
Citation: Cheng, X.; Wang, L.; Cao, Y.

Quadrature Based Neural Network

Learning of Stochastic Hamiltonian

Systems. Mathematics 2024, 12, 2438.

https://doi.org/10.3390/math12162438

Academic Editors: Guang Lin,

Zecheng Zhang and Christian Moya

Received: 30 June 2024

Revised: 31 July 2024

Accepted: 3 August 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Quadrature Based Neural Network Learning of Stochastic
Hamiltonian Systems
Xupeng Cheng 1, Lijin Wang 1 and Yanzhao Cao 2,*

1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
chengxupeng21@mails.ucas.ac.cn (X.C.); ljwang@ucas.ac.cn (L.W.)

2 Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
* Correspondence: yzc0009@auburn.edu

Abstract: Hamiltonian Neural Networks (HNNs) provide structure-preserving learning of Hamil-
tonian systems. In this paper, we extend HNNs to structure-preserving inversion of stochastic
Hamiltonian systems (SHSs) from observational data. We propose the quadrature-based models
according to the integral form of the SHSs’ solutions, where we denoise the loss-by-moment calcu-
lations of the solutions. The integral pattern of the models transforms the source of the essential
learning error from the discrepancy between the modified Hamiltonian and the true Hamiltonian
in the classical HNN models into that between the integrals and their quadrature approximations.
This transforms the challenging task of deriving the relation between the modified and the true
Hamiltonians from the (stochastic) Hamilton–Jacobi PDEs, into the one that only requires invoking
results from the numerical quadrature theory. Meanwhile, denoising via moments calculations
gives a simpler data fitting method than, e.g., via probability density fitting, which may imply
better generalization ability in certain circumstances. Numerical experiments validate the proposed
learning strategy on several concrete Hamiltonian systems. The experimental results show that both
the learned Hamiltonian function and the predicted solution of our quadrature-based model are
more accurate than that of the corrected symplectic HNN method on a harmonic oscillator, and the
three-point Gaussian quadrature-based model produces higher accuracy in long-time prediction
than the Kramers–Moyal method and the numerics-informed likelihood method on the stochastic
Kubo oscillator as well as other two stochastic systems with non-polynomial Hamiltonian functions.
Moreover, the Hamiltonian learning error εH arising from the Gaussian quadrature-based model is
lower than that from Simpson’s quadrature-based model. These demonstrate the superiority of our
approach in learning accuracy and long-time prediction ability compared to certain existing methods
and exhibit its potential to improve learning accuracy via applying precise quadrature formulae.

Keywords: stochastic Hamiltonian systems; Hamiltonian Neural Networks; Gaussian numerical
quadrature; Simpson’s formula

MSC: 65C30; 65P10; 62M45; 37M10

1. Introduction

The study of complex physical systems described by Hamiltonian mechanics often
requires a deep understanding of their underlying dynamics. The classical Hamiltonian for-
mulation provides a mathematical framework for characterizing the evolution of systems
in a deterministic manner. However, in many realworld scenarios, the dynamics are subject
to unpredictable fluctuations and noises, rendering traditional Hamiltonian models insuf-
ficient to capture their behavior accurately. To address this challenge, the emerging field
of stochastic Hamiltonian systems (SHSs) inference is gaining attention [1–3]. Stochastic
Hamiltonians account for the inherent randomness and uncertainties present in physi-
cal systems, allowing for a more comprehensive modeling approach. The application of

Mathematics 2024, 12, 2438. https://doi.org/10.3390/math12162438 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7716-7584
https://doi.org/10.3390/math12162438
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162438?type=check_update&version=1

Mathematics 2024, 12, 2438 2 of 19

stochastic Hamiltonian systems is prevalent in the real world. As described in [4], Langevin
introduced the Langevin equation, a stochastic Hamiltonian system, to explain the motion
of particles in the fluid caused by random pulses of fluid molecules colliding and to show
that the viscous drag is the average effect of these pulses. In the realm of control theory,
stochastic Hamiltonian systems play an important role in the extension of optimal control
to stochastic processes [5]. These systems also find applications in biology. For instance,
in the study of ion channel selectivity in biological systems, Seifi et al. [6] employed the
Spin–Boson model and a stochastic Hamiltonian model under classical noise to simulate
the behavior of ion channels. Inferring these stochastic Hamiltonian systems from observed
data has proven to be a complex task due to the nonlinearity and high-dimensional nature
of the underlying dynamics. In recent years, advancements in deep learning and neural
networks have opened up new avenues for tackling this problem. This paper focuses
on the application of neural networks to infer SHSs from available data, aiming to learn
the underlying dynamics of the observed processes. The goal is to estimate the drift and
diffusion Hamiltonian functions that govern the evolution of the SHSs.

Remarkable advancements have been achieved in the realm of learning deterministic
Hamiltonian systems. Chen et al. [7] introduced Neural ODE as a method for learning
ordinary differential equations (ODEs) from observed time series of states. These states
are assumed to be generated by the underlying ODE flow. The approach utilizes adjoint
augmented ODE solvers to compute the gradient of the loss function with respect to
the network parameters. For Hamiltonian systems, Greydanus et al. [8] proposed the
Hamiltonian Neural Networks (HNNs). HNNs employ a neural network Hnet(p, q) to
learn the Hamiltonian function H(p, q) instead of directly learning the vector field so that
the symplectic structure as well as certain conserved quantities related to the structure
of the underlying system can be extracted from data. The network assumes access to
time derivatives ṗ and q̇ and is trained to match these derivatives along the phase flow.
In their work [9], Chen et al. introduced Symplectic Recurrent Neural Networks (SRNNs),
which combine the principles of Neural ODE and recurrent neural networks to learn
the Hamiltonian from time series data in the state space. SRNNs exhibit robustness and
demonstrate good performance in learning separable Hamiltonian dynamics. Zhu et al. [10]
proved that Hamiltonian networks based on symplectic integrators possess network targets
and exhibit superior generalization ability and prediction accuracy compared to non-
symplectic networks. Jin et al. [11] developed SympNets, a novel class of symplectic
neural networks for learning Hamiltonian systems. SympNets can simulate any symplectic
mappings based on appropriate activation functions. In their work [12], Xiong et al.
addressed the problem of learning nonseparable Hamiltonian systems using neural ODE
with an augmented Hamiltonian system. Tong et al. [13] developed a lightweight and
efficient symplectic neural network based on Taylor series expansion and a fourth-order
symplectic Runge-Kutta integrator. This network is also designed to learn separable
Hamiltonian systems. In [14], David et al. developed a symplectic learning approach for
HNNs. They apply symplectic schemes in the loss function to train a modified Hamiltonian
and then deduce the true Hamiltonian using its relationship with the modified one. Chen
and Tao proposed the learning of exactly-symplectic maps in [15].

In recent years, a variety of approaches inferring stochastic differential equations
(SDEs) from data have arisen. Based on the framework of [7], several authors extended the
method to neural stochastic differential equations (neural SDEs) by incorporating stochas-
ticity into the dynamics. Tzen et al. [16] introduced a novel framework that combines neural
networks and Gaussian latent variables to model SDEs in the diffusion limit. Ref. [17]
presented a method for efficiently computing gradients and performing variational infer-
ence in models involving SDEs. Yildiz et al. [18] combined Gaussian processes and neural
networks to estimate the drift and diffusion coefficients in SDEs from sparse and noisy
data. Jia et al. [19] introduced neural jump SDEs, which integrate neural networks with
jump diffusion processes to model rare events and non-Gaussian dynamics. Kong et al. [20]
introduced the SDE-Net, treating the forward propagation of a deep neural network as the

Mathematics 2024, 12, 2438 3 of 19

evolution of a stochastic dynamic system governed by the Brownian motion. By adopting
the generative model of the SDE framework, they successfully addressed various image-
related challenges. Archibald et al. [21] presented a sample-wise back-propagation method
for training stochastic neural networks through a stochastic optimal control framework,
utilizing a discretized stochastic differential equation structure, and provided convergence
analysis with and without convexity assumptions. Gobet et al. [22] developed a neural
network-based method to estimate the parameters of scalar SDEs from low-frequency
data, improving traditional estimation techniques. Ref. [23] introduced a novel stochastic
differential equation framework for generative modeling that smoothly transforms data
distributions using noise injection, leveraging score-based generative modeling and diffu-
sion probabilistic modeling to achieve record-breaking performance in image generation
tasks. Liu et al. [24] proposed a supervised learning framework for training generative
models using a novel score-based diffusion model, avoiding issues of unsupervised train-
ing by generating labeled data through a training-free score estimation method, resulting
in improved sampling efficiency and performance. Meanwhile, some scholars explored
the integration of popular models with SDEs. Ref. [25] treated neural SDEs as a Bayesian
neural network with infinite depth, utilizing Bayesian inference to infer the drift and dif-
fusion coefficients. Kidger et al. [26] employed neural SDEs as the generator of a GAN
while using neural controlled differential equation (CDE) as the discriminator. These meth-
ods parameterize the drift and diffusion coefficients with neural networks, but different
perspectives and inference methods have led to the development of various neural SDE
models, such as those based on the Fokker–Planck equations associated with the underlying
SDEs [27–32] where [28–31] extended the driving process to non-Gaussian Lévy processes.
There are also other approaches leveraging the probability density of the latent processes
for inference such as the variational approaches [33,34], the numeric-informed maximum
likelihood method [35], and the normalizing flow techniques [36–40]. Methods extending
the ResNet approach and flow map operators to stochastic context emerge in [41,42], etc.,
and employing neural ODE via deriving dynamics of moments of SDEs’ solutions can be
found in [43].

For stochastic Hamiltonian systems, we propose a neural network learning approach
for extracting the drift and diffusion Hamiltonian functions from observational data, based
on expressing the solution in an integral form, and then applying numerical quadrature
formulae to approximate them. To deal with the stochasticity, we employ the moment
calculations of the solutions. Our contribution mainly lies in the generalization of the HNNs
to stochastic context, with a quadrature-based model structure that can leverage numerical
quadrature theory to improve the accuracy of HNN learning. Meanwhile, moments
calculations provide a direct and simple denoised loss and training strategy which may
benefit algorithm generalization. Numerical experiments on four Hamiltonian systems
give support to the proposed learning approach and showcase that it has better learning
accuracy and generalization ability compared to certain existing methods, and suggest its
potential for improving the learning effect by utilizing quadrature with higher accuracy.

The rest of the contents are organized as follows. Section 2 provides an introduction to
the problem statement relevant to the stochastic Hamiltonian systems. Section 3 presents the
design of the learning model, and network settings including the data acquisition, learning
strategy, as well as the derivation of the loss functions. Section 4 conducts numerical
experiments on four different Hamiltonian systems, illustrating the performance of the
learning algorithm. Section 5 lists some limitations of the current study, followed by a brief
conclusion in Section 6.

2. Problem Statement

Consider stochastic Hamiltonian systems [1,2], which are Stratonovich SDEs of the
following form

dyt = J−1∇H0(yt)dt + J−1∇H1(yt) ◦ dW(t), y(0) = y0, (1)

Mathematics 2024, 12, 2438 4 of 19

where yt ∈ Rd (d = 2m), Hr(y) (r = 0, 1) are smooth functions of y which are unknown,
W(t) is a standard real-valued Wiener process defined on a complete filtered probability

space {Ω, {Ft}t≥0, P} and J =

(
0 Im
−Im 0

)
with Im being the m-dimensional identity

matrix. It is proved that, almost surely, the phase flow of system (1) preserves the symplectic
structure [2].

Given observational data of yt on discrete time points in the time interval t ∈ [0, T],
we aim to detect the drift and diffusion Hamiltonian functions Hr(y) (r = 0, 1) via neural
networks, where the sign ofH1(y) or ∇H1(y) is supposed to be known (see, e.g., [35] for
similar prerequisite).

3. Methodology
3.1. Improving HNNs from a Quadrature Point of View

As mentioned above, one approach to improving the Hamiltonian Neural Networks
(HNNs) for structure-preserving learning of Hamiltonian systems is to use symplectic
integrators in the loss functions, namely to employ the Symplectic Hamiltonian Neural
Networks (SHNNs) [9,10,12]. However, there remains a certain discrepancy between the
learned and the true Hamiltonian functions. To minimize this error, [14] proposed to correct
the learned Hamiltonian H̆net according to the relationship between its theoretical value H̆
the true HamiltonianH, which is represented by the following Hamilton–Jacobi PDE [44]
when the midpoint rule is applied as the symplectic integrator in the loss function:

∂H̆
∂t

(w, t) = H
(

w +
1
2

J−1∇wH̆(w, t)
)

, (2)

where w = y(0)+y(t)
2 . For the PDE (2), Feng et al. [45] proposed a solution in the form of

a power series of t which was substituted into (2) to determine the unknown coefficients
in the series by comparing like powers of t on both sides of the equation, after Taylor
expanding the right-hand side of (2) at w. Thus, one can obtain (replacing t by the time
step h of the midpoint method)

H̆(w, h) = hG1(w) + h3G3(w) + · · ·+ h2r−1G2r−1(w) + . . . , (3)

where G1(w) = H(w), G3(w) = 1
24∇2H(w)

(
J−1∇H(w), J−1∇H(w)

)
, and so on. To

obtain a higher-order truncated approximation of the series, one needs complicated cal-
culations to find G2r−1(w) (r ≥ 3). Although symbolic computation programs can give
the inverted relation that representsH by H̆ from the truncated series, as was employed
in [14], higher order formulations ofH in terms of H̆ as well as its partial derivatives are
fairly difficult to obtain, which hinders obtaining higher-order approximations ofH based
on modifying H̆.

On the other hand, when we generalize the corrected SHNNs in [14] to structure-
preserving learning of stochastic Hamiltonian systems, the relation between H̆ andH0,H1
lies in the stochastic Hamilton–Jacobi PDE [3,46,47]

∂tH̆(w, t, ω) = H0

(
w +

1
2

J−1∇wH̆(w, t, ω)

)
dt +H1

(
w +

1
2

J−1∇wH̆(w, t, ω)

)
◦ dW(t), (4)

where ω ∈ Ω is a sample point in the probability space Ω. Although the closed form of the
solution to the SPDE (4) was given in [46], which is a series of multiple stochastic integrals,
it is very difficult to obtain the inverted expression ofH0 andH1 in terms of H̆.

For the considerations above, we propose to extend the HNNs to the stochastic context
from the quadrature point of view, aiming at achieving a learning accuracy comparable
to or even superior to the stochastic counterpart of corrected SHNNs. To elaborate this

Mathematics 2024, 12, 2438 5 of 19

approach, we first consider the following deterministic Hamiltonian system expressed in
integral form for t = T:

yT = y0 +
∫ T

0
J−1∇H(yt)dt. (5)

We use the fully connected neural network Hnet(y, θ) to approximate H(y) where
θ represents the learnable parameters in the network. We propose to construct the loss
function as follows

Loss =
1

N0

N0

∑
i=1

∥∥∥yT − y0 − I(yi
0, θ)

∥∥∥2

2
, (6)

where N0 is the number of observed initial values yi
0 (i = 1, . . . , N0), and I1(yi

0, θ) is the
approximation of

∫ T
0 J−1∇Hnet(yi

t, θ)dt via numerical quadrature, namely

∫ T

0
J−1∇Hnet(yi

t, θ)dt ≈
N

∑
n=0

An J−1∇Hnet(yi
tn

, θ) =: I(yi
0, θ), (7)

with quadrature nodes tn, weights An (n = 0, . . . , N), and yi
tn

are observations of yt at time
t = tn starting from the initial value yi

0. For such a loss function, we see that the discrepancy
between the network target, i.e., the function that makes the loss equal zero on arbitrary
training data [10], and the true HamiltonianH depends on the accuracy of the quadrature
formula applied, instead of being determined by the Hamilton–Jacobi PDE (2) fulfilled by
the network target H̆ andH in the corrected SHNN method. Therefore, it would be easier
to improve the learning accuracy via using quadrature formulae of higher accuracy in the
quadrature-based model, than via correcting H̆net based on the relation between H̆ and
H that is represented in a series form requiring complex calculations and finding inverse
mappings in the corrected SHNN method. Comparisons between the two approaches will
be conducted in the numerical experiments in Section 4.

To extend the quadrature-based model to a stochastic context, we still need certain
denoising methods, as is explained in the following subsections.

3.2. Neural Network Settings for SHSs

To learn the SHS (1), we parameterize the unknown Hamiltonian functionsH0(y) and
H1(y) by

Hnet0(y, θ0) = K2σ(K1y + b1) + b2, (8)

and
Hnet1(y, θ1) = K4σ(K3y + b3) + b4, (9)

respectively, where θ0 = {K1, K2, b1, b2}, θ1 = {K3, K4, b3, b4} are network learnable
parameters, and σ(·) is the activation function. We denote

fnet(yt, θ) = J−1∇Hnet0(yt, θ0) +
1
2

J−1∇2Hnet1(yt, θ1)J−1∇Hnet1(yt, θ1),

gnet(yt, θ) = J−1∇Hnet1(yt, θ1), (10)

with θ = (θ0, θ1). The solution of SHS (1) can be written in the following integral form for
t = T

yT = y0 +
∫ T

0
J−1∇H0(yt)dt +

∫ T

0

1
2

J−1∇2H1(yt)J−1∇H1(yt)dt

+
∫ T

0
J−1∇H1(yt)dW(t),

(11)

Mathematics 2024, 12, 2438 6 of 19

where, similar to (10), we write

f (y) = J−1∇H0(y) + J−1∇2H1(y)J−1∇H1(y),

g(y) = J−1∇H1(y)). (12)

In order to construct loss functions according to the Equation (11), we denoise it by
moments calculations. For a given fixed y0, taking expectations on (11) and using the Itô
isometry we obtain

E(yT |y0) = y0 + E
(∫ T

0
f (yt)dt|y0

)
, (13)

and

COV
(

yT − y0 −
∫ T

0
f (yt)dt

)
= E

(∫ T

0
g(yt)g(yt)

Tdt|y0

)
. (14)

Then, we build loss functions according to the equalities (13) and (14), that is,

Loss1 =
1

N0

N0

∑
i=1

∥∥∥E(yi
T |y

i
0)− yi

0 − I1(yi
0, θ)

∥∥∥2

2
, (15)

Loss2 =
1

N0

N0

∑
i=1

∥∥∥I2(yi
0, θ)− I3(yi

0, θ)
∥∥∥2

2
, (16)

where N0 is the number of observed initial values yi
0 (i = 1, . . . , N0), and I1(yi

0, θ) is the

approximation of E
(∫ T

0 f net(y
i
t, θ)dt|yi

0

)
via numerical quadrature, namely

E
(∫ T

0
f net(y

i
t, θ)dt|yi

0

)
≈

N

∑
n=0

AnE
(

f net(y
i
tn

, θ)|yi
0

)
=: I1(yi

0, θ), (17)

with quadrature nodes tn, weights An (n = 0, . . . , N), and yi
tn

are observations of yt at
time t = tn starting from the initial value yi

0. I2(yi
0, θ) is the approximation of the co-

variance COV
(

yi
T − yi

0 −
∫ T

0 f net(y
i
t, θ)dt

)
. For the covariance calculation, there arises the

double integral:

COV
(

yi
T − yi

0 −
∫ T

0
f net(y

i
t, θ)dt

)

= E

∫ T

0

(
yi

T
T
−

yi
0

T
− f net(y

i
t, θ)

)
dt
∫ T

0

(
yi

T
T
−

yi
0

T
− f net(y

i
s, θ)

)T

ds

 (18)

=
∫ T

0

∫ T

0
E

(yi
T

T
−

yi
0

T
− f net(y

i
t, θ)

)(
yi

T
T
−

yi
0

T
− f net(y

i
s, θ)

)T
dsdt,

for which we can derive the corresponding quadrature approximation

COV
(

yi
T − yi

0 −
∫ T

0
f net(y

i
t, θ)dt

)

≈
N

∑
n=0

N

∑
k=0

An AkE

(yi
T

T
−

yi
0

T
− f net(y

i
tn

, θ)

)(
yi

T
T
−

yi
0

T
− f net(y

i
tk

, θ)

)T
 =: I2(yi

0, θ). (19)

Mathematics 2024, 12, 2438 7 of 19

I3(yi
0, θ) is the approximation of E

(∫ T
0 gnet(y

i
t, θ)gnet(y

i
t, θ)Tdt|yi

0

)
. Similar to (17)

E
(∫ T

0
gnet(y

i
t, θ)gnet(y

i
t, θ)Tdt|yi

0

)
≈

N

∑
n=0

AnE(gnet(y
i
tn

, θ)gnet(y
i
tn

, θ)T |yi
0) =: I3(yi

0, θ). (20)

The expectation E in the loss functions can be approximated by taking the mean of M
samples, i.e.,

E(f net(y
i
tn

, θ)|yi
0) ≈

1
M

M

∑
j=1

f net(y
i,j
tn

, θ), (21)

where yi,j
tn

(j = 1, . . . , M) is the observation of yt at time tn on the j-th sample path
starting from yi

0. That is to say, there are M observed sample paths starting from each
yi

0 (i = 1, . . . , N0) to comprise the data set

D =
{(

yi
0, yi,j

t0
, . . . , yi,j

tN
, yi,j

T

)
|i = 1, . . . , N0, j = 1, . . . , M

}
, (22)

and then E(yi
T |yi

0) in (15) can be approximated by

E(yi
T |y

i
0) ≈

1
M

M

∑
j=1

yi,j
T . (23)

3.3. Training Algorithm

The learning process is summarized in the Algorithm 1.

Algorithm 1: Process of learning drift and diffusion Hamiltonian functions.

Input: Numerical quadrature formula with weights {An}N
n=0 and nodes {tn}N

n=0,
trajectory data set of SHS
D = {(yi

0, yi,j
t0

, ..., yi,j
tn

, yi,j
T)|i = 1, . . . , N0, j = 1, . . . , M}.

Parameters :Hnet0 with training parameters θ0 andHnet1 with training parameters
θ1; learning rate lr, number of training epochs nepoch.

Output: Hnet0 andHnet1.

1 for l = 1 : nepoch do

2 I1(yi
0, θ)←

N
∑

n=0
AnE

(
f net(y

i
tn

, θ)|yi
0

)
;

3 Loss1 ← 1
N0

N0
∑

i=1

∥∥E(yi
T |yi

0)− yi
0 − I1(yi

0, θ)
∥∥2

2,;

4 I2(yi
0, θ)←

N
∑

n,k=0
An AkE

((
yi

T
T −

yi
0

T − f net(y
i
tn

, θ)

)(
yi

T
T −

yi
0

T − f net(y
i
tk

, θ)

)T
)

;

5 I3(yi
0, θ)←

N
∑

n=0
AnE

(
gnet(y

i
tn

, θ)gnet(y
i
tn

, θ)T
)

;

6 Loss2 ← 1
N0

N0
∑

i=1

∥∥I2(yi
0, θ)− I3(yi

0, θ)
∥∥2

2.;

7 Loss← Loss1 + Loss2;

8 optimize Loss by Adam and update θ0 and θ1;

9 end

4. Numerical Experiments

The experiments in this section are conducted on a system running Windows 11, and
within a virtual environment including Python 3.9.7 and Torch 1.12.0, which is created by
using Anaconda.

Mathematics 2024, 12, 2438 8 of 19

4.1. Example 1

This example is aimed to compare the learning accuracy, as well as the prediction
ability between the corrected SHNN method [14] and our quadrature-based learning model.
The underlying Hamiltonian system is the harmonic oscillator

dyt = J−1∇H(y)dt, y(0) = y0, (24)

where y = (p, q)T , andH(y) = 1
2 (p2 + q2).

We denote the fully connected neural network that approximates the Hamiltonian in
the quadrature-based model byHnet, and the one in the corrected SHNN model by H̆net.
BothHnet and H̆net have a single layer of width 16, utilizing tanh(·) as the activation func-
tion. We use Adam with learning rate lr = 0.001 as the optimizer and take epoch = 50000.
For training, we set t ∈ [0, T], the number of initial values N0 = 1200, and the initial
points {yi

0}1200
i=1 are uniformly sampled from the region D0 = [−4, 4] × [−4, 4]. For the

quadrature-based model, we choose three different quadrature formulae: the Simpson’s
rule, the two-point Gaussian quadrature, and the three-point Gaussian quadrature. The
weights and nodes for them on the interval t ∈ [0, T] are listed in the Table 1.

Table 1. Nodes and weights of three different quadrature formulae.

Simpson Two-Point Gaussian Three-Point Gaussian

Nodes {0, 1
2 , 1} × T { 1

2 −
1

2
√

3
, 1

2 + 1
2
√

3
} × T { 1

2 −
√

15
10 , 1

2 , 1
2 +

√
15

10 } × T

Weights { 1
6 , 2

3 , 1
6} × T { 1

2 , 1
2} × T { 5

18 , 4
9 , 5

18} × T

Denoting the above six different nodes other than t0 = 0 in increasing order by
t1, . . . , t6, respectively, we generate the training data set

D0 =
{(

yi
0, yi

t1
, yi

t2
, yi

t3
, yi

t4
, yi

t5
, yi

t6
, yi

T

)
|i = 1, . . . , 1200

}
by using numerical methods on the harmonic oscillator (24) with tiny time-step 0.001,
starting from each sampled initial value yi

0 (i = 1, . . . , 1200).
The loss function of the corrected SHNN model by using the midpoint method as the

symplectic integrator is

LossSHNN =
1

N0

N0

∑
i=1

∥∥∥∥∥yi
t3
− yi

0

h
− J−1∇H̆net(

yi
t3
+ yi

0

2
)

∥∥∥∥∥
2

2

,

where we choose t0 = 0 and t3 as the observation time pair in the corrected SHNN model
whereby h = t3 − t0. After training, H̆net needs to be corrected according to the following
relation [14]

H = H̆ − h2

24
∇2H̆

(
J−1∇H̆, J−1∇H̆

)
+O

(
h4
)

to make H̆net closer to the true HamiltonianH.
In this example, we use the following average learning error εH defined in [14] to

measure the accuracy of approximating H by the learned Hnet in the corrected SHNN
method and our quadrature-based learning model:

εH = ⟨|Hnet − H − ⟨Hnet − H⟩V |⟩V , (25)

where the term ⟨ f ⟩V denotes the average value of the function f over the region V. This
error representation aims to eliminate the additional constant arising from deriving the
Hamiltonians from their gradients in the learning process. In our numerical experiment,
we take V = [−3, 3]× [−3, 3].

Mathematics 2024, 12, 2438 9 of 19

The Table 2 lists the average errors of learningH, resulting from using the quadrature-
based model with three different quadrature formulae, as well as from the corrected
SHNN method:

Table 2. Average learning errors by different quadrature formulae and corrected SHNN.

Corrected SHNN Simpson Two-Point Gaussian Three-Point Gaussian

εH(h = 0.8) 4.3× 10−3 1.8× 10−3 1.4× 10−3 1.3× 10−3

εH(h = 0.4) 7.1× 10−4 5.0× 10−4 3.9× 10−4 3.0× 10−4

Hereby, we have calculated the learning errors by h = 0.4 and h = 0.8, where h is the
time step used in LossSHNN . It can be seen that the three quadrature-based models provide
more accurate H than the corrected SHNN method, and the learning accuracy increases
with using more precise quadrature formulae in the quadrature-based models.

Figure 1 compares the evolution of p(t) on [0, 200] predicted by the corrected SHNN model
and three quadrature-based models with the true solution, for h = 0.8 and y0 = (0.2, 0.2)T .
Figure 2 compares predictions of p(t) on t ∈ [0, 400] made by the corrected SHNN method
and the three-point Gaussian quadrature-based model with that of the true solution, for
h = 0.4 and y0 = (1, 0)T . It is clear that the quadrature-based models behave better in
long-term predictions than the corrected SHNN, and the three-point Gaussian quadrature
provides the best learning accuracy among the three quadrature formulae.

0 2 4 6 8 10
t

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

p(
t)

190 192 194 196 198 200
t

Simpson
Gauss2
Gauss3
corrected SHNN
true solution

Figure 1. Predicted trajectories of p(t) by different learning methods, with h = 0.8, y0 = (0.2, 0.2)T .

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

p(
t)

390 392 394 396 398 400
t

Gauss3
corrected SHNN
true solution

Figure 2. Predicted trajectories of p(t) by different learning methods, with h = 0.4, y0 = (1, 0)T .

4.2. Example 2

In this example, we consider the stochastic Kubo oscillator [2] which is a benchmark
stochastic Hamiltonian system with Hamiltonian functions

H0(p, q) = p2 + q2, H1(p, q) =
3

20
(p2 + q2), (26)

where y = (p, q)T ∈ R2. For the training we let T = 1, M = 100, the number of initial
values N0 = 1200, and the initial points {yi

0}1200
i=1 are sampled uniformly from the region

D0 = [−4, 4]× [−4, 4]. We generate the training data set

Mathematics 2024, 12, 2438 10 of 19

D1 =
{(

yi
0, yi,j

t1
, yi,j

t2
, yi,j

t3
, yi,j

t4
, yi,j

t5
, yi,j

t6
, yi,j

1

)
|i = 1, . . . , 1200, j = 1, . . . , 100

}
(27)

by using numerical methods on the Kubo oscillator system with appropriate tiny step sizes,
starting from each sampled yi

0 (i = 1, . . . , 1200).
The fully connected layers K1 and K3 in the network are of size Nwidth ×Ninput = 16× 2

and initialized as K1, K3 ∼ N
(

0,
√

2/
[
Nwidth × Ninput

])
. The fully connected layers

K2 and K4 are initialized as K2, K4 ∼ N
(

0,
√

2/
[
Nwidth × Noutput

])
with size Noutput ×

Nwidth = 1× 16. b1 and b3 are Nwidth = 16-dimensional bias and initialized as b1, b3 ∼
N
(
0,
√

2/Nwidth
)
. b2 and b4 are Noutput = 1-dimensional bias and initialized as b2, b4 ∼

N
(
0,
√

2/Noutput
)
. tanh(x) is chosen as the activation function, and we train the network

with epoch = 20000.
The three panels in Figure 3, from left to right, depict the comparison in the phase space

between the true solutions and the predicted solutions generated by the neural network
using the Simpson quadrature, the two-point and the three-point Gaussian quadrature,
respectively. Hereby. we take t ∈ [0, 10], and both the predicted and the true solutions are
obtained by applying the midpoint scheme to the learned and the true system, respectively,
with time step hprediction = 0.01 for prediction and time step htrue = 0.001 for simulating the
true solution, accordingly. It can be seen that the three-point Gaussian quadrature implies
the most accurate prediction.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c)
Pridicted Solution
Ture Solution
initial point

−1.0 −0.5 0.0 0.5 1.0
p

−1.0

−0.5

0.0

0.5

1.0

q

(a)

Figure 3. Predicted and true solutions in the phase space. (a–c) are the true solution in the phase
space compared to predicted solution based on the Simpson, two-point, and three-point Gaussian
quadrature, respectively.

Figure 4 compares the evolution of the predicted and true p(t) and q(t) on t ∈ [0, 10],
whereby the network predictions in the left, middle and right panels are based on the
Simpson, the two-point and the three-point Gaussian quadrature, respectively. Again, the
prediction accuracy increases from left to right.

Figure 5 visualizes the learning error distribution of H0 (panels (a1), (b1), (c1)) and
H1 (panels (a2), (b2), (c2)) in the phase space, whereby the results in panels (ai), (bi),
and (ci) (i = 1, 2) are obtained using the Simpson, the two-point and the three-point
Gauss quadrature, respectively. Here, the error function between the learned Hamiltonian
Hnet(p, q) and the true HamiltonianH(p, q) is defined as [14]:

εH(p, q) = |Hnet(p, q)−H(p, q)− ⟨Hnet −H⟩V |, (28)

which is a function of y = (p, q)T and equals the average learning error (25) after taking
average over the region V. In this experiment, we take V = [−1, 1]× [−1, 1]. It can be seen
from the figures that the learning errors of the Hamiltonian functions are distributed in
an almost uniform way in the phase space, meaning that there are no particular regions

Mathematics 2024, 12, 2438 11 of 19

exhibiting significantly large or small errors. Meanwhile, it is clear that utilizing the two-
and three-point Gaussian quadrature can produce better learning accuracy.

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p

(b)

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p

(c)
p(t)-Pridicted Solution
p(t)-Ture Solution

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

q(t)-Pridicted Solution
q(t)-Ture Solution

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

p

(a)

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

q

Figure 4. Evolution of the predicted and true solutions. (a–c) are the true solution of p(t) and
q(t) compared to predicted solution based on the Simpson, two-point, and three-point Gaussian
quadrature, respectively.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c1)

−0
.01

69
7

−0
.01

29
7

−0
.00

89
6

−0
.00

495

−0.00094

−0.00094

0.00306

0.0
03
06

0.00707

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c2)

−0.01322

−0.00878

−0
.00

434

0.00010

0.0
04
54

0.00899

0.0
13
430.
01
78
7

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b1)

−0.00757

−0
.00
51
4

−0.00514

−0.00514
−0
.00

270

−0.00270

−0
.00

026

−0.0
0026
0.0

021
8

0.
00

46
1

0.00705

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b2)
−0.01258

−0.00895

−0.00532

−0.00169
0.00193

0.00556

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(a1)

−0.
015

89 −0.01589
−0.01043

−0.00496

0.00050

0.00597

0.0
114

3

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(a2)

−0.05
21

−0.0
408

−0.
029

6 −0.0183

−0.0071

0.004
2

0.0154

0.0
26
7

Figure 5. Learning error distribution in the phase space. (a1–c1) are the error distributions for H0.
(a2–c2) are the error distributions forH1. (ai), (bi), and (ci) (i = 1, 2) are obtained using the Simpson,
the two-point and the three-point Gauss quadrature, respectively.

Mathematics 2024, 12, 2438 12 of 19

The average learning error (25) on the region V = [−1, 1]× [−1, 1] forHnet0 andHnet1
by using the three different quadrature formulae are listed in the following table:

The errors reported in Table 3 are the average results from ten tests. It is evident that
the three-point Gaussian quadrature yields the best accuracy, while the error by Simpson’s
formula is the largest among the three.

Table 3. Average learning errors by different quadrature formulae.

Simpson Two-Point Gaussian Three-Point Gaussian

εH0 0.0190 0.0045 0.0041
εH1 0.0170 0.0070 0.0054

Now we compare our method with that in [48], the idea of which is as follows. For the
stochastic differential equations with learnable parameters θ

dxt = f (xt, θ)dt + σ(xt, θ)dWt, (29)

the following Kramers–Moyal formula holds:

f (xt, θ) = lim
∆t→0

E
[

Xt+∆t − Xt

∆t
|Xt = xt

]
,

σ2(xt, θ) = lim
∆t→0

E
[
(Xt+∆t − Xt)2

∆t
|Xt = xt

]
. (30)

Based on (30), the loss functions are built as

lossdri f t =
N0

∑
i=0

∥∥∥∥∥ f (xi
0, θ)−

N̂

∑
j=1

[
xi,j

1 − xi
0

∆t

]∥∥∥∥∥
2

,

lossdi f f usion =
N0

∑
i=0

∥∥∥∥∥σ2(xt, θ)−
N̂

∑
j=1

[
(xi,j

1 − xi
0)

2

∆t

]∥∥∥∥∥
2

, (31)

where we take N0 = 1200, N̂ = 500 in our experiments, and {(xi
0, xi,j

1)|i = 1, . . . , N0,

j = 1, . . . , N̂} is the training data set. {xi,j
1 }N̂

j=1 are numerically generated from the initial

point xi
0 with time step ∆t and the initial points {xi

0}
N0
i=1 are uniformly sampled from the

region D0 = [−4, 4]× [−4, 4]. We take ∆t = 0.01. Both f (x, θ) and σ(x, θ) are single-layer,
fully connected neural networks with a width of 32. The training epoch is 1000, and the
learning rate of Adam is 0.001. For convenience, we will refer to the above method of
learning SDEs as the Kramers–Moyal method. Next, we compare the predicted solution
obtained by the Kramers–Moyal method with that of our quadrature model.

Figure 6 draws the predicted (p(t), q(t)) on [0, 10] arising from the two learning
methods, as well as from the true system. It is obvious that the three-point Gaussian-based
model provides better learning accuracy and possesses stronger generalization ability than
the Kramers–Moyal method.

4.3. Example 3

In this subsection, we consider the stochastic Hamiltonian system with Hamiltonians:

H0(p, q) =
1
2

p2 − 4cos(q), H1(p, q) =
1
2

q + 0.2sin(q), (32)

Mathematics 2024, 12, 2438 13 of 19

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(a)

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p

(b)

0 2 4 6 8 10
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c)
Pridicted (Kramers–Moyal)
Pridicted (Gauss3)
Ture Solution
initial point
p(t)-Pridicted (Kramers–Moyal)
p(t)-Pridicted (Gauss3)
p(t)-Ture Solution
q(t)-Pridicted (Kramers–Moyal)
q(t)-Pridicted (Gauss3)
q(t)-Ture Solution

Figure 6. Predicted (p(t), q(t)) on [0, 10] by the Kramers–Moyal method and the quadrature
based model. (a) is the comparison in phase space. (b) is a comparison of p(t) and (c) is a comparison
of q(t).

The setup of training data and neural network is the same as in Example 2.
Figure 7 displays the comparison between ∂Hi

∂q and Hneti
∂q (i = 0, 1), by using the three

mentioned quadrature in the learning, where the panels from left to right correspond to
Simpson’s rule, the two-point and three-point Gauss quadrature formula, respectively.

−4 −3 −2 −1 0 1 2 3 4
q

−4

−3

−2

−1

0

1

2

3

4

(c)
∂Hnet0/∂q
∂H0/∂q
5∂Hnet1/∂q
5∂H1/∂q

−4 −3 −2 −1 0 1 2 3 4
q

−4

−3

−2

−1

0

1

2

3

4

(a)

−4 −3 −2 −1 0 1 2 3 4
q

−4

−3

−2

−1

0

1

2

3

4

(b)

Figure 7. Comparison of ∂H
∂q resulted from different quadrature formulae. (a–c) are resulted from the

Simpson, two-point, and three-point Gaussian quadrature, respectively.

The left, middle and right panels in Figure 8 illustrate the comparison between the true
and predicted phase trajectories generated by the neural network using the Simpson’s rule,
two-point and three-point Gaussian quadrature, respectively, on t ∈ [0, 10]. The predicted
and true solutions are simulated by the midpoint discretization on the learned and true
system, respectively, with time step hprediction = 0.01 for prediction, and htrue = 0.001 for
the true solution. Obviously, the Gaussian quadrature formulae provide better prediction
than Simpson’s rule, and the three-point Gaussian quadrature behaves the best.

−2 −1 0 1 2
p

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c)
prediction
true solution

−2 −1 0 1 2
p

−1.5

−1.0

−0.5

0.0

0.5

1.0

q

(a)

−2 −1 0 1 2
p

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b)

Figure 8. Predicted and true solutions in the phase space. (a–c) are the true solution in the phase
space compared to predicted solution based on the Simpson, two-point, and three-point Gaussian
quadrature, respectively.

Mathematics 2024, 12, 2438 14 of 19

In Figure 9, the spread of the learning error function (28) in the phase space forHnet0
resulting from the Simpson’s rule, the two-point, and the three-point Gaussian quadrature
formulae, are illustrated in the panels (a1), (b1) and (c1), respectively, and those forHnet1
are shown in (a2), (b2) and (c2), accordingly.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c1)

−0.
014

43−0.0
0998

−0.005
54

−0.00109

−0.00109

0.00336

0.00336

0.00336

0.00780

0.00780

0.01225

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(c2)

−0
.0
03

12
0

−0
.0
02

09
6

−0.001072

−0.000049

0.0
00
97
5

0.000975

0.0
01
99
9

0.
00
30
23

0.
00

40
47

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(a1)

−0.0
2854

−0.
020

30

−0.01206
−0

.0
03

82

0.00442

0.00442

0.01266

0.01266

0.02090

0.02090

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(a2)

−0
.01
41
2

−0
.00
82
5

−0.00239

−0.
002

390.00347

0.00347

0.00934

0.
00

93
4

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b1)

−0.04206
−0.031

55

−0.02104

−0.02104

−0.01053

−0.01053

−0.00002

−0.00002

0.01048

0.01048

0.02099

0.02099
0.03150

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

q

(b2)

−0.
009

48

−0.0
057

3

−0.00197

0.00
178

0.00554

0.0
092

9

Figure 9. Learning error distribution in the phase space. (a1–c1) are the error distributions for H0.
(a2–c2) are the error distributions forH1. (ai), (bi), and (ci) (i = 1, 2) are obtained using the Simpson,
the two-point and the three-point Gauss quadrature, respectively.

The average learning error (25) on the region V = [−1, 1]× [−1, 1] forHnet0 andHnet1
by using the three different quadrature formulae are listed in the following table:

The errors presented in Table 4 are the mean values from ten tests. The advantage of
the Gaussian quadrature formulae, especially the three-point one is evident.

Table 4. Average learning errors by different quadrature formulae.

Simpson Two-Point Gaussian Three-Point Gaussian

εH0 0.0146 0.0090 0.0043
εH1 0.0095 0.0057 0.0002

4.4. Example 4

In this example, we compare our method with the numerics-informed likelihood
method given in [35], which simulates the probability density function of y based on the
Euler–Maruyama scheme, and we also compare with the Kramers–Moyal method. The
considered stochastic Hamiltonian system is the same as that in Example 3, which can be
written explicitly as the Itô (equivalent with Stratonovich) form:

dqt = pt dt, (33)

dpt = b(qt, pt) dt + σ(qt, pt) dWt, (34)

where y = (p, q)T , b(qt, pt) = −4 sin(qt), and σ(qt, pt) = −
(

1
2 + 0.2 cos(qt)

)
. As described

in [35], when using the likelihood method, Equation (33) is assumed to be known, while b
and σ are unknown.

Mathematics 2024, 12, 2438 15 of 19

In the experiment, we build the fully connected neural networks bnet(y) and σnet(y) to
approximate b(y) and σ(y), respectively. Both bnet(y) and σnet(y) have 2 layers each with
50 neurons, and employ the exponential linear unit (ELU) as the activation function. The
loss function for training bnet and σnet by the likelihood method is

Loss = − 1
N0

N0

∑
i=1

(
(pi

h − pi
0 − bnet(qi

h, pi
0)h)

2

2σnet((qi
h, pi

0))
2

+ log|hσnet((qi
h, pi

0))
2|+ log(2π)

)
,

for which we set h = 0.01, and the number of initial values N0 = 20000. As in [35],
{pi

0}
N0
i=1 and {qi

h}
N0
i=1 are regarded as initial observations which we sample uniformly from

V0 = [−4, 4]× [−4, 4]. The values {pi
h}

N0
i=1 are generated as in [35] using an approximated

adjoint symplectic Euler–Maruyama method applied to (33) and (34) with a tiny step size
h0 = 0.001, over 10 steps, where the fixed {qi

h}
N0
i=1 are applied to approximate {qi

k·h0
}N0

i=1
(for all k = 0, . . . , 9) appearing in the 10 steps numerical simulation. The training epoch is
200, the learning rate of Adam is 0.01, and the batch size is 32. The setup of training data
and neural network for the Kramers–Moyal method is the same as in Example 2. Next, we
compare the bnet and σnet obtained by the above likelihood method and the Kramers–Moyal
method with the results from our method in Example 3.

Figure 10 compares the learned bnet(q) and σnet(q) by using the likelihood method,
the Kramers–Moyal method, the three-point Gaussian quadrature based method, with the
true b(q) and σ(q), in the left and right panels, respectively.

−4 −2 0 2 4
q

−2.5

0.0

2.5

b

−4 −2 0 2 4
q

−0.6

−0.4

σ

likelihood
true
Kramers–Moyal
Gauss3

Figure 10. Approximationsof b and σ by the likelihood method, the Kramers–Moyal method and the
quadrature-based model.

Figure 11 draws the predicted q(t) on [0, 20] arising from the three learning methods
as well as from the true system. It is obvious that the three-point Gaussian-based model
provides better learning accuracy and possesses stronger generalization ability than the
likelihood method and the Kramers–Moyal method.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−2

−1

0

1

2

q(
t)

path with likelihood
true path
path with Gauss3
paths_with Kramers–Moyal

Figure 11. Predicted q(t) on [0, 20] by the likelihood method, the Kramers–Moyal method and the
quadrature-based model.

Figure 12 illustrates the probability density functions (PDFs) of q(t) at three time points
estimated using 100 trajectories generated from 100 initial points with q0 ∼ N (0, 1/10),
p0 = 0 with respect to the system learned by the likelihood and the quadrature based

Mathematics 2024, 12, 2438 16 of 19

model. It can be seen that the three-point Gaussian quadrature-based model produces good
estimates of the PDFs for both small and large time points t, while the likelihood method
only gives an approximate PDF for a small t (e.g., t = 0.5).

−1 0 1
x

0.0

0.5

1.0

ρ(
x)

t=0.5

−1 0 1
x

t=1.0

−1 0 1
x

t=10.0 Gauss3
true
likelihood

Figure 12. Probability density function ρ(x) of q(t) at times t = 0.5, 1.0, 10.0, starting with q0 ∼
N (0, 1/10), p0 = 0.

4.5. Example 5

In the last example, we consider the system where the Hamiltonian functions are

H0(p, q) =
p2 + pq + q
1 + (p + q)2 , H1(p, q) = 0.1 ln(1 + p2 + q2), (35)

on which we compare our method with the Kramers–Moyal method. The configuration of
the training data and neural network is the same as in Example 1, except that we take a
smaller T = 0.5 for the quadrature model. The setup of training data and neural network for
the Kramers–Moyal method is the same as in Example 2. Next, we illustrate the predicted
solution by the Kramers–Moyal method and our quadrature-based model.

Figure 13 draws the predicted (p(t), q(t)) on [0, 10] arising from the two learning meth-
ods, as well as from the true system. It is evident that the three-point Gaussian-based model
behaves better in accuracy and generalization ability than the Kramers–Moyal method.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
p

−2.0

−1.5

−1.0

−0.5

0.0

0.5

q

(a)

0 2 4 6 8 10
t

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

p

(b)

0 2 4 6 8 10
t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

q

(c)
Pridicted (Kramers–Moyal)
Pridicted (Gauss3)
Ture Solution
initial point
p(t)-Pridicted (Kramers–Moyal)
p(t)-Pridicted (Gauss3)
p(t)-Ture Solution
q(t)-Pridicted (Kramers–Moyal)
q(t)-Pridicted (Gauss3)
q(t)-Ture Solution

Figure 13. Predicted (p(t), q(t)) on [0, 10] by the Kramers–Moyal method and the quadrature
based model. (a) is the comparison in phase space. (b) is a comparison of p(t) and (c) is a comparison
of q(t).

4.6. Summary

Examples 1, 2, 4 and 5 contribute to comparing our method with the existing SHNN
method, the numerics-informed likelihood method and the Kramers–Moyal method ap-
plied to deterministic/stochastic harmonic Hamiltonian oscillators as well as the other two
SHSs with non-polynomial Hamiltonian functions. Experimental results show the superi-
ority of our method in learning accuracy and long-time prediction, which may essentially
result from the quadrature-based model structure and the moment denoising technique.
Examples 2 and 3 make a comparison among the applications of three different quadrature
formulae in the model, including the Simpson’s rule, the two-point and three-point Gaus-
sian quadrature formulae. It is shown that the learning accuracy and the prediction ability
of our method increase with employing more precise quadrature formulae.

Mathematics 2024, 12, 2438 17 of 19

5. Limitations of the Study

There are still several limitations of the study that should be mentioned. First, a
rigorous theoretical convergence analysis is needed for a more insightful observation of
the algorithm. Second, we have discussed the case of SHSs with a single noise, while
the application of our method to systems with multiple noises may encounter complex
calculations in moments of denoising. Third, the utilization of moments calculations
necessitates larger datasets than path-wise fitting.

6. Conclusions

We proposed a neural network learning method for detecting the drift and diffusion
Hamiltonian functions of stochastic Hamiltonian systems from data, where the loss func-
tions are built upon the integral formulation of the system solution with the integrals being
approximated by numerical quadrature formulae, and the stochasticity being ‘removed’ via
moments calculations. Numerical experiments show the effectiveness of the methodology
and indicate that the learning accuracy of the proposed models can be improved by em-
ploying quadrature formulae of higher accuracy. Moreover, the numerical comparison with
the corrected SHNN method, the numerics-informed likelihood method and the Kramers–
Moyal method on four concrete Hamiltonian systems show better accuracy and stronger
generalization ability of our models. This may mainly be owed to the integral formulation
of the loss that enables a more feasible reduction in the learning error via precise quadrature
formulae instead of through the complex Hamilton–Jacobi approach by classical models on
one hand, and the simple moment fitting method rather than intricate denoising technique
on the other hand, which enlarges the possibility of better generalization.

The proposed models generalize the HNNs for deterministic Hamiltonian systems to
stochastic context and provide a new way of improving the accuracy and prediction ability
of the HNNs from the integral point of view.

Acknowledging the prevalence of multiple noise phenomena in real-world scenarios,
our future work will consider expanding the method to SHSs featuring high-dimensional
noises. Moreover, the theoretical convergence analysis of the algorithm for a deeper
exploration of the inherent nature of the method will be a topic of our further investigation.

Author Contributions: Methodology, X.C., L.W. and Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: The first and second authors are supported by the National Natural Science Foundation of
China (NNSFC No.11971458). The third author is supported by the U.S. Department of Energy under
the grant number DE-SC0022253.

Data Availability Statement: The data that support the finding of this study are openly available in
GitHub at https://github.com/nirynok/Quadrature-model.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Bismut, J.M. Mécanique aléatoire. In Ecole d’Eté de Probabilités de Saint-Flour X—1980. Lecture Notes in Mathematics; Hennequin,

P.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 929.
2. Milstein, G.N.; Tretyakov, M.V.; Repin, Y.M. Numerical methods for stochastic systems preserving symplectic structure. SIAM J.

Numer. Anal. 2002, 40, 1583–1604. [CrossRef]
3. Wang, L.J. Variational Integrators and Generating Functions for Stochastic Hamiltonian Systems. Ph.D. Thesis, Karlsruhe Institute

of Technology, Baden-Württemberg, Germany, 2007.
4. Lewis, J.T.; Maassen, H. Hamiltonian models of classical and quantum stochastic processes. In Quantum Probability and Applications

to the Quantum Theory of Irreversible Processes, Proceedings of the International Workshop, Villa Mondragone, Italy, 6–11 September 1982;
Springer: Berlin/Heidelberg, Germany, 1984; pp. 245–276.

5. Yong, J.; Zhou, X.Y. Maximum Principle and Stochastic Hamiltonian Systems. In Stochastic Controls: Hamiltonian systems and HJB
Equations; Karatzas, I., Yor, M., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; pp. 101–153.

https://github.com/nirynok/Quadrature-model
http://doi.org/10.1137/S0036142901395588

Mathematics 2024, 12, 2438 18 of 19

6. Seifi, M.; Soltanmanesh, A.; Shafiee, A. Mimicking classical noise in ion channels by quantum decoherence. Sci. Rep. 2024,
14, 16130. [CrossRef] [PubMed]

7. Chen, T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary diferential equations. In Proceedings of the Advances
in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 6571–6583.

8. Greydanus, S.; Dzamba, M.; Yosinski, J. Hamiltonian Neural Networks. In Proceedings of the Conference on Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

9. Chen, Z.D.; Zhang, J.Y.; Arjovsky, M.; Bottou, L. Symplectic Recurrent Neural Networks. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

10. Zhu, A.Q.; Jin, P.Z.; Tang, Y.F. Deep Hamiltonian networks based on symplectic integrators. arXiv 2020, arXiv:2004.13830.
11. Jin, P.Z.; Zhang, Z.; Zhu, A.Q.; Tang, Y.F.; Karniadakis, G.E. SympNets: Intrinsic structure preserving symplectic networks for

identifying Hamiltonian systems. Neural Netw. 2020, 132, 166–179. [CrossRef] [PubMed]
12. Xiong, S.Y.; Tong, Y.J.; He, X.Z.; Yang, S.Q.; Yang, C.; Zhu, B. Nonseparable Symplectic Neural Networks. In Proceedings of the

International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
13. Tong, Y.J.; Xiong, S.Y.; He, X.Z.; Pan, G.H.; Zhu, B. Symplectic neural networks in Taylor series form for Hamiltonian systems.

J. Comput. Phys. 2021, 437, 110325. [CrossRef]
14. David, M.; Méhats, F. Symplectic Learning for Hamiltonian Neural Networks. J. Comput. Phys. 2023, 494, 112495. [CrossRef]
15. Chen, R.Y.; Tao, M.L. Data-driven prediction of general Hamiltonian dynamics via learning exactly-symplectic maps. In Proceed-

ings of the 38th International Conference on Machine Learning, Virtual, 8–24 July 2021; pp. 1717–1727.
16. Tzen, B.; Raginsky, M. Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit. arXiv 2019,

arXiv:1905.09883.
17. Li, X.; Wong, T.L.; Chen, T.Q.; Duvenaud, D. Scalable Gradients and Variational Inference for Stochastic Differential Equations.

In Proceedings of the 2nd Symposium on Advances in Approximate Bayesian Inference, Vancouver, BC, Canada, 8 December 2019.
18. Yildiz, C.; Heinonen, M.; Intosalmi, J.; Mannerstrom, H.; Lahdesmaki, H. Learning stochastic differential equations with gaussian

processes without gradient matching. In Proceedings of the IEEE 28th International Workshop on Machine Learning for Signal
Processing, Aalborg, Denmark, 17–20 September 2018.

19. Jia, J.T.; Benson, A.R. Neural Jump Stochastic Differential Equations. In Proceedings of the Conference on Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 9843–9854.

20. Kong, L.K.; Sun, J.M.; Zhang, C. SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates. In Proceedings of the
37th International Conference on Machine Learning, Online, 13–18 July 2020.

21. Archibald, R.; Bao, F.; Cao, Y.; Sun, H. Numerical analysis for convergence of a sample-wise backpropagation method for training
stochastic neural networks. SIAM J. Numer. Anal. 2024, 62, 593–621. [CrossRef]

22. Gobet, E.; Hoffmann, M.; Reiß, M. Nonparametric Estimation of Scalar Diffusions Based on Low Frequency Data. Ann. Stat. 2004,
32, 2223–2253. [CrossRef]

23. Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-based generative modeling through stochastic
differential equations. arXiv 2020, arXiv:2011.13456.

24. Liu, Y.; Yang, M.; Zhang, Z.; Bao, F.; Cao, Y.; Zhang, G. Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation. JMLMC 2024, 5, 1–13. [CrossRef]

25. Xu, W.; Chen, R.T.; Li, X.; Duvenaud, D.K. Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations. In
Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, Virtual, 28–30 March 2022.

26. Kidger, P.; Foster, J.; Li, X.; Oberhauser, H.; Lyons, T. Neural SDEs as Infinite-Dimensional GANs. In Proceedings of the
International Conference on Machine Learning, Online, 18–24 July 2021; pp. 5453–5463.

27. Chen, X.L.; Wang, H.; Duan, J.Q. Detecting stochastic governing laws with observation on stationary distributions. Phys. D
Nonlinear Phenom. 2023, 448, 133691. [CrossRef]

28. Chen, X.L.; Yang, L.; Duan, J.Q.; Karniadakis, G.E. Solving inverse stochastic problems from discrete particle observations using
the Fokker–Planck equation and physics informed neural networks. SIAM J. Sci. Comput. 2021, 43, B811–B830. [CrossRef]

29. Dai, M.; Duan, J.Q.; Hu, J.Y.; Wen, J.H.; Wang, X.J. Variational inference of the drift function for stochastic differential equations
driven by Lévy processes. Chaos 2022, 32, 061103. [CrossRef] [PubMed]

30. Li, Y.; Duan, J.Q. A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise. Phys. D
Nonlinear Phenom. 2021, 417, 132830. [CrossRef]

31. Lu, Y.B.; Li, Y.; Duan, J.Q. Extracting stochastic governing laws by non-local Kramers Moyal formulae. Philos. Trans. R. Soc. A
2022, 380, 20210195. [CrossRef] [PubMed]

32. Solin, A.; Tamir, E.; Verma, P. Scalable inference in SDEs by direct matching of the Fokker–Planck-Kolmogorov equation. In
Proceedings of the Conference on Neural Information Processing Systems, Online, 6–14 December 2021.

33. Opper, M. Variational inference for stochastic differential equations. Ann. Phys. 2019, 531, 1800233. [CrossRef]
34. Ryder, T.; Golightly, A.; McGough, S.; Prangle, D. Black-box variational inference for stochastic differential equations. In

Proceedings of the 35th International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018;
Volume 80, pp. 4423–4432.

http://dx.doi.org/10.1038/s41598-024-67106-6
http://www.ncbi.nlm.nih.gov/pubmed/38997398
http://dx.doi.org/10.1016/j.neunet.2020.08.017
http://www.ncbi.nlm.nih.gov/pubmed/32890788
http://dx.doi.org/10.1016/j.jcp.2021.110325
http://dx.doi.org/10.1016/j.jcp.2023.112495
http://dx.doi.org/10.1137/22M1523765
http://dx.doi.org/10.1214/009053604000000797
http://dx.doi.org/10.1615/JMachLearnModelComput.2024051346
http://dx.doi.org/10.1016/j.physd.2023.133691
http://dx.doi.org/10.1137/20M1360153
http://dx.doi.org/10.1063/5.0095605
http://www.ncbi.nlm.nih.gov/pubmed/35778146
http://dx.doi.org/10.1016/j.physd.2020.132830
http://dx.doi.org/10.1098/rsta.2021.0195
http://www.ncbi.nlm.nih.gov/pubmed/35719068
http://dx.doi.org/10.1002/andp.201800233

Mathematics 2024, 12, 2438 19 of 19

35. Dietrich, F.; Makeev, A.; Kevrekidis, G.; Evangelou, N.; Bertalan, T.; Reich, S.; Kevrekidis, I.G. Learning effective stochastic
differential equations from microscopic simulations: Linking stochastic numerics to deep learning. Chaos 2023, 33, 023121.
[CrossRef] [PubMed]

36. Deng, R.Z.; Chang, B.; Brubaker, M.A.; Mori, G.; Lehrmann, A.M. Modeling continuous stochastic processes with dynamic
normalizing flows. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver,
BC, Canada, 6–12 December 2020; No. 654, pp. 7805–7815.

37. Guo, L.; Wu, H.; Zhou, T. Normalizing Field Flows: Solving forward and inverse stochastic differential equations using
Physics-Informed flow model. J. Comput. Phys. 2022, 461, 11120244. [CrossRef]

38. Hodgkinson, L.; van der Heide, C.; Roosta, F.; Mahoney, M.W. Stochastic Normalizing Flows. arXiv 2020, arXiv:2002.09547.
39. Papamakarios, G.; Nalisnick, E.; Rezende, D.J.; Mohamed, S.; Lakshminarayanan, B. Normalizing flows for probabilistic modeling

and inference. J. Mach. Learn. Res. 2021, 22, 1–64.
40. Urain, J.; Ginesi, M.; Tateo, D.; Peters, J. Imitationflow: Learning deep stable stochastic dynamic systems by normalizing

flows. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,
25–29 October 2020.

41. Chen, Y.; Xiu, D.B. Learning stochastic dynamical systems via flow map operator. J. Comput. Phys. 2024, 508, 112984. [CrossRef]
42. Qin, T.; Wu, K.L.; Xiu, D.B. Data-driven governing equations approximation using deep neural networks. J. Comput. Phys. 2019,

395, 620–635. [CrossRef]
43. O’Leary, J.; Paulson, J.A.; Mesbah, A. Stochastic physics-informed neural ordinary differential equations. J. Comput. Phys. 2022,

468, 111466. [CrossRef]
44. Hairer, E.; Lubich, C.; Wanner, G. Symplectic Integration of Hamiltonian Systems. In Geometric Numerical Integration; Bank, R.,

Graham, R.L., Stoer, J., Varga, R., Yserentant, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 179–236.
45. Feng, K.; Wu, H.M.; Qin, M.Z.; Wang, D.L. Construction of canonical difference schemes for Hamiltonian formalism via generating

functions. J. Comp. Math. 1989, 7, 71–96.
46. Deng, J.; Anton, C.A.; Wong, Y.S. High-order symplectic schemes for stochastic Hamiltonian systems. Commun. Comput. Phys.

2014, 16, 169–200. [CrossRef]
47. Hong, J.L.; Ruan, J.L.; Sun, L.Y.; Wang, L.J. Structure-preserving numerical methods for stochastic Poisson systems. Commun.

Comput. Phys. 2021, 29, 802–830. [CrossRef]
48. Feng, L.; Gao, T.; Dai, M.; Duan, J. Auto-SDE: Learning effective reduced dynamics from data-driven stochastic dynamical

systems. arXiv 2022, arXiv:2205.04151.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1063/5.0113632
http://www.ncbi.nlm.nih.gov/pubmed/36859209
http://dx.doi.org/10.1016/j.jcp.2022.111202
http://dx.doi.org/10.1016/j.jcp.2024.112984
http://dx.doi.org/10.1016/j.jcp.2019.06.042
http://dx.doi.org/10.1016/j.jcp.2022.111466
http://dx.doi.org/10.4208/cicp.311012.191113a
http://dx.doi.org/10.4208/cicp.OA-2019-0084

	Introduction
	Problem Statement
	Methodology
	Improving HNNs from a Quadrature Point of View
	Neural Network Settings for SHSs
	Training Algorithm

	Numerical Experiments
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Summary

	Limitations of the Study
	Conclusions
	References

