conditions are met or specific operations are performed;

hence, each edge is characterized by three elements: a condition (guard), a variable update

operation (update), and/or a synchronization operation (sync). The synchronization oper-

ation is used for communication between automata sent from one automaton (sending

message is denoted by “!”) to another automaton (receiving message is denoted by “?”).

When the conditions on the edge (as shown by the if statements, function modifier, visi-

bility, and loop statements in Table 1) are met and the required signal has arrived, or a

variable update operation has occurred, the transition from one state to another will occur.

To model a smart contract, refer to the modeling rules shown in Table 1; row 1 to row

5 are the basic contract statements. Row 1: About variables. Integer variables are used in

the model to record common types. To represent the timestamp of the current block, one

can use the uniquely self-incrementing variable of clock type that is specific to UPPAAL.

Row 2: In arithmetic operation, each assignment operation is described in the model as a

Solidity
Source Code

Business Logic
Requirements

Composite
contract

automaton

User
automaton

Security Vulnerability
Requirements

 Verification

 Automata Modeling

 Property Formalization

System
Properties

UPPAAL Tool
Deployment

Development
and Modification

Figure 1. Outline of our verification framework.

In order to describe the dynamic behavior of the contract execution process, this
paper models each Solidity contract as a time automaton, and in addition to modeling a
corresponding number of timed automata, composite smart contracts also need to model
other contracts that interact with them. For example, contracts and users can call other
contracts, and the dynamic behavior of their business logic or execution process is closely
related to the behavior of the called contract. Therefore, these individuals also need to be
modeled as automata. After modeling, the purpose of verifying the composite contract can
be achieved by verifying whether the automaton satisfies certain conditions, referred to as
properties in the following text. The correct operation of composite contracts depends on
accurate and errorfree business logic, which must meet business needs without security
issues. This paper establishes a time automaton model for the contract and the initiator
based on the dynamic behavior of contract execution, based on some common security
vulnerabilities of smart contracts. Then, a set of business logic properties and security
vulnerability properties are defined according to the application requirements and key
vulnerabilities of the contract, and CTL is used to represent all the business and security
properties that need to be satisfied. Finally, by verifying whether the model meets the above
properties, we can verify whether the composite contract meets business requirements
and whether there are any security vulnerabilities. Because the system properties to
be described and validated include time, the UPPAAL model checking tool is used to
implement modeling and define and validate all properties.

3.1. Smart Contract Automata Model

An automaton is a mathematical model that represents a set of states, along with the
transitions and actions among them. If represented graphically, an automaton’s states are
depicted as nodes, with the transitions between states represented as edges. State transitions
are triggered when certain conditions are met or specific operations are performed; hence,
each edge is characterized by three elements: a condition (guard), a variable update
operation (update), and/or a synchronization operation (sync). The synchronization
operation is used for communication between automata sent from one automaton (sending
message is denoted by “!”) to another automaton (receiving message is denoted by “?”).
When the conditions on the edge (as shown by the if statements, function modifier, visibility,
and loop statements in Table 1) are met and the required signal has arrived, or a variable
update operation has occurred, the transition from one state to another will occur.

Mathematics 2024, 12, 2431 5 of 24

Table 1. Smart contract automaton modeling rules.

Solidity Grammar of Smart Contract Timed Automaton Model

1
variables:

address addr; uint balance;
uint now; const int[0, N] addr; int balance;

clock now;

2

arithmetic operations:
function add() {
number = number + 1;
}

Mathematics 2024, 12, 2431 5 of 24

transition activity between states. Row 3: Model if() and require() in the conditional state-

ments. If the condition is met, the state will transfer to state if_true, and the statement

num++ will be executed normally. Otherwise, the state will transfer to if_false, and the

statement block in the curly braces will be skipped to execute the next statement. If the

required condition is met, it will transfer to state s1 and continue to execute subsequent

codes normally. Otherwise, it will transfer to abnormal state err. Row 4: In the loop state-

ment for() structure, if the loop condition is met, it will move to the state for_true. Until the

condition is not met, the state will transfer to the state for_end to complete the loop execu-

tion. Row 5: The function modifier is modeled as a function in C language form according

to the specific judgment logic. Before executing the business logic code, judge and verify

whether the content of the modifier meets the requirements. For example, only the owner

can continue to execute. Row 6: Similar to row 5, the four types of visibility domains (pri-

vate, public, external, internal), as predefined modifiers, are also modeled as specific func-

tions, in which the corresponding judgment can be made on whether the execution can

continue. Row 7: A single contract function is modeled as an automaton, starting from the

state Start by default. When the called contract function receives a message with the same

name as itself, such as changeOwner? (Usually, this message is sent from another contract

function, such as changeOwner!), the state will transfer to another state with its function

name, such as changeOwner_C0, which means that the call occurred. Next, judge the func-

tion’s visibility domain and function modifiers, such as the external and onlyOwner of the

function. If these judgments are true, the function body will execute, the corresponding

state transfers to modifier. The execution owner is reassigned, the state transfers to

change_owner. After executing Owner = _newOwner, the state returns to Start.

Some typical library functions of Solidity are predefined as templates during model-

ing. For example, call.value() means that when call.value() is initiated, the receiver’s

fallback() function is automatically called for withdraw operations.

Table 1. Smart contract automaton modeling rules.

 Solidity Grammar of Smart Contract Timed Automaton Model

1

variables:

const int[0, N] addr;

int balance;

clock now; address addr;
uint balance;

uint now;

2

arithmetic operations:

function add() {

number = number + 1;

}

3

conditional statements:

if(number == 0) {

number++;

}

require (number == 0);

4

loop statements:

for(uint i = 0; i < 10; i++){

sum += i;

}

5

function modifiers:

modifier onlyOwner {

require(msg.sender == owner);

_;

}

bool onlyOwner() {

if(sender.address == owner.address)

return true;

else

return false;

}

6 visibility: bool private() {

3

conditional statements:
if(number == 0) {
number++;
}
require (number == 0);

Mathematics 2024, 12, 2431 5 of 24

transition activity between states. Row 3: Model if() and require() in the conditional state-

ments. If the condition is met, the state will transfer to state if_true, and the statement

num++ will be executed normally. Otherwise, the state will transfer to if_false, and the

statement block in the curly braces will be skipped to execute the next statement. If the

required condition is met, it will transfer to state s1 and continue to execute subsequent

codes normally. Otherwise, it will transfer to abnormal state err. Row 4: In the loop state-

ment for() structure, if the loop condition is met, it will move to the state for_true. Until the

condition is not met, the state will transfer to the state for_end to complete the loop execu-

tion. Row 5: The function modifier is modeled as a function in C language form according

to the specific judgment logic. Before executing the business logic code, judge and verify

whether the content of the modifier meets the requirements. For example, only the owner

can continue to execute. Row 6: Similar to row 5, the four types of visibility domains (pri-

vate, public, external, internal), as predefined modifiers, are also modeled as specific func-

tions, in which the corresponding judgment can be made on whether the execution can

continue. Row 7: A single contract function is modeled as an automaton, starting from the

state Start by default. When the called contract function receives a message with the same

name as itself, such as changeOwner? (Usually, this message is sent from another contract

function, such as changeOwner!), the state will transfer to another state with its function

name, such as changeOwner_C0, which means that the call occurred. Next, judge the func-

tion’s visibility domain and function modifiers, such as the external and onlyOwner of the

function. If these judgments are true, the function body will execute, the corresponding

state transfers to modifier. The execution owner is reassigned, the state transfers to

change_owner. After executing Owner = _newOwner, the state returns to Start.

Some typical library functions of Solidity are predefined as templates during model-

ing. For example, call.value() means that when call.value() is initiated, the receiver’s

fallback() function is automatically called for withdraw operations.

Table 1. Smart contract automaton modeling rules.

 Solidity Grammar of Smart Contract Timed Automaton Model

1

variables:

const int[0, N] addr;

int balance;

clock now; address addr;
uint balance;

uint now;

2

arithmetic operations:

function add() {

number = number + 1;

}

3

conditional statements:

if(number == 0) {

number++;

}

require (number == 0);

4

loop statements:

for(uint i = 0; i < 10; i++){

sum += i;

}

5

function modifiers:

modifier onlyOwner {

require(msg.sender == owner);

_;

}

bool onlyOwner() {

if(sender.address == owner.address)

return true;

else

return false;

}

6 visibility: bool private() {

Mathematics 2024, 12, 2431 5 of 24

transition activity between states. Row 3: Model if() and require() in the conditional state-

ments. If the condition is met, the state will transfer to state if_true, and the statement

num++ will be executed normally. Otherwise, the state will transfer to if_false, and the

statement block in the curly braces will be skipped to execute the next statement. If the

required condition is met, it will transfer to state s1 and continue to execute subsequent

codes normally. Otherwise, it will transfer to abnormal state err. Row 4: In the loop state-

ment for() structure, if the loop condition is met, it will move to the state for_true. Until the

condition is not met, the state will transfer to the state for_end to complete the loop execu-

tion. Row 5: The function modifier is modeled as a function in C language form according

to the specific judgment logic. Before executing the business logic code, judge and verify

whether the content of the modifier meets the requirements. For example, only the owner

can continue to execute. Row 6: Similar to row 5, the four types of visibility domains (pri-

vate, public, external, internal), as predefined modifiers, are also modeled as specific func-

tions, in which the corresponding judgment can be made on whether the execution can

continue. Row 7: A single contract function is modeled as an automaton, starting from the

state Start by default. When the called contract function receives a message with the same

name as itself, such as changeOwner? (Usually, this message is sent from another contract

function, such as changeOwner!), the state will transfer to another state with its function

name, such as changeOwner_C0, which means that the call occurred. Next, judge the func-

tion’s visibility domain and function modifiers, such as the external and onlyOwner of the

function. If these judgments are true, the function body will execute, the corresponding

state transfers to modifier. The execution owner is reassigned, the state transfers to

change_owner. After executing Owner = _newOwner, the state returns to Start.

Some typical library functions of Solidity are predefined as templates during model-

ing. For example, call.value() means that when call.value() is initiated, the receiver’s

fallback() function is automatically called for withdraw operations.

Table 1. Smart contract automaton modeling rules.

 Solidity Grammar of Smart Contract Timed Automaton Model

1

variables:

const int[0, N] addr;

int balance;

clock now; address addr;
uint balance;

uint now;

2

arithmetic operations:

function add() {

number = number + 1;

}

3

conditional statements:

if(number == 0) {

number++;

}

require (number == 0);

4

loop statements:

for(uint i = 0; i < 10; i++){

sum += i;

}

5

function modifiers:

modifier onlyOwner {

require(msg.sender == owner);

_;

}

bool onlyOwner() {

if(sender.address == owner.address)

return true;

else

return false;

}

6 visibility: bool private() {

4

loop statements:
for(uint i = 0; i < 10; i++){
sum += i;
}

Mathematics 2024, 12, 2431 5 of 24

transition activity between states. Row 3: Model if() and require() in the conditional state-

ments. If the condition is met, the state will transfer to state if_true, and the statement

num++ will be executed normally. Otherwise, the state will transfer to if_false, and the

statement block in the curly braces will be skipped to execute the next statement. If the

required condition is met, it will transfer to state s1 and continue to execute subsequent

codes normally. Otherwise, it will transfer to abnormal state err. Row 4: In the loop state-

ment for() structure, if the loop condition is met, it will move to the state for_true. Until the

condition is not met, the state will transfer to the state for_end to complete the loop execu-

tion. Row 5: The function modifier is modeled as a function in C language form according

to the specific judgment logic. Before executing the business logic code, judge and verify

whether the content of the modifier meets the requirements. For example, only the owner

can continue to execute. Row 6: Similar to row 5, the four types of visibility domains (pri-

vate, public, external, internal), as predefined modifiers, are also modeled as specific func-

tions, in which the corresponding judgment can be made on whether the execution can

continue. Row 7: A single contract function is modeled as an automaton, starting from the

state Start by default. When the called contract function receives a message with the same

name as itself, such as changeOwner? (Usually, this message is sent from another contract

function, such as changeOwner!), the state will transfer to another state with its function

name, such as changeOwner_C0, which means that the call occurred. Next, judge the func-

tion’s visibility domain and function modifiers, such as the external and onlyOwner of the

function. If these judgments are true, the function body will execute, the corresponding

state transfers to modifier. The execution owner is reassigned, the state transfers to

change_owner. After executing Owner = _newOwner, the state returns to Start.

Some typical library functions of Solidity are predefined as templates during model-

ing. For example, call.value() means that when call.value() is initiated, the receiver’s

fallback() function is automatically called for withdraw operations.

Table 1. Smart contract automaton modeling rules.

 Solidity Grammar of Smart Contract Timed Automaton Model

1

variables:

const int[0, N] addr;

int balance;

clock now; address addr;
uint balance;

uint now;

2

arithmetic operations:

function add() {

number = number + 1;

}

3

conditional statements:

if(number == 0) {

number++;

}

require (number == 0);

4

loop statements:

for(uint i = 0; i < 10; i++){

sum += i;

}

5

function modifiers:

modifier onlyOwner {

require(msg.sender == owner);

_;

}

bool onlyOwner() {

if(sender.address == owner.address)

return true;

else

return false;

}

6 visibility: bool private() {

5

function modifiers:
modifier onlyOwner {
require(msg.sender == owner);
_;
}

bool onlyOwner() {
if(sender.address == owner.address)

return true;
else

return false;
}

6 visibility:
private, public, external, internal

bool private() {
if(sender.address == contract.address)

return true;
else

return false;
}

7

functions:
function changeOwner(address
_newOwner) external onlyOwner {
Owner = _newOwner;
}

Mathematics 2024, 12, 2431 6 of 24

private, public, external, internal if(sender.address == contract.address)

return true;

else

return false;

}

7

functions:

function changeOwner(address

_newOwner) external onlyOwner {

Owner = _newOwner;

}

3.2. Composite Smart Contract Formal Properties and Verification

Formal verification of properties is responsible for providing contract properties to

validate the security and correctness of a single or composite smart contract. In order to

cover the complete range of security issues in composite smart contracts, two types of

properties are defined: security properties and business logic properties. The former mod-

els 6 types of smart contract security vulnerabilities as examples (reentrancy attack, access

control, privileged function exposure, cross-contract invocation, denial of service, miner

privilege), then extracts implementation logic and dynamic interactions between different

contracts from each security vulnerability model, defines CTL properties, and finally de-

tects the existence of vulnerabilities by verifying whether the model satisfies the CTL

properties. As for business logic properties, users define them based on the business logic

context of composite smart contracts, similarly describing them as CTL properties and

verifying them. The following section will introduce automaton modeling and verification

of each vulnerability with CTL properties using the six vulnerabilities as examples.

3.2.1. Reentrancy

Smart contracts can call the code of other external contracts and send tokens to exter-

nal addresses, but when performing these operations, the system automatically triggers

the function fallback of the recipient. Therefore, this external call may be exploited by ma-

licious attackers to trigger recursive calls between contracts by the “re-entry” of the func-

tion fallback, resulting in unexpected actions, such as unauthorized transfers.

Code block 1. Solidity sample code of reentrancy

1 contract Bank {
2 ...
3 function recharge() payable public {
4 balances[msg.sender] += msg.value;
5 }
6 function withdraw() public {
7 require(msg.sender.call.value(balances[msg.sender])());
8 balances[msg.sender] = 0;
9 }
10 }
11
12 contract Attacker {
13 ...
14 function attack() payable {
15 attackCount = 0;
16 Bank bank = Bank(bankAddr);
17 bank.recharge.value(msg.value)();
18 bank.withdraw();
19 }
20 function () payable {
21 if(msg.sender == bank.Addr && attackCount < 5) {
22 attackCount += 1;

To model a smart contract, refer to the modeling rules shown in Table 1; row 1 to row 5
are the basic contract statements. Row 1: About variables. Integer variables are used in the
model to record common types. To represent the timestamp of the current block, one can
use the uniquely self-incrementing variable of clock type that is specific to UPPAAL. Row 2:
In arithmetic operation, each assignment operation is described in the model as a transition
activity between states. Row 3: Model if() and require() in the conditional statements. If the
condition is met, the state will transfer to state if_true, and the statement num++ will be
executed normally. Otherwise, the state will transfer to if_false, and the statement block in
the curly braces will be skipped to execute the next statement. If the required condition
is met, it will transfer to state s1 and continue to execute subsequent codes normally.
Otherwise, it will transfer to abnormal state err. Row 4: In the loop statement for() structure,
if the loop condition is met, it will move to the state for_true. Until the condition is not
met, the state will transfer to the state for_end to complete the loop execution. Row 5: The
function modifier is modeled as a function in C language form according to the specific
judgment logic. Before executing the business logic code, judge and verify whether the

Mathematics 2024, 12, 2431 6 of 24

content of the modifier meets the requirements. For example, only the owner can continue
to execute. Row 6: Similar to row 5, the four types of visibility domains (private, public,
external, internal), as predefined modifiers, are also modeled as specific functions, in which
the corresponding judgment can be made on whether the execution can continue. Row
7: A single contract function is modeled as an automaton, starting from the state Start by
default. When the called contract function receives a message with the same name as itself,
such as changeOwner? (Usually, this message is sent from another contract function, such
as changeOwner!), the state will transfer to another state with its function name, such as
changeOwner_C0, which means that the call occurred. Next, judge the function’s visibility
domain and function modifiers, such as the external and onlyOwner of the function. If
these judgments are true, the function body will execute, the corresponding state transfers
to modifier. The execution owner is reassigned, the state transfers to change_owner. After
executing Owner = _newOwner, the state returns to Start.

Some typical library functions of Solidity are predefined as templates during modeling.
For example, call.value() means that when call.value() is initiated, the receiver’s fallback()
function is automatically called for withdraw operations.

3.2. Composite Smart Contract Formal Properties and Verification

Formal verification of properties is responsible for providing contract properties to
validate the security and correctness of a single or composite smart contract. In order
to cover the complete range of security issues in composite smart contracts, two types
of properties are defined: security properties and business logic properties. The former
models 6 types of smart contract security vulnerabilities as examples (reentrancy attack,
access control, privileged function exposure, cross-contract invocation, denial of service,
miner privilege), then extracts implementation logic and dynamic interactions between
different contracts from each security vulnerability model, defines CTL properties, and
finally detects the existence of vulnerabilities by verifying whether the model satisfies the
CTL properties. As for business logic properties, users define them based on the business
logic context of composite smart contracts, similarly describing them as CTL properties and
verifying them. The following section will introduce automaton modeling and verification
of each vulnerability with CTL properties using the six vulnerabilities as examples.

3.2.1. Reentrancy

Smart contracts can call the code of other external contracts and send tokens to external
addresses, but when performing these operations, the system automatically triggers the
function fallback of the recipient. Therefore, this external call may be exploited by malicious
attackers to trigger recursive calls between contracts by the “re-entry” of the function
fallback, resulting in unexpected actions, such as unauthorized transfers.

In the code block 1, the bank contract’s balances[msg.sender] records the balance of each
account. Normally, callers can recharge their own account using the recharge() function and
withdraw their entire balance using the withdraw() function. The attacker contract launches
an attack on the bank contract through the attack() function. The bank.recharge() function
first recharges a certain amount specified by msg.value, and then calls the bank.withdraw()
function, with the call.value() function transferring funds to the attacker contract. When this
function is called, the system automatically invokes the fallback function of the attacker
contract (i.e., the unnamed function of the receiver), leading to a recursive call. If attackCount
< 5, which it can be, the bank.withdraw() function is continuously called, transferring funds
to the receiver, and triggering the fallback function. This process repeats until condition
attackCount < 5 is no longer satisfied, then the attacker contract receives 5 times the recharge
amount, i.e., 5* msg.value.

Mathematics 2024, 12, 2431 7 of 24

Code block 1. Solidity reentrancy vulnerability sample code

1 contract Bank {
2 . . .
3 function recharge() payable public {
4 balances[msg.sender] += msg.value;
5 }
6 function withdraw() public {
7 require(msg.sender.call.value(balances[msg.sender])());
8 balances[msg.sender] = 0;
9 }
10 }
11
12 contract Attacker {
13 . . .
14 function attack() payable {
15 attackCount = 0;
16 Bank bank = Bank(bankAddr);
17 bank.recharge.value(msg.value)();
18 bank.withdraw();
19 }
20 function () payable {
21 if(msg.sender == bank.Addr && attackCount < 5) {
22 attackCount += 1;
23 Bank bank = Bank(bankAddr);
24 bank.withdraw();
25 }
26 }
27 }

To verify the execution process of the above composite contract, the automata of
attacker user contract, bank contract, and attacker contract established by UPPAAL are
shown in Figure 2a–c. The execution of the reentrancy attack automaton is initiated by the
attacker user sending the message attack!, starting from the initial state Start in Figure 2a.
Figure 3 presents the simulation execution sequence. When the bank attacker contract
receives attack? from the state Start, it initializes the attackCount = 0 and the bankAddr = 0.
Subsequently, it assigns a value to the recharge amount msg_value = 10 and its own contract
address to msg_sender, then sends a recharge! call to the bank contract’s recharge() function.

Mathematics 2024, 12, 2431 7 of 24

23 Bank bank = Bank(bankAddr);
24 bank.withdraw();
25 }
26 }
27 }

In the code block 1, the bank contract’s balances[msg.sender] records the balance of

each account. Normally, callers can recharge their own account using the recharge() func-

tion and withdraw their entire balance using the withdraw() function. The attacker contract

launches an attack on the bank contract through the attack() function. The bank.recharge()

function first recharges a certain amount specified by msg.value, and then calls the

bank.withdraw() function, with the call.value() function transferring funds to the attacker

contract. When this function is called, the system automatically invokes the fallback func-

tion of the attacker contract (i.e., the unnamed function of the receiver), leading to a recur-

sive call. If attackCount < 5, which it can be, the bank.withdraw() function is continuously

called, transferring funds to the receiver, and triggering the fallback function. This process

repeats until condition attackCount < 5 is no longer satisfied, then the attacker contract re-

ceives 5 times the recharge amount, i.e., 5* msg.value.

To verify the execution process of the above composite contract, the automata of at-

tacker user contract, bank contract, and attacker contract established by UPPAAL are

shown in Figure 2a–c. The execution of the reentrancy attack automaton is initiated by the

attacker user sending the message attack!, starting from the initial state Start in Figure 2a.

Figure 3 presents the simulation execution sequence. When the bank attacker contract re-

ceives attack? from the state Start, it initializes the attackCount = 0 and the bankAddr = 0.

Subsequently, it assigns a value to the recharge amount msg_value = 10 and its own con-

tract address to msg_sender, then sends a recharge! call to the bank contract’s recharge()

function.

(a) (b)

(c)

Figure 2. Reentrancy vulnerability model. (a) attacker user model; (b) bank contract model; (c) bank

attacker contract model.
Figure 2. Reentrancy vulnerability model. (a) attacker user model; (b) bank contract model; (c) bank
attacker contract model.

Mathematics 2024, 12, 2431 8 of 24Mathematics 2024, 12, 2431 8 of 24

Figure 3. Reentrancy vulnerability simulation execution sequence.

After receiving the recharge? in the state Start, the bank contract recharges msg_value

to both its own account and the attacker’s account, and then sends the recharge_end! mes-

sage to the attacker contract. After receiving the recharge_end? message, the attacker con-

tract subtracts msg_value from its own balance, and then sends a withdraw! message to the

bank contract.

After receiving the draw? message, the bank contract assigns message sender’s ac-

count balance to variable withdraw_value, and subtracts withdraw_value from its own bal-

ance, because function call.value() invokes the anonymous function of attacker contract by

default (row 7), so here we use the message fallback! sending to the attacker contract in this

automaton. Then it uses require to determine whether the attacker contract has completed

function fallback executions, i.e., variable fallback_end is true. If fallback_end is false, the bank

contract continues to wait for the message withdraw? again. If fallback_end is true, it sets

message sender’s balances [msg_sender] to 0 and returns to its initial state Start.

After receiving the message fallback?, the attacker contract adds the withdraw_value to

its own balance. It then checks the value of attackCount, and if attackCount < 5, it increments

bank contract bank attacker contract

recharge_end !

attack !

Start

Start

balance_change

recharge_value

withdraw !

attacker user

Start

attack_function:
attackCount_assignment: attackCount = 0
bank_assignment:
bankAddr = 0, msg_value = 10, msg_sender=attacker

recharge !

recharge_function:
balances[attacker] =10,
balance += 10 (60)

balance -= 10 (0)
bankwithdraw1

withdraw_function:
withdraw_value = 10,
balance -= withdraw_value(50)

fallback !

fallback_function: balance += withdraw_value(10)
if: attackCount += 1 (1), attackCount < 5
attackCount_assignment
bank_assignment

balances = {50,0,0}
balance = 0

withdraw !

bankwithdraw2withdraw_function:
withdraw_value = 10,
balance -= withdraw_value(40)

balance = 10 balance = 10

call_value
require_judge: require == false

call_value
require_judge: require == false

fallback !

fallback_function: balance += withdraw_value(20)
if: attackCount += 1 (2), attackCount < 5
attackCount_assignment
bank_assignment

withdraw !

withdraw_function:
withdraw_value = 10,
balance -= withdraw_value(30)

fallback_function: balance += withdraw_value(30)
if: attackCount += 1 (3), attackCount < 5
...

fallback !

bankwithdraw2

...
withdraw_function:
withdraw_value = 10,
balance -= withdraw_value(20)

fallback_function: balance += withdraw_value(40)
if: attackCount += 1 (4), attackCount < 5
...withdraw_function:

withdraw_value = 10,
balance -= withdraw_value(10)

fallback_function: balance += withdraw_value(50)

if: attackCount += 1 (5), attackCount 5，fallback_end = true
Start

withdraw
10

withdraw
40

recharge
10

Figure 3. Reentrancy vulnerability simulation execution sequence.

After receiving the recharge? in the state Start, the bank contract recharges msg_value to
both its own account and the attacker’s account, and then sends the recharge_end! message
to the attacker contract. After receiving the recharge_end? message, the attacker contract
subtracts msg_value from its own balance, and then sends a withdraw! message to the
bank contract.

After receiving the draw? message, the bank contract assigns message sender’s account
balance to variable withdraw_value, and subtracts withdraw_value from its own balance,
because function call.value() invokes the anonymous function of attacker contract by default
(row 7), so here we use the message fallback! sending to the attacker contract in this
automaton. Then it uses require to determine whether the attacker contract has completed
function fallback executions, i.e., variable fallback_end is true. If fallback_end is false, the bank
contract continues to wait for the message withdraw? again. If fallback_end is true, it sets
message sender’s balances [msg_sender] to 0 and returns to its initial state Start.

After receiving the message fallback?, the attacker contract adds the withdraw_value to
its own balance. It then checks the value of attackCount, and if attackCount < 5, it increments
attackCount by 1. Subsequently, it calls the function withdraw() of the bank contract again by
sending the message withdraw?. To differentiate the second and subsequent abnormal calls

Mathematics 2024, 12, 2431 9 of 24

to the function withdraw() from the first one, the names of the states are bank_withdraw2
and bank_withdraw1, respectively. If the condition attackCount >= 5 is true, the contract sets
fallback_end = true to indicate that the function fallback() has completed execution, and then
returns to the initial state Start.

CTL properties:

E<> attacker.bank_withdraw2 && bank.withdraw_function (1)

The CTL property (1) is derived based on the execution process of the automata. The
property is used to verify whether there is a scenario where the bank contract has received
a call message for the function withdraw, i.e., it is in the state withdraw_function and the
attacker contract calls the function withdraw() again, i.e., it is in the state bank_withdraw2. If
such a scenario exists, it indicates that the function fallback() in the attacker contract can call
the bank contract’s function withdraw() again, enabling repeated transfer operations, which
signifies the presence of a reentrancy vulnerability.

3.2.2. Access Control

Access control vulnerabilities typically arise from imprecise or erroneous definitions
of certain conditions during the writing of smart contracts, such as function modifiers.
Attackers can exploit these vulnerabilities to maliciously execute functions that they should
not have permission to access, causing losses to the entire contract system.

Code block 2. Solidity access control vulnerability sample code

1 contract Wallet {
2 bool tokenTransfer;
3 address walletAddress;
4 mapping(address => uint256) _balances;
5
6 modifier isTokenTransfer {
7 if(!tokenTransfer){
8 revert();
9 }
10 _;
11 }
12
13 modifier onlyFromWallet {
14 require(msg.sender != walletAddress);
15 _;
16 }
17
18 function transfer(address to, uint value) public isTokenTransferreturns(bool success) {
19 require(_balances[msg.sender] >= value);
20 _balances[msg.sender] = _balances[msg.sender] − value;
21 _balances[to] = _balances[to] + value;
22 Transfer(msg.sender, to, value);
23 return true;
24 }
25
26 function enableTokenTransfer()external onlyFromWallet {
27 tokenTransfer = true;
28 }
29
30 function disableTokenTransfer() external onlyFromWallet {
31 tokenTransfer = false;
32 }
33 }

Mathematics 2024, 12, 2431 10 of 24

Code block 2 demonstrates the sample code of access control, the intention of the
modifier onlyFromWallet at line 13 of the sample code of access control is to use “==” to
determine whether the call originated from the wallet itself, but mistakenly use “!=” at line
14. As a result, after being decorated with onlyFromWallet, the functions enableTokenTransfer()
at line 26 and disableTokenTransfer() at line 30 can only be executed by accounts other than
walletAddress. Consequently, an attacker can modify the variable tokenTransfer to true by
enableTokenTransfer() and then uncontrollably invoke the function transfer() at line 18 to
carry out transfer operations.

The automaton model shown in the Figure 4 represents the owner user, attacker
user, and wallet contract. Figure 5 illustrates the execution sequence of access control.
Both the owner and attacker automata perform the same actions, where, upon initiation,
they set the msg_sender to their own address and send the messages enableTokenTransfer!
or disableTokenTransfer!. The wallet contract automaton, upon receiving these messages,
checks if the function OnlyFromWallet() returns true, and then proceeds to respectively set
tokenTransfer to false and true before returning to the state Start.

Mathematics 2024, 12, 2431 10 of 24

33 }

Code block 2 demonstrates the sample code of access control, the intention of the

modifier onlyFromWallet at line 13 of the sample code of access control is to use “==” to

determine whether the call originated from the wallet itself, but mistakenly use “!=” at line

14. As a result, after being decorated with onlyFromWallet, the functions enableTokenTrans-

fer() at line 26 and disableTokenTransfer() at line 30 can only be executed by accounts other

than walletAddress. Consequently, an attacker can modify the variable tokenTransfer to true

by enableTokenTransfer() and then uncontrollably invoke the function transfer() at line 18 to

carry out transfer operations.

The automaton model shown in the Figure 4 represents the owner user, attacker user,

and wallet contract. Figure 5 illustrates the execution sequence of access control. Both the

owner and attacker automata perform the same actions, where, upon initiation, they set

the msg_sender to their own address and send the messages enableTokenTransfer! or disable-

TokenTransfer!. The wallet contract automaton, upon receiving these messages, checks if

the function OnlyFromWallet() returns true, and then proceeds to respectively set token-

Transfer to false and true before returning to the state Start.

(a)

(b)

Figure 4. Access control vulnerability model. (a) owner and attacker user contract model; (b) wallet

contract model.
Figure 4. Access control vulnerability model. (a) owner and attacker user contract model; (b) wallet
contract model.

Due to the mistake at line 14 of code, the attacker user is able to freely control the
opening and closing of the wallet because the modifier onlyFromWallet() returns true. In
contrast, the owner user is restricted to return to the initial state from OnlyFromWallet and
onlyFromWallet2, as the modifier OnlyFromWallet() returns false for them. Similarly, the
owner user is unable to manually open the wallet switch through the function enableToken-
Transfer().

If the attacker user closes the wallet by setting tokenTransfer to false, then when the
owner user attempts to send a transfer, the wallet contract will execute the action specified

Mathematics 2024, 12, 2431 11 of 24

by the modifier isTokenTransfer(), which returns false. Consequently, the owner user au-
tomaton will always return to the state Start without successfully invoking the function
transfer() in the wallet contract to complete the transfer.

Mathematics 2024, 12, 2431 11 of 24

Figure 5. Access control vulnerability simulation execution sequence.

Due to the mistake at line 14 of code, the attacker user is able to freely control the

opening and closing of the wallet because the modifier onlyFromWallet() returns true. In

contrast, the owner user is restricted to return to the initial state from OnlyFromWallet and

onlyFromWallet2, as the modifier OnlyFromWallet() returns false for them. Similarly, the

owner user is unable to manually open the wallet switch through the function enableTo-

kenTransfer().

If the attacker user closes the wallet by setting tokenTransfer to false, then when the

owner user attempts to send a transfer, the wallet contract will execute the action specified

by the modifier isTokenTransfer(), which returns false. Consequently, the owner user au-

tomaton will always return to the state Start without successfully invoking the function

transfer() in the wallet contract to complete the transfer.

CTL properties:

(a1) E<> wallet.disableTransfer && attacker.call_disable;

(a2) E<> wallet.enableTransfer && attacker.call_enable;

(b1) E<> wallet.disableTransfer && owner.call_disable;

(b2) E<> wallet.enableTransfer && owner.call_enable.

(2)

We derived CTL properties in Formula (2), where (a1) and (a2), respectively, indicate

that the attacker user reaches the state call_disable or call_enable, and the wallet contract

also reaches the state disableTransfer or enableTransfer accordingly. It implies that the at-

tacker user can control the switch of the wallet contract. In addition, (b1) and (b2) signify

that when the owner user reaches the state call_disable or call_enable, the wallet contract

can perform the disableTransfer or enableTransfer operations. The owner user cannot alter

the switch of the wallet contract, so when (a1) or (a2) satisfies, and (b1) or (b2) is not sat-

isfied, it can be confirmed that there exists an access control vulnerability in the contract.

3.2.3. Privilege Function Exposure

Functions with no permission modifiers in Solidity can be invoked by anyone by de-

fault. The selfdestruct() is a built-in function in Solidity that can destroy the current contract

and send the balance of the contract to a specified address. Therefore, if the function self-

destruct() in a contract does not have any permission modifiers, anyone can call this func-

tion to gain the privilege of destroying the contract. The code block 3 illustrates the sce-

nario described above. At line 3 of the wallet contract, the function destroyContract() lacks

any permission modifiers, allowing an attacker to freely call the function selfdestruct(_to)

attacker user owner userwallet contract

enableTokenTransfer !

func_enable
onlyFromWallet:onlyFromWallet==true
enableTransfer:tokenTransfer=true

enable_end !

call_enable

Start

StartStart

Start

wallet contract

call_enable

Start

func_enable
onlyFromWallet:
onlyFromWallet==false

enableTokenTransfer !

enable_end !
Start

Start

disableTokenTransfer !

func_disable
onlyFromWallet2: onlyFromWallet==true
disableTransfer: tokenTransfer=falsedisable_end !

call_disable

Start

Start

disableTokenTransfer !

func_disable
onlyFromWallet2:
onlyFromWallet==false

disable_end !

call_disable

StartStart

T
im

e O
rd

er

Start

transfer !

call_transfer func_transfer
isTokerTransfer:IsTokerTransfer==true

require:balances[attacker] value
sub: balances[attacker] -= value
add: balances[owner] += value
Transfer

transfer_sender !

balance = balances[attacker]:
senderEnd

senderEnd transfer_to !

Start

toEnd

transfer !

call_transfer func_transfer
isTokerTransfer:
IsTokerTransfer==false

trans_end !

Start toEnd

owner user

balance = balances[owner]:
Start

trans_end !
Start

enableToken
attacker: OK
owner: Fail

transfer
attacker: OK
owner: Fail

disableToken
attacker: OK
owner: Fail

Figure 5. Access control vulnerability simulation execution sequence.

CTL properties:

(a1) E<> wallet.disableTransfer && attacker.call_disable;
(a2) E<> wallet.enableTransfer && attacker.call_enable;
(b1) E<> wallet.disableTransfer && owner.call_disable;
(b2) E<> wallet.enableTransfer && owner.call_enable.

(2)

We derived CTL properties in Formula (2), where (a1) and (a2), respectively, indicate
that the attacker user reaches the state call_disable or call_enable, and the wallet contract also
reaches the state disableTransfer or enableTransfer accordingly. It implies that the attacker user
can control the switch of the wallet contract. In addition, (b1) and (b2) signify that when
the owner user reaches the state call_disable or call_enable, the wallet contract can perform
the disableTransfer or enableTransfer operations. The owner user cannot alter the switch of
the wallet contract, so when (a1) or (a2) satisfies, and (b1) or (b2) is not satisfied, it can be
confirmed that there exists an access control vulnerability in the contract.

3.2.3. Privilege Function Exposure

Functions with no permission modifiers in Solidity can be invoked by anyone by
default. The selfdestruct() is a built-in function in Solidity that can destroy the current
contract and send the balance of the contract to a specified address. Therefore, if the
function selfdestruct() in a contract does not have any permission modifiers, anyone can call
this function to gain the privilege of destroying the contract. The code block 3 illustrates the
scenario described above. At line 3 of the wallet contract, the function destroyContract() lacks
any permission modifiers, allowing an attacker to freely call the function selfdestruct(_to) to
destroy the current contract. Automatically, the contract, which is about to be terminated,
will transfer all its balance to the designated address _to.

Mathematics 2024, 12, 2431 12 of 24

Code block 3. Solidity privilege function exposure vulnerability sample code

1 contract Wallet {
2 . . .
3 function destroyContract(address _to) {
4 selfdestruct(_to);
5 }
6 }

The models in Figure 6 illustrate the owner and attacker users interacting with the
wallet contract in the context of exploiting a privileged function exposure. Both types of
users have the capability to invoke the function func_destroy by sending a message destroy!
to the wallet contract. Figure 7 represents the simulation execution sequence. Since the
destructor function destroyContract(address _to) is not protected by any modifiers, upon
receiving the request message destroy?, the wallet contract model can directly execute a
transfer operation to the user via the function selfdestruct(). The user receives the request
trans_to?, which increments their account balance, and then sends a message destroy_end?
to the wallet contract to return to the state Start. Upon receiving the destroy_end! request,
the wallet contract resets its account balance to 0 and transitions to the state Destroyed,
rendering the contract inactive.

Mathematics 2024, 12, 2431 12 of 24

to destroy the current contract. Automatically, the contract, which is about to be termi-

nated, will transfer all its balance to the designated address _to.

Code block 3. Solidity privilege function exposure vulnerability sample code

1 contract Wallet {
2 ...
3 function destroyContract(address _to) {
4 selfdestruct(_to);
5 }
6 }

The models in Figure 6 illustrate the owner and attacker users interacting with the

wallet contract in the context of exploiting a privileged function exposure. Both types of

users have the capability to invoke the function func_destroy by sending a message destroy!

to the wallet contract. Figure 7 represents the simulation execution sequence. Since the

destructor function destroyContract(address _to) is not protected by any modifiers, upon

receiving the request message destroy?, the wallet contract model can directly execute a

transfer operation to the user via the function selfdestruct(). The user receives the request

trans_to?, which increments their account balance, and then sends a message destroy_end?

to the wallet contract to return to the state Start. Upon receiving the destroy_end! request,

the wallet contract resets its account balance to 0 and transitions to the state Destroyed,

rendering the contract inactive.

(a)

(b)

Figure 6. Privilege function exposure model. (a) Common models for both attacker and owner users;

(b) wallet contract model.

Figure 7. Privilege function exposure vulnerability simulation execution sequence.

CTL properties:

(a) E<> wallet.transfer_end && attacker.transfer_end;

(b) E<> wallet.transfer_end && owner.transfer_end.
(3)

From the execution process of the automata, we can obtain CTL properties in For-

mula (3). It is indicated that when the wallet contract reaches the state transfer_end, the

attacker or owner users are also able to reach the state transfer_end. If this situation exists,

attacker/owner user wallet contract

destroy !

func_destroy
trans_to !

call_destroy

transfer_end:
balance += balances[wallet]

StartStart

transfer_end: balances[wallet] = 0, balance = 0

destroy_end !

Start Destroyed

T
im

e O
rd

er

destroy
attacker:OK
owner:OK

Figure 6. Privilege function exposure model. (a) Common models for both attacker and owner users;
(b) wallet contract model.

Mathematics 2024, 12, 2431 12 of 24

to destroy the current contract. Automatically, the contract, which is about to be termi-

nated, will transfer all its balance to the designated address _to.

Code block 3. Solidity privilege function exposure vulnerability sample code

1 contract Wallet {
2 ...
3 function destroyContract(address _to) {
4 selfdestruct(_to);
5 }
6 }

The models in Figure 6 illustrate the owner and attacker users interacting with the

wallet contract in the context of exploiting a privileged function exposure. Both types of

users have the capability to invoke the function func_destroy by sending a message destroy!

to the wallet contract. Figure 7 represents the simulation execution sequence. Since the

destructor function destroyContract(address _to) is not protected by any modifiers, upon

receiving the request message destroy?, the wallet contract model can directly execute a

transfer operation to the user via the function selfdestruct(). The user receives the request

trans_to?, which increments their account balance, and then sends a message destroy_end?

to the wallet contract to return to the state Start. Upon receiving the destroy_end! request,

the wallet contract resets its account balance to 0 and transitions to the state Destroyed,

rendering the contract inactive.

(a)

(b)

Figure 6. Privilege function exposure model. (a) Common models for both attacker and owner users;

(b) wallet contract model.

Figure 7. Privilege function exposure vulnerability simulation execution sequence.

CTL properties:

(a) E<> wallet.transfer_end && attacker.transfer_end;

(b) E<> wallet.transfer_end && owner.transfer_end.
(3)

From the execution process of the automata, we can obtain CTL properties in For-

mula (3). It is indicated that when the wallet contract reaches the state transfer_end, the

attacker or owner users are also able to reach the state transfer_end. If this situation exists,

attacker/owner user wallet contract

destroy !

func_destroy
trans_to !

call_destroy

transfer_end:
balance += balances[wallet]

StartStart

transfer_end: balances[wallet] = 0, balance = 0

destroy_end !

Start Destroyed

T
im

e O
rd

er

destroy
attacker:OK
owner:OK

Figure 7. Privilege function exposure vulnerability simulation execution sequence.

CTL properties:

(a) E<> wallet.transfer_end && attacker.transfer_end;
(b) E<> wallet.transfer_end && owner.transfer_end.

(3)

From the execution process of the automata, we can obtain CTL properties in Formula (3).
It is indicated that when the wallet contract reaches the state transfer_end, the attacker or
owner users are also able to reach the state transfer_end. If this situation exists, it means
that attacker and owner users, meaning any user, can perform the destruct operation of

Mathematics 2024, 12, 2431 13 of 24

the wallet contract. When both (a) and (b) are true, it means the presence of a privileged
function exposure vulnerability.

3.2.4. Cross-Contract Invocation

Solidity provides three functions: call(), delegatecall(), and callcode() to facilitate interac-
tion and invocation between contracts. Among these, the function call() poses a security
risk if not handled properly. Attackers can impersonate the current contract and invoke
internal functions of itself or other contracts, leading to cross-contract vulnerability.

In the code block 4, at line 7, the function authorityTransfer() enables transfer operations,
requiring the caller to be the current contract. The function callFunc() in the CallBug
contract, at line 3, allows anyone and any contracts to invoke the internal function call(). If
its parameter data is constructed as authorityTransfer(), then the require statement this ==
msg.sender cannot work, which allows anyone or any contract to execute the subsequent
operations after the require statement.

Code block 4. Solidity cross-contract invocation vulnerability sample code

1 contract CallBug {
2 . . .
3 function callFunc(bytes data) public {
4 this.call(data);
5 }
6
7 function authorityTransfer(uint256 _amount) {
8 require(this == msg.sender);
9 //secret operations. . .
10 }
11 }

Figure 8 shows the automata of the attacker user and the CallBug contract and Figure 9
represents its simulation execution sequence. Normally the attacker sends the message
authorityTransfer! to the CallBug contract, after receiving it the CallBug calls the function
authorityTransfer() to perform the require() statement. Since msg_sender != CallBug.address,
the CallBug contract sends the message authorityTransfer_end! to the attacker and returns to
the state Start. When the attacker receives the message authorityTransfer_end?, it also returns
to the state Start. Therefore, normally the require statement acts as a guard to prevent
unauthorized cross-contract calls.

Mathematics 2024, 12, 2431 14 of 24

(a)

(b)

Figure 8. Cross‐contract invocation vulnerability model. (a) attacker user model; (b) CallBug con‐

tract model.

Figure 9. Cross‐contract invocation vulnerability simulation execution sequence.

CTL properties:

(a) E<> attacker.func_authorityTransfer && CallBug.act_transfer;

(b) E<> attacker.func_callFunc && CallBug.act_transfer.
(4)

We derive Formula (4), which indicates whether the CallBug contract reaches the

state act_transfer when an attacker user accesses func_authorityTransfer or func_callFunc. If

conditions (a) and (b) are not satisfied, it means that attacker users cannot directly or in‐

directly invoke the function authorityTransfer() for transfer operations, indicating the ab‐

sence of a cross‐contract calling vulnerability in the contract CallBug. If condition (a) or

(b) is met, it implies that attacker users can cause the CallBug contract to reach the state

act_transfer by invoking the function authorityTransfer() or callFunc(), enabling direct or

indirect transfers. In such a case, it indicates the presence of a cross‐contract calling vul‐

nerability in this contract.

3.2.5. Denial of Service

In smart contracts, attackers can exploit contract resources to prevent other users

from executing normal operations within a certain period by monopolizing available re‐

sources. This can lock funds in the attacked contract. In a transfer application, users can

create a contract that does not accept tokens. If another contract needs to send tokens to

this contract address, and then it is able to transit to a new state, the contract will never

reach the new state because the transfer operation cannot be completed.

For example, in a transfer application, attacker users can create a contract, such as

contract B, that does not accept tokens. If another contract, such as A, needs to send tokens

attacker user CallBug contract

callFunc !

authorityTransfer !

func_callFunc

StartStart

T
im

e O
rd
er

func_callFunc
this_call: msg_sender = CallBug
func_authorityTransfer
require_this: msg_sender == CallBug
act_transfer
end_call

func_authorityTransfer

require_this: msg_sender ≠ CallBug

func_authorityTransfer:
msg_sender = attacker

authorityTransfer_end !

StartStart

callFunc_end !
Start Start

invoke
Callbug
Fail

invoke
Callbug
OK

Figure 8. Cross-contract invocation vulnerability model. (a) attacker user model; (b) CallBug
contract model.

Mathematics 2024, 12, 2431 14 of 24

Mathematics 2024, 12, 2431 14 of 24

(b)

Figure 8. Cross-contract invocation vulnerability model. (a) attacker user model; (b) CallBug con-

tract model.

Figure 9. Cross-contract invocation vulnerability simulation execution sequence.

CTL properties:

(a) E<> attacker.func_authorityTransfer && CallBug.act_transfer;

(b) E<> attacker.func_callFunc && CallBug.act_transfer.
(4)

We derive Formula (4), which indicates whether the CallBug contract reaches the

state act_transfer when an attacker user accesses func_authorityTransfer or func_callFunc. If

conditions (a) and (b) are not satisfied, it means that attacker users cannot directly or in-

directly invoke the function authorityTransfer() for transfer operations, indicating the ab-

sence of a cross-contract calling vulnerability in the contract CallBug. If condition (a) or

(b) is met, it implies that attacker users can cause the CallBug contract to reach the state

act_transfer by invoking the function authorityTransfer() or callFunc(), enabling direct or

indirect transfers. In such a case, it indicates the presence of a cross-contract calling vul-

nerability in this contract.

3.2.5. Denial of Service

In smart contracts, attackers can exploit contract resources to prevent other users

from executing normal operations within a certain period by monopolizing available re-

sources. This can lock funds in the attacked contract. In a transfer application, users can

create a contract that does not accept tokens. If another contract needs to send tokens to

this contract address, and then it is able to transit to a new state, the contract will never

reach the new state because the transfer operation cannot be completed.

For example, in a transfer application, attacker users can create a contract, such as

contract B, that does not accept tokens. If another contract, such as A, needs to send tokens

to the address of contract B before entering a new state, as contract B does not accept to-

kens, the transfer operation of contract A cannot be completed, and contract A will never

reach a new state.

The auction contract shown in code block 5 is used for bidding, and the function bid()

at line 5 is responsible for updating the latest bid situation. Firstly, it checks if the current

bid amount msg.value is greater than the highest bid in history highestBid, then it proceeds

attacker user CallBug contract

callFunc !

authorityTransfer !

func_callFunc

StartStart

T
im

e O
rd

er

func_callFunc
this_call: msg_sender = CallBug
func_authorityTransfer
require_this: msg_sender == CallBug
act_transfer
end_call

func_authorityTransfer

require_this: msg_sender CallBug

func_authorityTransfer:
msg_sender = attacker

authorityTransfer_end !
StartStart

callFunc_end !
Start Start

invoke
Callbug

Fail

invoke
Callbug

OK

Figure 9. Cross-contract invocation vulnerability simulation execution sequence.

However, if the attacker sends the message callFunc! to the CallBug contract, and
after receiving it, contract CallBug then calls the function callFunc() and reaches the state
func_callFunc. Since the function authorityTransfer() is called through the internal function
callFunc(), the value of the variable msg_sender is CallBug.address, thus the require statement
this == msg.sender in function authorityTransfer() is true, allowing the subsequent transfer
operations to be executed. Previously, the attacker is unable to invoke the function au-
thorityTransfer(), but now by first calling function callFunc(), it is able to call the function
authorityTransfer() to execute transfer operations.

CTL properties:

(a) E<> attacker.func_authorityTransfer && CallBug.act_transfer;
(b) E<> attacker.func_callFunc && CallBug.act_transfer.

(4)

We derive Formula (4), which indicates whether the CallBug contract reaches the
state act_transfer when an attacker user accesses func_authorityTransfer or func_callFunc.
If conditions (a) and (b) are not satisfied, it means that attacker users cannot directly or
indirectly invoke the function authorityTransfer() for transfer operations, indicating the
absence of a cross-contract calling vulnerability in the contract CallBug. If condition (a)
or (b) is met, it implies that attacker users can cause the CallBug contract to reach the
state act_transfer by invoking the function authorityTransfer() or callFunc(), enabling direct
or indirect transfers. In such a case, it indicates the presence of a cross-contract calling
vulnerability in this contract.

3.2.5. Denial of Service

In smart contracts, attackers can exploit contract resources to prevent other users from
executing normal operations within a certain period by monopolizing available resources.
This can lock funds in the attacked contract. In a transfer application, users can create
a contract that does not accept tokens. If another contract needs to send tokens to this
contract address, and then it is able to transit to a new state, the contract will never reach
the new state because the transfer operation cannot be completed.

For example, in a transfer application, attacker users can create a contract, such as
contract B, that does not accept tokens. If another contract, such as A, needs to send tokens
to the address of contract B before entering a new state, as contract B does not accept tokens,
the transfer operation of contract A cannot be completed, and contract A will never reach a
new state.

The auction contract shown in code block 5 is used for bidding, and the function bid()
at line 5 is responsible for updating the latest bid situation. Firstly, it checks if the current
bid amount msg.value is greater than the highest bid in history highestBid, then it proceeds to
refund the previous highest bidder. If both conditions are met and the refund is completed,
the action contract updates the highest bidder and the highest bid amount.

Mathematics 2024, 12, 2431 15 of 24

One attacker may create a POC contract to illegally win the bids. The POC contract
uses the function attack() to win the bid with the highest bid. When other users participate
in the bidding and offer the highest bid, the require statement at line 7 triggers the refund
operation in POC contract at line 19, i.e., the unnamed fallback function decorated with
payable. Due to the use of the function revert() in the function, the refund operation cannot
complete, causing the require condition at line 7 to always return false. As a result, the
subsequent codes at line 8 and 9 cannot be executed, allowing the POC contract to win the
bid at a lower price.

Code block 5. Solidity denial-of-service vulnerability sample code

1 contract Auction {
2 address public currentLeader;
3 uint256 public highestBid;
4
5 function bid() public payable {
6 require(msg.value > highestBid);
7 require(currentLeader.send(highestBid));
8 currentLeader = msg.sender;
9 highestBid = msg.value;
10 }
11 }
12
13 contract POC {
14 . . .
15 function attack() public payable {
16 Auction auction = Auction(auctionAddr);
17 auction.bid.value(msg.value)();
18 }
19 function () external payable {
20 revert();
21 }
22 }

The automata shown in Figure 10 depicts the interactions among the attacker user, bid-
der user, auction contract, and POC contract. Figure 11 illustrates its simulation execution
sequence. Normally, a bidder user in Figure 10c directly sends a message bid! to the auction
contract, specifying the bid amount variable msg_value = 10 and their address as msg_sender.
The attacker user in Figure 10a, in order to prevent other bidders from successfully placing
higher bids, sends a message attack! to the POC contract to call the function attack(). Upon
receiving the message attack?, the POC contract in Figure 10d internally sends a message
bid! to the auction contract, setting msg_value=20 and msg_sender to its own address.

When the auction contract in Figure 10b receives the message bid?, it checks whether
the condition msg_value > highestBid is true or not. As 20 > 10, the condition is true and
the auction automaton continues execution to state send_currentLeader. If the condition is
false, it returns to the state Start. The contract then checks if the current leader address is a
contract address; if not, it refunds the bid amount to the bidder user’s address. When the
user bids again with 40, triggering the function refund, the auction contract sends a message
fallback! to invoke the function fallback in the receiving contract.

Upon receiving the message fallback?, the POC contract sends a revert! to execute the
refund operation. The auction contract, upon receiving revert?, restores the account balance
and returns to the state Start. After the successful refund operation, it updates currentLeader
and highestBid, and returns to the state Start.

CTL properties:

E<> poc.revert_end && auction.require_false (5)

Mathematics 2024, 12, 2431 16 of 24

By verifying the presence of denial-of-service vulnerabilities in the contract through
the property (5), when the auction contract reaches the state require_false by executing the
7th line, the POC contract reaches the state revert_end after the function revert() is executed.
If the above situation exists, it means that the POC contract can successfully prevent higher
bids in the auction by rejecting payments.

Mathematics 2024, 12, 2431 16 of 24

(a) (b)

(c) (d)

Figure 10. Denial-of-service vulnerability model. (a) attacker user model; (b) POC contract model;

(c) bidder user model; (d) auction contract model.

Figure 11. Denial-of-service vulnerability simulation execution sequence.

CTL properties:

E<> poc.revert_end && auction.require_false (5)

By verifying the presence of denial-of-service vulnerabilities in the contract through

the property (5), when the auction contract reaches the state require_false by executing the

7th line, the POC contract reaches the state revert_end after the function revert() is executed.

If the above situation exists, it means that the POC contract can successfully prevent

higher bids in the auction by rejecting payments.

attacker user poc contract

attack !

func_attack:
msg_value = 20, msg_sender = POC

Start

Start

bid_end

bidder useraction contract

func_bid
require_value: 10 > 0
send_currentLeader: balance -= 0

Start Start

bid !
msg_value = 10,msg_sender = bidder

send_highestBid !

balance += 10

Start

Start

bid !

set_currentLeader:
currentLeader = bidder
set_hightBid:
hightestBid = 10, balance += 10
Start

func_bid
require_value: 20 > 10
send_currentLeader: balance -= 10

send_highestBid !

set_currentLeader: currentLeader = POC
set_hightBid: hightestBid = 20, balance += 20
Start

Start

msg_value = 40,msg_sender = bidder
bid !

func_bid
require_value: 40 > 20
send_currentLeader: balance -= 20

fallback !

call_fallback: balance += 20func_fallback
revert !

require_false

Start

revert_end

bidder
highestBid=10

OK

attacker
highestBid=20

OK

bidder
msg_value=40

Fail
highestBid=20

Figure 10. Denial-of-service vulnerability model. (a) attacker user model; (b) POC contract model;
(c) bidder user model; (d) auction contract model.

Mathematics 2024, 12, 2431 16 of 24

(a) (b)

(c) (d)

Figure 10. Denial-of-service vulnerability model. (a) attacker user model; (b) POC contract model;

(c) bidder user model; (d) auction contract model.

Figure 11. Denial-of-service vulnerability simulation execution sequence.

CTL properties:

E<> poc.revert_end && auction.require_false (5)

By verifying the presence of denial-of-service vulnerabilities in the contract through

the property (5), when the auction contract reaches the state require_false by executing the

7th line, the POC contract reaches the state revert_end after the function revert() is executed.

If the above situation exists, it means that the POC contract can successfully prevent

higher bids in the auction by rejecting payments.

attacker user poc contract

attack !

func_attack:
msg_value = 20, msg_sender = POC

Start

Start

bid_end

bidder useraction contract

func_bid
require_value: 10 > 0
send_currentLeader: balance -= 0

Start Start

bid !
msg_value = 10,msg_sender = bidder

send_highestBid !

balance += 10

Start

Start

bid !

set_currentLeader:
currentLeader = bidder
set_hightBid:
hightestBid = 10, balance += 10
Start

func_bid
require_value: 20 > 10
send_currentLeader: balance -= 10

send_highestBid !

set_currentLeader: currentLeader = POC
set_hightBid: hightestBid = 20, balance += 20
Start

Start

msg_value = 40,msg_sender = bidder
bid !

func_bid
require_value: 40 > 20
send_currentLeader: balance -= 20

fallback !

call_fallback: balance += 20func_fallback
revert !

require_false

Start

revert_end

bidder
highestBid=10

OK

attacker
highestBid=20

OK

bidder
msg_value=40

Fail
highestBid=20

Figure 11. Denial-of-service vulnerability simulation execution sequence.

Mathematics 2024, 12, 2431 17 of 24

3.2.6. Miner Privilege

The miner privilege vulnerability mainly refers to contract vulnerabilities that rely on
timestamps. Block timestamps are widely used in various conditional statements based on
time-changing states, such as generating random numbers and locking funds for a period
of time. If miners have the ability to slightly adjust the timestamp (the adjusted value is still
legal), and the smart contract mistakenly uses the block timestamp, this can have serious
consequences. Taking the lottery roulette contract code shown in the code block 6 as an
example, the function rollback at line 3 is used for a single bet. Firstly, the require statement
at line 4 is used to limit the player’s betting amount to meet the condition msg.value == 10
Ether. Then, the require statement in the 5th line is used to limit each block to only contain
one bet transaction of 10 Ether. Finally, the 7th line determines that if the current timestamp
is a multiple of 15, the player can win the full balance of the contract. Clearly, if miners help
players adjust timestamps, players will easily win.

Code block 6. Solidity miner privilege vulnerability sample code

1 contract Roulette {
2 . . .
3 function () public payable {
4 require(msg.value == 10 Ether);
5 require(now != pastBlockTime);
6 pastBlockTime = now;
7 if (now % 15 == 0) {
8 msg.sender.transfer(this.balance);
9 }
10 }
11 }

The automata for players, miners, and roulette contracts are shown in Figure 12.
Figure 13 illustrates its simulation execution sequence. The variable balance for each of these
three models is initialized to 100. The player and miner automata are mostly the same, but
miner users can control the timestamp now based on the current clock variable t, so the value
of now is assigned with a multiple of 15 (satisfying the condition for generating new blocks
within 900s of the previous block). After variables configuration, the miner automaton sets
the betting amount msg_value to 10 ether (accordingly both its account balance balance and
roulette contract balance balance[address] decreased by 10) and sends the message fallback!
to the roulette contract to call its function fallback. After receiving the fallback?, the roulette
automaton begins to execute the function fallback. The first step is to determine whether the
betting amount msg_value == 10 ether. If they are equal, the roulette automaton reaches
the state request_time. If the current timestamp now equals to passBlockTime, the roulette
automaton sends the message fallback_end!, returns the received betting amount 10 Ether
to the miner, and goes back to the state Start. If the current timestamp now is not equal to
pasteBlockTime, the roulette automaton updates pasteBlockTime=now and checks whether the
current timestamp now is a multiple of 15 or not. As miners can control the timestamp now,
if the condition now%15 == 0 is met, all balances of the roulette contract will be transferred
to the betting party, most likely to be miners, the roulette automaton reaches the state
player_win and sends the message fallback_end!. After receiving the message fallback_end?,
the miner automaton updates its balance. Clearly, because a miner automaton can set the
current timestamp now to a multiple of 15, it can always win the bet.

CTL properties:

A[] roulette.player_win imply miner.bid (6)

By analyzing the execution process of the above model, we can obtain property (6),
which is used to verify whether there is a mining privilege risk in the contract. It indicates
that if the roulette contract reaches the state player_win, the user is always the miner. If

Mathematics 2024, 12, 2431 18 of 24

this property is satisfied, it indicates that there is a hidden privilege risk for miners in the
roulette contract.

Mathematics 2024, 12, 2431 18 of 24

(a) (b)

(c)

Figure 12. Miner privilege vulnerability model. (a) player model; (b) miner model; (c) roulette con-

tract model.

Figure 13. Miner privilege vulnerability simulation execution sequence.

CTL properties:

A[] roulette.player_win imply miner.bid (6)

By analyzing the execution process of the above model, we can obtain property (6),

which is used to verify whether there is a mining privilege risk in the contract. It indicates

that if the roulette contract reaches the state player_win, the user is always the miner. If this

player roulette contract

fallback !

func_fallback
require_value: msg_value == 10
balance += 10, balances[roulette] += 10

require_time: now pastBlockTime
set_pastBlockTime: pastBlockTime = now

if_time: now%15 0
fallback_end !

bid

StartStart

Start

T
im

e O
rd

er

miner

Start

Start Start

msg_value = 10,
msg_sender = player,
balance -= 10, balances[player] -= 10

fallback !

now = 15,
msg_value = 10,
msg_sender = miner,
balance -= 10, balances[player] -= 10

bidfunc_fallback
require_value: msg_value == 10
balance += 10, balances[roulette] += 10

require_time: now pastBlockTime
set_pastBlockTime: pastBlockTime = now
if_time: now%15 == 0
balances[miner] += balance, balance = 0,
balances[roulette] = 0
player_win

fallback_end !

balance = balances[miner]

Start

x == 15

player
Fail

miner
Win

Figure 12. Miner privilege vulnerability model. (a) player model; (b) miner model; (c) roulette
contract model.

Mathematics 2024, 12, 2431 18 of 24

(a) (b)

(c)

Figure 12. Miner privilege vulnerability model. (a) player model; (b) miner model; (c) roulette con-

tract model.

Figure 13. Miner privilege vulnerability simulation execution sequence.

CTL properties:

A[] roulette.player_win imply miner.bid (6)

By analyzing the execution process of the above model, we can obtain property (6),

which is used to verify whether there is a mining privilege risk in the contract. It indicates

that if the roulette contract reaches the state player_win, the user is always the miner. If this

player roulette contract

fallback !

func_fallback
require_value: msg_value == 10
balance += 10, balances[roulette] += 10

require_time: now pastBlockTime
set_pastBlockTime: pastBlockTime = now

if_time: now%15 0
fallback_end !

bid

StartStart

Start

T
im

e O
rd

er

miner

Start

Start Start

msg_value = 10,
msg_sender = player,
balance -= 10, balances[player] -= 10

fallback !

now = 15,
msg_value = 10,
msg_sender = miner,
balance -= 10, balances[player] -= 10

bidfunc_fallback
require_value: msg_value == 10
balance += 10, balances[roulette] += 10

require_time: now pastBlockTime
set_pastBlockTime: pastBlockTime = now
if_time: now%15 == 0
balances[miner] += balance, balance = 0,
balances[roulette] = 0
player_win

fallback_end !

balance = balances[miner]

Start

x == 15

player
Fail

miner
Win

Figure 13. Miner privilege vulnerability simulation execution sequence.

4. Case Study

In order to illustrate the model and formal verification schemes described in Section 3,
this section takes the composite contracts of financial services as a case study. We use
UPPAAL to verify if the model has six types of security vulnerabilities and whether it meets

Mathematics 2024, 12, 2431 19 of 24

the business logic requirements. The experimental environment is configured with an
Intel i7-1165G7 2.80 GHz CPU with 16 GB of memory, running Windows 11 and UPPAAL
version 5.0.

Based on the Solidity code of the financial services composite contract, we model every
financial service and user as a automaton shown in Figure 14. The model is divided into
three layers, with a total of nine contracts. The lowest layer is the service contract layer for
providing financial services to the outside world, including four contracts, which are bank,
wallet, auction, and roulette. The bank contract at layer 3 of Figure 14 primarily includes
functions for recharging, withdrawing, and the destructor operation when this contract
becomes invalid. The wallet contract includes two types of transfer functions: the function
transfer for peer-to-peer transactions and the function transferToContract for transactions to
the other contracts. The function setOwner is utilized to designate the current owner of the
wallet. The functions enableTokenTransfer and disableTokenTransfer are employed to control
the wallet’s operational status, enabling or disabling the transfer capabilities as required. In
the auction contract, the function bid is used to obtain the bid amount, refund funds to the
previous highest bidder, and update the current successful bidder. In the roulette contract,
the function fallback is employed to transfer the entire balance of the contract to the winner
when the user’s lottery time meets the contract’s timestamp requirements.

Mathematics 2024, 12, 2431 19 of 24

property is satisfied, it indicates that there is a hidden privilege risk for miners in the rou-

lette contract.

4. Case Study

In order to illustrate the model and formal verification schemes described in Section

3, this section takes the composite contracts of financial services as a case study. We use

UPPAAL to verify if the model has six types of security vulnerabilities and whether it

meets the business logic requirements. The experimental environment is configured with

an Intel i7-1165G7 2.80 GHz CPU with 16 GB of memory, running Windows 11 and UP-

PAAL version 5.0.

Based on the Solidity code of the financial services composite contract, we model

every financial service and user as a automaton shown in Figure 14. The model is divided

into three layers, with a total of nine contracts. The lowest layer is the service contract

layer for providing financial services to the outside world, including four contracts, which

are bank, wallet, auction, and roulette. The bank contract at layer 3 of Figure 14 primarily

includes functions for recharging, withdrawing, and the destructor operation when this

contract becomes invalid. The wallet contract includes two types of transfer functions: the

function transfer for peer-to-peer transactions and the function transferToContract for trans-

actions to the other contracts. The function setOwner is utilized to designate the current

owner of the wallet. The functions enableTokenTransfer and disableTokenTransfer are em-

ployed to control the wallet’s operational status, enabling or disabling the transfer capa-

bilities as required. In the auction contract, the function bid is used to obtain the bid

amount, refund funds to the previous highest bidder, and update the current successful

bidder. In the roulette contract, the function fallback is employed to transfer the entire bal-

ance of the contract to the winner when the user’s lottery time meets the contract’s

timestamp requirements.

enableTT!

Wallet Contract

Start

enableTokenTransfer

disableTokenTransfer

transferToContract

transfer

setOwner

Bank Attacker Contract

Start
attackBank

fallback

Auction Contract

Start bid

Auction Attacker Contract

Start
attackAuction

fallback

Roulette Contract

Start fallback

Bank Contract

Start

recharge

withdraw

destroyContract

withdraw?recharge?

fallback!

fallback?

bid?

fallback!

enableTT? disableTT? transfer? setO?

fallback!

attackB? fallback?

recharge! withdraw!bid!

attackA? fallback?

Normal User

bid!

recharge!

withdraw! disableTT!

transfer!

Attacker

attackA!

attackB! enableTT!

disableTT!

transfer!

setO!

Miner

fallback!

fallback!

Service Contracts

Attacker Contracts

Users
！send message

？receive message

destroyContract?

transferTC?

destroyContract!

distroyContract!

transferTC!

enableTT!

transferTC!

Figure 14. Case studies of composite smart contracts for financial services.

In order to verify the dynamic behavior of the composite contract, as shown in the top
layer of Figure 14, in addition to the normal user, miner, and attacker are also designed.
The attack contracts in the intermediate layer include bank attacker contract and auction
attacker contract. Normal users interact with the four bottom-layer service contracts for
regular service communication. Miner users control the current timestamp to meet the
lottery time requirements of the roulette contract, making themselves the winners.

Mathematics 2024, 12, 2431 20 of 24

Attacker users can initiate attacks on service contracts either directly by sending
messages to the wallet contract such as enableTT!, disableTT!, setO!, transfer!, and transferTC!,
and to the bank contract with messages like destroyContract!, or by activating attack contracts
in the intermediate layer by sending messages like attackA! and attackB!. The bank attacker
contract can launch an attack on the bank contract using the function attackBank, repeatedly
calling its function withdraw (by sending the message withdraw!) to gain illicit profits,
and can also call the function destroyContract (by sending the message destroyContract!) to
destroy the bank contract. The auction attacker contract can initiate an attack on the auction
contract through the function attackAuction, which can keep it in a busy state for a certain
period to prevent other users from successfully bidding.

4.1. Security Vulnerability Properties Verification

Table 2 illustrates the CTL properties for security vulnerability verification. Bank
contracts may have security vulnerabilities such as reentrancy and exposure of privileged
functions. If the verification result of reentrancy vulnerability is true, it indicates that
the attacker can use the bank attacker contract to repeatedly call the function withdraw()
and achieve the goal of multiple withdrawals. The problem code is located at line 7 of
reentrancy sample code. The operation call.value() in the function withdraw() invokes the
fallback() of the payment contract, but the fallback() can call the function withdraw() again,
which causes duplicate transfers. If the verification result of privileged function exposure
is true, it indicates that both the attacker and the contract owner, i.e., all users, can perform
a deconstruction operation on the contract and obtain the full balance within the contract.
The problem code is shown at line 3 of privilege function exposure sample code, and the
important function destroyContract() lacks a modifier to restrict the caller when defined.

Code block 7. Solidity sample code of cross-contract invocation vulnerability

1 function transferToContract (address from, address to, unit256 amount, string
custom_fallback) public {

2 to.call.value(0) (bytes4 (keccak256 (custom_fallback)), from, amount);
3 }

Table 2. Security vulnerability verification results of the financial service composite contract case.

Contract Name Security Vulnerability CTL Properties Verification Result

Bank

Reentrancy E<> attacker.bank_withdraw2 &&
bank.withdraw_function True

Privilege function exposure
E<> bank.transfer_end && attacker.transfer_end True

E<> bank.transfer_end && owner.transfer_end True

Wallet

Access control

E<> wallet.disableTransfer && attacker.call_disable True

E<> wallet.enableTransfer && attacker.call_enable True

E<> wallet.disableTransfer && owner.call_disable False

E<> wallet.enableTransfer && owner.call_enable False

Cross-contract invocation
E<> attacker.func_setOwner && wallet.setOwner False

E<> attacker.func_transferTC && wallet.setOwner True

Auction Denial of service E<> attacker.revert_end && auction.require_false True

Roulette Miner privilege A[] roulette.player_win imply miner.bid True

The wallet contract may have access control and cross-contract invocation vulnera-
bilities. For the four properties pertaining to access control vulnerabilities, if properties of
line 4 and 5 in Table 2 both evaluate to true, and properties of line 6 and 7 both evaluate to
false, it can be verified that the contract contains vulnerabilities of this type. This indicates

Mathematics 2024, 12, 2431 21 of 24

that the attacker can perform switch operations on the wallet, while the contract owner
cannot. The code is located at line 14 of code block 2, where the condition in the modifier
onlyFromWallet is set as msg.sender != walletAddress, allowing an attacker’s address to meet
this condition and, thus, enabling them to set the wallet switch.

Regarding the cross-contract invocation vulnerability in Table 2, when the property
at line 8 in Table 2 evaluates to false and the property at line 9 in Table 2 evaluates to
true, it verifies the existence of a cross-contract invocation security vulnerability in the
wallet contract. This means that the attacker cannot directly set the contract owner, but can
indirectly achieve the change in the contract owner through the function transferToContract().
The code is located at line 2 of the code block 7 where the operation call.value in the function
transferToContract() accepts the called function name and address variables as parameters;
the attacker can exploit this parameter to circumvent the restriction that the caller must be
the contract itself, thereby achieving the invocation of any internal function of the contract,
such as setOwner(), allowing the attacker to utilize these parameters to invoke any internal
function setOwner() of the contract.

In the auction contract, the verification of the denial-of-service vulnerability shows
that the attacker can exploit the auction attacker contract to prevent the auction contract
from refunding the current bid, causing the update of the current highest bidder and the
highest bid operation at lines 4–5 to fail. Ultimately, when the auction deadline is reached,
the attacker can successfully bid at a lower price. The code is shown at line 7 of code block
5, where the refund of the current leader’s highest bid can be utilized by the receiving
contract to implement denial of payment, preventing other bidders from bidding.

In the roulette contract, the verification of miner privilege vulnerability shows that
miner users can alter the current timestamp. As long as there is a winning player, then
that player must be a miner user. According to the verification, the code is located at line 7
of code block 6, because the condition for sending contract balance to the winning player
depends on the current timestamp, which can be controlled by miner users.

4.2. Business Logic Properties Verification

To verify the business logic properties, corresponding CTL properties can be proposed
from the perspective of contract function design. As shown in Table 3, the property in row 1
is used to verify the correctness of the balance of all user accounts in the bank contract. For
example, if there is a situation where the bank contract’s own balance does not equal the
sum of each bank account balance, then the CTL property is satisfied, and the verification
result is passed, indicating an error in the bank contract. The CTL property can also be
used to find attackers. The property indicated in row 2 means that in any case, if the bank
contract’s own balance is 0, but the attacker contract’s balance is always greater than the
balance of all other accounts. If the CTL property is satisfied, it implies that the attacker
contract is the attacker.

Table 3. Business logic verification results of the financial service composite contract case.

Contract Name CTL Properties Verification Result

Bank

E<> bank.balance != bank.balances[bank.address] +
bank.balances[bank_attacker.address] +
bank.balances[attacker_user.address]

True

A[] bank.balance == 0 imply bank_attacker.balance >
attacker_user.balance && bank_attacker.balance > bank.balance True

Auction E<> msg_value == 40 && highestBid == 20 && auction.require_false
&& poc.revert_end True

Roulette A[] roulette.balance == 0 imply balances[miner.address] > 100 &&
balances[player1.address] <= 100 && balances[player2.address] <= 100 True

Mathematics 2024, 12, 2431 22 of 24

The CTL property for auction contract at row 3 can be utilized to identify contract
attackers when a specific bidding action occurs. This property indicates that both conditions,
msg_value == 40 and highestBid == 20, are satisfied simultaneously and at this point, the
auction contract executes the operation require_false, while the auction attacker contract
executes the operation revert_end. If such a scenario exists, it implies that the POC contract
with a bid amount of 20 is preventing the user with a bid amount of 40 from participating in
the auction by refusing to accept payment. Should this property verification pass, it would
suggest that the auction attacker contract is the attacker. Line 4 is the roulette contract,
which contains a CTL property that signifies when the contract’s balance is 100, and it
implies that the miner user’s balance exceeds 100 while each player user’s balance is less
than 100. By utilizing this property, it is possible to pinpoint the account address of the
malicious miner user.

To evaluate the verification efficiency of smart contracts, an experimental validation
was conducted on the banking case study presented in this chapter. The results, as depicted
in Figure 15, indicate that the verification time for individual properties does not exceed
10 milliseconds, and the overall verification efficiency is below 1 s, demonstrating that this
method is highly efficient and possesses practical applicability.

Mathematics 2024, 12, 2431 22 of 24

Table 3. Business logic verification results of the financial service composite contract case.

Contract

Name
CTL Properties

Verification

Result

Bank

E<> bank.balance != bank.balances[bank.address] + bank.bal-

ances[bank_attacker.address] + bank.balances[at-

tacker_user.address]

True

A[] bank.balance == 0 imply bank_attacker.balance > at-

tacker_user.balance && bank_attacker.balance > bank.bal-

ance

True

Auction
E<> msg_value == 40 && highestBid == 20 && auction.re-

quire_false && poc.revert_end
True

Roulette

A[] roulette.balance == 0 imply balances[miner.address] > 100

&& balances[player1.address] <= 100 && bal-

ances[player2.address] <= 100

True

The CTL property for auction contract at row 3 can be utilized to identify contract

attackers when a specific bidding action occurs. This property indicates that both condi-

tions, msg_value == 40 and highestBid == 20, are satisfied simultaneously and at this point,

the auction contract executes the operation require_false, while the auction attacker con-

tract executes the operation revert_end. If such a scenario exists, it implies that the POC

contract with a bid amount of 20 is preventing the user with a bid amount of 40 from

participating in the auction by refusing to accept payment. Should this property verifica-

tion pass, it would suggest that the auction attacker contract is the attacker. Line 4 is the

roulette contract, which contains a CTL property that signifies when the contract’s balance

is 100, and it implies that the miner user’s balance exceeds 100 while each player user’s

balance is less than 100. By utilizing this property, it is possible to pinpoint the account

address of the malicious miner user.

To evaluate the verification efficiency of smart contracts, an experimental validation

was conducted on the banking case study presented in this chapter. The results, as de-

picted in Figure 15, indicate that the verification time for individual properties does not

exceed 10 milliseconds, and the overall verification efficiency is below 1 s, demonstrating

that this method is highly efficient and possesses practical applicability.

Figure 15. Time consumed for properties verification.

5. Conclusions

This paper proposed a dynamic behavior analysis and verification method for com-

posite smart contracts, addressing six typical categories of security and business logic vul-

nerabilities that are not typically covered by traditional static analysis methods. Modeling

composite services using automata, with the incorporation of temporal factors, CTL is

employed to articulate business logic and security properties. Finally, a case study and

0 1 2 3 4 5 6 7 8 9

E<> attacker.bank_Withdraw2 && bank.withdraw_function

E<> bank.transfer_end && attacker.transfer_end

E<> bank.transfer_end && owner.transfer_end

E<> wallet.disableTransfer && attacker.call_disable

E<> wallet.enableTransfer && attacker.call_enable

E<> wallet.disableTransfer && owner.call_disable

E<> wallet.enableTransfer && owner.call_enable

A[] roulette.player_win imply miner.bid

E<> bank.balance != bank.balances[bank.address] +…

A[] bank.balance == 0 imply bank_attacker.balance >…

E<> msg_value == 40 && highestBid == 20 &&…

A[] roulette.balance == 0 imply balances[miner.address] >…

time consuming of verification (ms)

Figure 15. Time consumed for properties verification.

5. Conclusions

This paper proposed a dynamic behavior analysis and verification method for com-
posite smart contracts, addressing six typical categories of security and business logic
vulnerabilities that are not typically covered by traditional static analysis methods. Model-
ing composite services using automata, with the incorporation of temporal factors, CTL
is employed to articulate business logic and security properties. Finally, a case study and
time evaluation experiment involving a composite smart contract in financial services are
conducted by UPPAAL checker to validate the method. The case and experimental results
demonstrate that the proposed method can be utilized for analyzing and verifying the
security and business logic vulnerabilities of composite smart contracts.

In future work, the current verification framework is predicated on known attack
patterns and is incapable of verifying contract robustness against unknown types of attacks.
Future plans include analyzing and verifying contracts that may have potential vulnera-
bilities. Secondly, methods that integrate knowledge graph extraction will be utilized to
extract key information. Furthermore, the automatic translation of Solidity into UPPAAL
model files (.xml) will be implemented. These approaches will collectively enhance the
efficiency of model construction. All these works will be both meaningful and challenging.

Author Contributions: Conceptualization, J.J.; methodology, J.L.; software, W.Z.; formal analysis, J.L.;
writing—original draft, W.Z. and J.J.; writing—review and editing, J.J., H.L. and Y.D.; supervision,
Y.D. All authors have read and agreed to the published version of the manuscript.

Mathematics 2024, 12, 2431 23 of 24

Funding: This research was funded by Beijing Natural Science Foundation (grant number M22040),
the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety from
Beijing Technology and Business University (grant number BTBD-2021KF06), the Open Research Fund
of Yunnan Key Laboratory of Blockchain Application Technology (grant number 202105AG070005,
project number YNB202105), the Beijing Wuzi University Youth Research Fund (grant number
2022XJQN24), and the Science and Technique General Program of Beijing Municipal Commission of
Education (grant number KM201910037003).

Data Availability Statement: Data are contained within the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain Technology Overview. arXiv 2019, arXiv:1906.11078.
2. Zheng, Z.; Xie, S.; Dai, H.-N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An Overview on Smart Contracts: Challenges, Advances

and Platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]
3. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://assets.pubpub.org/d8wct41f/3161

1263538139.pdf (accessed on 18 July 2024).
4. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
5. Wohrer, M.; Zdun, U. Smart Contracts: Security Patterns in the Ethereum Ecosystem and Solidity. In Proceedings of the 2018

International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Campobasso, Italy, 20 March 2018.
6. Huang, Y.; Bian, Y.; Li, R.; Zhao, J.L.; Shi, P. Smart Contract Security: A Software Lifecycle Perspective. IEEE Access 2019, 7,

150184–150202. [CrossRef]
7. Wang, Z.; Jin, H.; Dai, W.; Choo, K.-K.R.; Zou, D. Ethereum Smart Contract Security Research: Survey and Future Research

Opportunities. Front. Comput. Sci. 2021, 15, 1–18. [CrossRef]
8. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.-B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and

Opportunities. IEEE Trans. Softw. Eng. 2019, 47, 2084–2106. [CrossRef]
9. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.-N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain

Smart Contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]
10. Mehar, M.I.; Shier, C.L.; Giambattista, A.; Gong, E.; Fletcher, G.; Sanayhie, R.; Kim, H.M.; Laskowski, M. Understanding a

Revolutionary and Flawed Grand Experiment in Blockchain: The DAO Attack. J. Cases Inf. Technol. (JCIT) 2019, 21, 19–32.
[CrossRef]

11. Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.-K.R.; Dehghantanha, A. Blockchain Smart Contracts Formalization: Approaches and
Challenges to Address Vulnerabilities. Comput. Secur. 2020, 88, 101654. [CrossRef]

12. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security (CCS), Vienna, Austria, 24–28 October 2016.

13. Amani, S.; Bégel, M.; Bortin, M.; Staples, M. Towards Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP), Los Angeles, CA, USA,
8–9 January 2018.

14. Wang, Y.; Lahiri, S.K.; Chen, S.; Pan, R.; Dillig, I.; Born, C.; Naseer, I. Formal Specification and Verification of Smart Contracts for
Azure Blockchain. arXiv 2018, arXiv:1812.08829.

15. Bai, X.; Cheng, Z.; Duan, Z.; Hu, K. Formal Modeling and Verification of Smart Contracts. In Proceedings of the 7th International
Conference on Software and Computer Applications, Kuantan, Malaysia, 8–10 February 2018.

16. Yang, Z.; Dai, M.; Guo, J. Formal Modeling and Verification of Smart Contracts with Spin. Electronics 2022, 11, 3091. [CrossRef]
17. Nelaturu, K.; Mavridoul, A.; Veneris, A.; Laszka, A. Verified Development and Deployment of Multiple Interacting Smart

Contracts with VeriSolid. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
Toronto, ON, Canada, 2–6 May 2020.

18. Almakhour, M.; Sliman, L.; Samhat, A.E.; Mellouk, A. A Formal Verification Approach for Composite Smart Contracts Security
Using FSM. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 70–86. [CrossRef]

19. Behrmann, G.; David, A.; Larsen, K.G. A Tutorial on Uppaal. In Formal Methods for the Design of Real-Time Systems; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 200–236.

20. Alqahtani, S.; He, X.; Gamble, R.; Mauricio, P. Formal Verification of Functional Requirements for Smart Contract Compositions
in Supply Chain Management Systems. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui,
HI, USA, 7–10 January 2020.

21. Nam, W.; Kil, H. Formal Verification of Blockchain Smart Contracts via ATL Model Checking. IEEE Access 2022, 10, 8151–8162.
[CrossRef]

22. So, S.; Lee, M.; Park, J.; Lee, H.; Oh, H. Verismart: A Highly Precise Safety Verifier for Ethereum Smart Contracts. In Proceedings
of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020.

23. Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, X.; Chen, T. DefectChecker: Automated Smart Contract Defect Detection by Analyzing
EVM Bytecode. IEEE Trans. Softw. Eng. 2022, 48, 2189–2207. [CrossRef]

https://doi.org/10.1016/j.future.2019.12.019
https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://assets.pubpub.org/d8wct41f/31611263538139.pdf
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1007/s11704-020-9284-9
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.3390/electronics11193091
https://doi.org/10.1016/j.jksuci.2022.08.029
https://doi.org/10.1109/ACCESS.2022.3143145
https://doi.org/10.1109/TSE.2021.3054928

Mathematics 2024, 12, 2431 24 of 24

24. Liu, Y.; Li, Y.; Lin, S.W.; Artho, C. Finding permission bugs in smart contracts with role mining. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Virtual, Republic of Korea, 18–22 July 2022.

25. Wang, W.; Huang, W.; Meng, Z.; Xiong, Y.; Miao, F.; Fang, X.; Tu, C.; Ji, R. Automated inference on financial security of
Ethereum smart contracts. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security), Anaheim, CA, USA, 9–11
August 2023.

26. Zhao, Y.Q.; Zhu, X.Y.; Li, G.Y.; Bao, Y.L. Time Constraint Patterns of Smart Contracts and Their Formal Verification. J. Softw. 2022,
33, 2875–2895.

27. Ethereum. Solidity Documentation. 2022. Available online: https://docs.soliditylang.org/en/v0.8.11 (accessed on 18 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.soliditylang.org/en/v0.8.11

	Introduction
	Related Work
	Composite Contract Model and Verification Method
	Smart Contract Automata Model
	Composite Smart Contract Formal Properties and Verification
	Reentrancy
	Access Control
	Privilege Function Exposure
	Cross-Contract Invocation
	Denial of Service
	Miner Privilege

	Case Study
	Security Vulnerability Properties Verification
	Business Logic Properties Verification

	Conclusions
	References

