Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation
Abstract
:1. Introduction
- ;
- there exists a vector such that for all the function is monotone for .
- is a continuous function and there exist positive numbers such that in and for all .
- , with , is a function and there exists such that in , , , , and the mapis strictly decreasing.
- .
- ()
- for all , being .Put
- One has that, for all such that , there exists satisfying one of the following conditions:
- ;
- ,if .
2. Mathematical Background
2.1. Setting of Function Spaces
- 1.
- ;
- 2.
- if , then ;
- 3.
- if , then .
2.2. Sub-Super Solutions with Variational Structure
3. Main Results
- Case 1: Let us assume that , then
- for all , being and the first eigenvalue of .
- Set
- one has that, for all such that , there exists , satisfying one of the following conditions:
- ;
- ,
- if .
- .
4. Conclusions
- nonlocal operators, such as the fractional p-Laplacian;
- non-homogeneous operators, such as the a-Laplacian, in the framework of the Sobolev spaces, or the -Laplacian, where the presence of Young’s functions in the divergence operator could raise new and interesting mathematical questions;
- nonlocal term also in the right-hand side, as in [33], with possible blow-up phenomenons;
- the variable exponent also in the nonlocal term.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchhoff, G.R. Vorlesungen über Mathematiche Physik: Mechanik; Teuber: Leipzig, Germany, 1876. [Google Scholar]
- Carrier, G.F. On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 1945, 3, 157–165. [Google Scholar] [CrossRef]
- Lions, J.L. On some questions in boundary value problems of mathematical physics. N.-Holl. Math. Stud. 1978, 30, 284–346. [Google Scholar]
- Alves, C.O.; Covei, D.P. Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 2015, 23, 1–8. [Google Scholar] [CrossRef]
- Arcoya, D.; Leonori, T.; Primo, A. Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 2013, 127, 87–104. [Google Scholar] [CrossRef]
- Corrêa, F.J.S.A. On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 2004, 59, 1147–1155. [Google Scholar] [CrossRef]
- Corrêa, F.J.S.A.; Menezes, S.D.B.; Ferreira, J. On a class of problems involving a nonlocal operator. Appl. Math. Comput. 2004, 147, 475–489. [Google Scholar] [CrossRef]
- Jiang, R.; Zhai, C. Properties of unique positive solutions for a class of nonlocal semilinear elliptic equations. Topol. Methods Nonlinear Anal. 2017, 50, 669–682. [Google Scholar] [CrossRef]
- Yan, B.; Ren, Q. Existence, uniqueness and multiplicity of positive solutions for some nonlocal singular elliptic problems. Electron. J. Differ. Equ. 2017, 2017, 21. [Google Scholar]
- Yan, B.; Wang, D. The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 2016, 442, 72–102. [Google Scholar] [CrossRef]
- Chipot, M.; Lovat, B. On the asymptotic behaviour of some nonlocal problems. Positivity 1999, 3, 65–81. [Google Scholar] [CrossRef]
- Chipot, M.; Lovat, B. Some remarks on nonlocal elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996). Nonlinear Anal. 1997, 30, 4619–4627. [Google Scholar] [CrossRef]
- Chipot, M.; Rodrigues, J.F. On a class of nonlocal nonlinear elliptic problems. RAIRO Modél. Math. Anal. Numér. 1992, 26, 447–467. [Google Scholar] [CrossRef]
- Dai, Q. Iterative method for Kirchhoff-Carrier type equations and its applications. J. Differ. Equ. 2021, 271, 332–342. [Google Scholar] [CrossRef]
- Rădulescu, V.D.; Repovš, D.D. Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis; Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Rajagopal, K.; Růžička, M. Mathematical modelling of electrorheological fluids. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
- Růžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Oh, J.S.; Choi, S.B. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids. J. King Saud Univ.-Sci. 2017, 29, 390–400. [Google Scholar] [CrossRef]
- Aboulaich, R.; Meskine, R.D.; Souissi, A. New diffusion models in image processing. Comput. Math. Appl. 2008, 56, 874–882. [Google Scholar] [CrossRef]
- Alaa, H.; Alaa, N.E.; Bouchriti, A.; Charkaoui, A. An improved nonlinear anisotropic model with p(x)-growth conditions applied to image restoration and enhancement. Math. Meth. Appl. Sci. 2024, 47, 7546–7575. [Google Scholar] [CrossRef]
- Charkaoui, A.; Ben-Loghfyry, A.; Zeng, S. Nonlinear Parabolic Double Phase Variable Exponent Systems with Applications in Image Noise Removal. Appl. Math. Model. 2024, 132, 495–530. [Google Scholar] [CrossRef]
- Fragnelli, G. Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 2010, 367, 204–228. [Google Scholar] [CrossRef]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 1986, 50, 675–710. [Google Scholar] [CrossRef]
- Zhikov, V.V.; Kozlov, S.M.; Oleĭnik, O.A. Homogenization of Differential Operators and Integral Functionals; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Fan, X.L.; Zhang, Q.H.; Zhao, D. Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 2005, 302, 306–317. [Google Scholar] [CrossRef]
- Fan, X.L. Remarks on eigenvalue problems involving the p(x)-Laplacian. J. Math. Anal. Appl. 2009, 352, 85–98. [Google Scholar] [CrossRef]
- Kesavan, S. Symmetrization and Applications; Series in Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2006; Volume 3. [Google Scholar]
- Talenti, G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 1976, 110, 353–372. [Google Scholar] [CrossRef]
- Candito, P.; Gasiński, L.; Livrea, R.; Júnior, J.R.S. Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian. Adv. Nonlinear Anal. 2022, 11, 357–368. [Google Scholar] [CrossRef]
- Gasiński, L.; Júnior, J.R.S. Multiplicity of positive solutions for an equation with degenerate nonlocal diffusion. Comput. Math. Appl. 2019, 78, 136–143. [Google Scholar] [CrossRef]
- Gasiński, L.; Júnior, J.R.S. Nonexistence and multiplicity of positive solutions for an equation with degenerate nonlocal diffusion. Bull. Lond. Math. Soc. 2020, 52, 489–497. [Google Scholar] [CrossRef]
- Gasiński, L.; Júnior, J.R.S.; Siciliano, G. Positive solutions for a class of nonlocal problems with possibly singular nonlinearity. J. Fixed Point Theory Appl. 2022, 24, 15. [Google Scholar] [CrossRef]
- Brézis, H.; Nirenberg, L. H1 versus C1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 1993, 317, 465–472. [Google Scholar]
- Candito, P.; Carl, P.S.; Livrea, R. Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations. Adv. Differ. Equ. 2014, 19, 1021–1042. [Google Scholar] [CrossRef]
- Candito, P.; Carl, S.; Livrea, R. Multiple solutions for quasilinear elliptic problems via critical points in open sublevels and truncation principles. J. Math. Anal. Appl. 2012, 395, 156–163. [Google Scholar] [CrossRef]
- Candito, P.; Guarnotta, U.; Livrea, R. Existence of two solutions for singular Φ-Laplacian problems. Adv. Nonlinear Stud. 2022, 22, 659–683. [Google Scholar] [CrossRef]
- Carl, S.; Motreanu, D. Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. Nonlinear Anal. 2008, 68, 2668–2676. [Google Scholar] [CrossRef]
- Gasiński, L.; Krech, I.; Papageorgiou, N.S. Positive solutions for parametric (p(z),q(z))-equations. Open Math. 2020, 18, 1076–1096. [Google Scholar] [CrossRef]
- Kyritsi, S.T.; Papageorgiou, N.S. Pairs of positive solutions for p-Laplacian equations with combined nonlinearities. Commun. Pure Appl. Anal. 2009, 8, 1031–1051. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Pairs of positive solutions for resonant singular equations with the p-Laplacian. Electron. J. Differ. Equ. 2017, 2017, 13. [Google Scholar]
- Bonanno, G.; Chinnì, A. Discontinuous elliptic problems involving the p(x)-Laplacian. Math. Nachr. 2011, 284, 639–652. [Google Scholar] [CrossRef]
- Bonanno, G.; Chinnì, A. Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent. J. Math. Anal. Appl. 2014, 418, 812–827. [Google Scholar] [CrossRef]
- Bonanno, G.; Chinnì, A. Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems. Complex Var. Elliptic Equ. 2012, 57, 1233–1246. [Google Scholar] [CrossRef]
- Bonanno, G.; Chinnì, A. Multiple solutions for elliptic problems involving the p(x)-Laplacian. Matematiche 2011, 66, 105–113. [Google Scholar]
- Boureanu, M.M. Multiple solutions for two general classes of anisotropic systems with variable exponents. J. Anal. Math. 2023, 150, 685–735. [Google Scholar] [CrossRef]
- Fan, X.L. p(x)-Laplacian Equations; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2003. [Google Scholar]
- Fan, X.L.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Fan, X.L. On the sub-supersolution method for p(x)-Laplacian equations. J. Math. Anal. Appl. 2007, 330, 665–682. [Google Scholar] [CrossRef]
- Fan, X.L.; Shen, J.; Zhao, D. Sobolev embedding theorems for spaces Wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 262, 749–760. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Vetro, C.; Vetro, F. On Problems Driven by the (p(·),q(·))-Laplace Operator. Mediterr. J. Math. 2020, 17, 24. [Google Scholar] [CrossRef]
- Chinnì, A.; Sciammetta, A.; Tornatore, E. On the sub-supersolution approach for Dirichlet problems driven by a (p(x),q(x))-Laplacian operator with convection term. Minimax Theory Appl. 2021, 6, 155–172. [Google Scholar]
- Motreanu, D.; Motreanu, V.V.; Papageorgiou, N.S. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems; Springer: New York, NY, USA, 2014. [Google Scholar]
- Costa, D.G. An Invitation to Variational Methods in Differential Equations; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
- Díaz, J.I.; Saá, J.E. Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 1987, 305, 521–524. [Google Scholar]
- Giacomoni, J.; Takáč, P. A p(x)-Laplacian extension of the Díaz-Saa inequality and some applications. Proc. R. Soc. Edinburgh Sect. A 2020, 150, 205–232. [Google Scholar]
- Lieberman, G.M. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 1988, 12, 1203–1219. [Google Scholar] [CrossRef]
- Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candito, P.; Failla, G.; Livrea, R. Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation. Mathematics 2024, 12, 2441. https://doi.org/10.3390/math12162441
Candito P, Failla G, Livrea R. Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation. Mathematics. 2024; 12(16):2441. https://doi.org/10.3390/math12162441
Chicago/Turabian StyleCandito, Pasquale, Giuseppe Failla, and Roberto Livrea. 2024. "Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation" Mathematics 12, no. 16: 2441. https://doi.org/10.3390/math12162441
APA StyleCandito, P., Failla, G., & Livrea, R. (2024). Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation. Mathematics, 12(16), 2441. https://doi.org/10.3390/math12162441