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Abstract: This study describes our thorough experience of formal modeling and exhaustive verifi-
cation of concurrent systems, particularly mutual exclusion algorithms. The experience focuses on
Lycklama and Hadzilacos’s (LH) mutual exclusion algorithm. LH rests on the reduced size of the
shared state, contains a mechanism that tries to enforce an FCFS order to processes entering their
critical section, and embodies Burns and Lamport’s (BL) mutual exclusion algorithm. The modeling
methodology is based on timed automata and the model checker of the popular Uppaal toolbox.
The effectiveness of the modeling and analysis approach is first demonstrated by studying the BL’s
solution and retrieving all its properties, including, in general, its unbounded overtaking, which is the
non-limited number of by-passes a process can suffer before accessing its critical section. Then, the
LH algorithm is investigated in depth by showing it fulfills all the mutual exclusion properties when
it operates with atomic memory. However, as this study demonstrates, LH is not free of deadlocks
when used with non-atomic memory. Finally, a state-of-the-art mutual exclusion solution is proposed,
which relies on a stripped-down LH version for processes, which is used as the arbitration unit in a
tournament tree (TT) organization. This study documents that LH’s TT-based algorithm satisfies all
the mutual exclusion properties, with a linear overtaking, both using atomic and non-atomic memory.

Keywords: concurrency/parallelism; mutual exclusion algorithms; properties; atomic and non-atomic
memory models; formal modelling; exhaustive model checking; Uppaal
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1. Introduction

Mutual exclusion [1,2] is a major problem in concurrent/parallel and distributed
systems [3,4]. Its fundamental form can be stated as follows. There are N ≥ 2 processes,
e.g., running on distinct cores of a multi/many-core machine, and a shared resource R.
During their execution, processes can require access to R. For predictability, only one
process at a time can be given the permission to access and possibly modify R. The code
segment of a process containing the operations on R is said to be its critical section (CS).
Each critical section concerning R must be executed atomically, thus excluding multiple
processes from simultaneously accessing R, which could imply that R becomes corrupted.

A mutual exclusion algorithm provides a protocol that regulates what to do when a
process raises its intention to use R (competition or entry part of the protocol) and, after
having achieved the permission to enter its CS, what operations to execute at the exit from
its CS (exit part of the protocol). In this study, pure-software-based solutions for mutual
exclusion are considered, which are not based on hardware instructions such as test-and-set
and the like. It has been pointed out in the literature that software-based solutions can be
designed, whose efficiency is comparable to hardware-assisted solutions.

The first mutual exclusion solution for N = 2 processes was invented by T.J. Dekker [5,6].
An algorithm for N > 2 processes was then developed by E.W. Dijkstra in [7]. A better solution,
with the guarantee of bounded waiting for a competing process (a property that was missing
in Dijkstra’s solution), was defined by D. Knuth [8]. Knuth’s solution was further improved
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by deBruijn [9] and by Eisenberg and McGuire [10]. New solutions for N = 2 and N > 2 were
proposed by G.L. Peterson [11] and Block and Woo [12]. All these mutual exclusion algorithms
were studied informally and under atomic memory only, where read/write operations are
assumed to be indivisible. As shown recently in [13], only the Peterson and the Block and
Woo algorithms were found to be safe under non-atomic or weak memory [14], where, e.g.,
multiple read operations can occur simultaneously to a write operation on the same variable.
In this circumstance, a read can return (by flickering) a non-deterministic value belonging to
the type of variable. Non-atomic memory is today widespread in smartphones and similar
devices equipped with multi-port memories [15].

Proving the properties of a mutual exclusion algorithm can be very difficult, because
of the non-determinism (partial order), which characterizes the action execution order
(interleaving) of the involved concurrent processes. This explains why testing and infor-
mal/intuitive reasoning can easily fail in assessing the true properties of a mutual exclusion
solution. Two main formal methods prevail in the literature: (a) the assertional method [16],
which relies on a transition system derived from a formal, mathematical characterization of
the mutual exclusion algorithm, upon which assertions can be issued, which are analyzed
with the help of a theorem prover as a proof assistant; (b) model checking [17–21], which
depends on a formal model, e.g., based on the timed automata (TA) [18,22], from which the
state graph of all the possible execution states of the model is automatically built. Efficient
navigation algorithms can then be used, driven by queries expressed in a temporal logic
language. Assertional methods can be difficult to apply to complex algorithms. Model
checking, however, can suffer from the state explosion problem, which occurs when the
model has too many data to handle, e.g., tied to a non-small number N of processes. How-
ever, model checking based on timed automata [18,20] can rely on an intuitive graphical
form, which can help model reasoning and understanding. In addition, the possibility of
exploring the effects of time on a model (see later in this study) can be of great help to
disclose subtle aspects of a mutual exclusion algorithm. Theorem provers, on the other
hand, normally are not able to deal with timing aspects.

The work described in this study develops a modeling and verification approach that
is based on the Uppaal timed automata and model checker [18]. The approach has been
successfully applied to the property checking of different mutual exclusion algorithms [13,23].

The contributions of this study concern an original and thorough investigation of the
Lycklama and Hadzilacos (LH) solution [24], which is characterized by its reduced shared
space (only 5N bits), and its structure, which is composed of two parts: an outer part whose
code tries to ensure the First-Come-First-Served (FCFS) order among processes, which
compete for entering their critical section, and an inner part, which is based on Burns and
Lamport’s (BL) mutual exclusion algorithm [1,25,26].

The flexibility and power of the adopted modeling and verification approach are
first demonstrated by a thorough analysis of BL’s solution, which was independently
discovered by J.E. Burns [25,26] and by L. Lamport [1] (part II, page 17). BL requires
a minimal shared data space (N bits) and works correctly under both atomic and non-
atomic memory. All the properties of BL, for N ≥ 2 processes, are retrieved and are
in total agreement with the predictions reported, e.g., in [1] (part II). In particular, this
study confirms the general unbounded overtaking (or unbounded waiting) of competing
processes that is concerned with the number of by-passes a process can experiment with
before (hopefully) entering its critical section. The same properties are retrieved under both
atomic and non-atomic memory.

This study continues by modeling and analyzing Lycklama and Hadzilacos’s
(LH) [16,24,27] algorithm. As this study demonstrates, LH fulfills all the properties of
a mutual exclusion algorithm, including a bounded overtaking (also called an “absence
of individual starvation” for processes). In a sense, the FCFS provision in LH seems to
correct the unbounded overtaking suffered by the underlying BL algorithm. However, the
correct behavior of LH refers only to its use with atomic memory. In fact, as this study
shows, when LH is adapted for working with non-atomic memory, it loses the fundamental
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property of being deadlock-free. It should be noted that both the studies in [16,27] analyze
LH by informal mathematical reasoning in [26] and by the assertional method assisted by
the PVS theorem prover in [16], with the aim of minimizing the size of the shared data
space. However, this study argues that the proposed model checking approach is unique
in revealing a weakness of LH when it operates with non-atomic memory.

As a further original contribution, this study proposes a standard tournament tree
(TT)-based solution [23,28,29] that uses the LH version for N = 2 processes (LH2) as the
arbitration unit in the TT. This new algorithm is studied for N ≥ 2 processes. This study
proves that the achieved realization based on TT and LH2, which uses 4(N + 2⌈log2 N⌉ − 1)
bits of shared data space, is a fully correct mutual exclusion solution under both atomic
and non-atomic memory.

The rest of this study is organized as follows. Section 2 discusses the basic concepts and
properties of a mutual exclusion algorithm. Section 3 illustrates the modelling approach
based on Uppaal. As a concrete example, Burns and Lamport’s (BL) solution is formally
modeled and thoroughly analyzed under both the atomic and non-atomic memory models.
Section 4 contains an in-depth modeling and verification work of Lycklama and Hadzila-
cos’s (LH) algorithm. LH weakness when used with non-atomic memory is demonstrated.
Section 5 verifies the correctness of an original solution based on a tournament tree, which
rests on LH for two processes as the arbitration unit. Finally, Section 6 concludes this study
with an indication of ongoing and future work.

2. Properties of a Mutual Exclusion Algorithm
2.1. Process Structure

The design of a mutual exclusion algorithm (see Algorithm 1), often very difficult
to grasp intuitively, depends on a (hopefully very small) number of shared communication
variables and a protocol, which states the operations to execute to enter/compete for the
achievement of the permission to use the shared resource, and when exiting from the critical
section. In the entry part, and sometimes also in the exit part, a process can become busy-
waiting; that is, it can, by wasting cpu/core cycles, continually check the shared variables
until a condition is satisfied for abandoning the busy-waiting. In a preferable case [29], the
shared communication variables are associated one to one with the processes. Each process
can change its variable, but all the processes can check all the communication variables.

Algorithm 1. The abstract structure of a process engaged with mutual exclusion.

shared communication variables
Process(i):
local variables of process i
repeat

NCS;
protocol-entry-part;
CS;
protocol-exit-part;

forever

The abstract structure of a process involved in a mutual exclusion situation is shown
in Algorithm 1. Unique process IDs are assumed to be from 1 to N, with N ≥ 2. The
non-critical section (NCS) denotes the code segment where the process has no interest
in accessing the shared resource. The NCS duration can be any value in [0, ∞]. An
infinite duration expresses the process, which stops executing within the NCS. This case is
important to explicitly consider because it must be proved that a terminated process does
not impede other processes from using the resource.

2.2. Safety and Liveness Properties

A safety property wants to exclude that a bad/hazardous state is never reached in
the system evolution. A liveness property aims to ensure that a good state is eventually
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reached. When the good state is reached within a given time frame, the property is said to
be of a bounded liveness type. A correct mutual exclusion algorithm needs to satisfy all the
following properties.

1. (Safety) one process, at most, at any time, can be executing its critical section (CS);
2. (Safety) the protocol must ensure all the execution states are free of deadlock, that is, the

fatal circular situation in which each process waits for an action to be executed by
another process, which never arrives;

3. (Liveness) all the processes eventually enter their CS;
4. (Bounded liveness) a competing and waiting process eventually enters its CS in a

bounded time (absence of individual starvation);
5. (Liveness) a process executing within in its NCS must not impede another process

from entering its CS;
6. (Liveness) no assumption is made on the process relative speeds.

The main goal of the formal modeling and verification approach described in this
study is to enable the automated assessment through model checking of the properties of
a mutual exclusion solution, thus going beyond testing or informal reasoning based on
traditional mathematics. Model checking, indeed, is relatively efficient when applied in
practice. It is far more doable than formally proving correctness. Moreover, it is very
good at finding mistakes in protocols, even if only applied to smaller instances. This is not
the case when using simulation, which may or may not be effective. Therefore, massive
use of model checking can allow us to become far more productive in designing correct
distributed and parallel protocols.

3. Modelling Issues

The proposed method for transforming a mutual exclusion algorithm into a formal
model is based on the high-level timed automata (TA) [22] language supported by Up-
paal [18]. Integer and boolean data variables and arrays of these primitive types can
be introduced globally or locally to a process, together with C-like functions, which can
contribute to compact and more readable models. Each process is modeled as an inde-
pendent timed automaton instance that interacts with peers solely through the global
shared communication variables. The behavior of a process is specified by a state machine
composed of locations (local states) and edges (transitions among locations). An edge is
tagged by a guarded command, which has three major (and optional) attributes: a guard,
a synchronization and an update. The guard (true if absent) is a boolean expression that
indicates the eligibility (enabledness) of the transition to be taken. The synchronization
is a channel input (!)/output (?) operation. For this study, only broadcast channels are
considered with asynchronous communications. The update consists of an ordered list of
variable assignments and clock resets.

A command constitutes the fundamental atomic action of the Uppaal concurrent lan-
guage. The timing behavior of a model is controlled by clocks. A clock can be reset and
then it advances automatically, thus measuring the relative time elapsed from its last re-
set. Uppaal models rely on global time. All the clocks grow with the same advancement
rate. A fundamental concept is the time spent by an automaton in a location. A normal
location is one where the automaton can remain for an arbitrary time, from 0 to ∞. To
improve the progress of a model, an invariant (e.g., a clock constraint) can be attached to
locations. An automaton can stay in a location equipped with an invariant, as long as the
invariant remains true. In the instant the invariant is up to be falsified, the location has
to be abandoned immediately; otherwise, a deadlock occurs. A particular location is the
urgent one (flagged with a U). It is equivalent to a normal location with a clock invariant as
follows: x ≤ 0. Clock x is supposed to be reset at the entrance to the location. When in a
model where multiple timed automata exist, which are in urgent locations at the same time,
the exit order from these locations is non-deterministic. Another progress measure can be
achieved by sending asynchronous communication over an urgent broadcast channel, even
without receivers. The exit order from urgent locations and from a normal location where
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an edge exists with a true guard and an output synchronization on an urgent broadcast
channel remains totally non-deterministic.

Property assessment is carried out by the model checker, by raising TCTL [18] queries,
which capture the fulfillment of distinct (existential or to be always satisfied) properties.
Uppaal builds the state graph of a model, whose nodes capture all the possible execution
states of the model. A TCTL query implies navigation of the state graph aiming at proving
or disproving a property. As a preliminary, intuitive phase, a Uppaal model can also be
animated in the symbolic simulator, where particular sequences of events and their effects
on the model data variables can be inspected. All of this can help the modeler understand
the model’s behavior.

3.1. Modelling a Mutual Exclusion Algorithm

As a concrete example of how a mutual exclusion algorithm can be translated into a
Uppaal model for property verification, Algorithm 2 shows Burns and Lamport’s solution
(BL) for N ≥ 2 processes. The processes, uniquely identified by the IDs from 1 to N, share
the following communication variables:

bool X [1..N], initialized to all false (default)

Each variable X[i] can be written only by process i but can be checked by the remaining
processes. Assigning true to X[i] means the process’s i is interested in entering its critical
section. Basically, to achieve permission to enter its CS, a process i must go over two
busy-waiting cases. The first one is repeated as there exists a process j, 1 ≤ j < i, which has
X[j] == f alse. In this case, first X[i] is lowered to f alse; then, the condition X[j] == f alse
is awaited. After that, the algorithm is repeated from the L point. The second case starts a
busy waiting as any process j, from i < j ≤ N in that order, is found with X[j] == f alse. It
is worth noting that the instruction

await-until (cond) is equivalent to: while (!cond);

At the end of the critical section, each process resets its X[i].
The correctness of the BL algorithm in Algorithm 2 was discussed in [1] (part II)

through informal mathematics reasoning. As is normally the case, diving into the logic of
a mutual exclusion solution, and predicting its properties, can be a difficult task. In this
study, to help our understanding and to favor a systematic assessment of the properties, an
algorithm like Algorithm 2 is first translated into an equivalent Uppaal model (see Figure 1),
according to a few rules as follows.

Algorithm 2. Burns and Lamport’s solution for N ≥ 2 processes.

Process (i)
local variable: int [1..N] j;
repeat

NCS;
L: X[i] = true;

For (j =1 to i − 1){
If (X[j]){

X[i] = false;
await-until (!X[j]);
goto L;

}
}
For (j = i + 1 to N) await-until (!X[j]);
CS;
X[i] = false;

forever
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1. All the actions referring to shared communication variables must be associated with
guarded commands attached to the edges exiting from Uppaal locations. Whatever the
memory model, only one shared variable can be read/written in the same command,
to testify single memory accesses. This rule can be relaxed for the local variables of a
process, where one can think the variables are held in distinct registers and can be
freely accessed by the process.

2. To enforce non-determinism and action interleaving in the execution of the concurrent
processes, the source locations of the actions can be purposely realized as urgent
locations, thus witnessing a negligible action duration. This rule is not adopted
in the modeling of the non-critical section (NCS), the critical section (CS), and a
busy-waiting situation.

3. The NCS is represented by a normal location whose dwell time can be any time in
[0,∞]. The exit from NCS can, thus, be a spontaneous edge.

4. The CS is represented by a normal location with permanence of exactly 1-time unit.
For this purpose, each process is associated with a clock variable z, which is reset just
before entering the CS. The invariant z[i] ≤ 1 is attached to CS, and the exit from CS
is guarded by the clock constraint z[i] ≥ 1. This construction was adopted to simplify
the prediction of the overtaking bound (ov). In particular, ov is measured regarding a
target process (tp). Any process ID can be chosen as tp. The clock of tp is reset as soon
as tp exits from the NCS (see the function reset(i) in Figure 1) and starts competing.
Of course, as other competing processes by-pass (overtake) the competing tp and
enter their CS, then the ov is incremented by 1. The maximal value of z[tp] observed
when tp is in the position to enter its CS (see the location E in Figure 1) furnishes the
(hopefully finite) overtaking bound.

5. To reduce the amount of non-determinism in the model, a busy-waiting case is
modeled by a normal location (see BW1 and BW2 in Figure 1) from which an exit is
forced as soon as the awaited condition holds. This provision avoids, in the Uppaal
model, the active and very often unproductive spin cycles, which would waste the
model checking work (navigation of the state graph). To this purpose, an urgent
and broadcast channel is used (see the channel synch in Figure 1), upon which an
output send operation (!) is commanded, which is received by no other process
(asynchronous communications). In this way, exiting from a busy-waiting location
becomes an urgent action not distinguishable from the actions tied to urgent locations.
All these actions will occur in a non-deterministic way.
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Figure 1. A Uppaal model for the BL’s solution in Algorithm 1.
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A particular case of rule 5 happens when a busy-waiting condition is a complex
one, involving the evaluation of multiple shared variables linked by the usual logical
operators: and (&&), or (||), not (!). Since it is not possible to evaluate in a single guard
one, such a condition, a try() function (see Figure 5), can be used, which optimistically
checks the overall awaited condition in one step. However, when try() returns true, a
detailed evaluation has to be carried out, by assembling the various components of the
condition piece by piece according to the logical operators. Due to non-determinism, at
any time of the detailed evaluation, the condition can be proved to be f alse. In this case,
the busy-waiting location is immediately re-entered.

3.1.1. Semantic Aspects

Some semantic issues concerning the above-mentioned transformation rules deserve
some further comments.

(a) If N are the processes, N clocks are used in the model. However, if the algorithm is
a correct mutual exclusion solution, at any moment, only two clocks can be active
and affecting the model checker: that of the competing target process z[tp] and that of
another process entering its CS.

(b) The use of time in the CS location in no case alters the natural evolution of the
mutual exclusion algorithm. If process p is in its CS, any other competing process
q! = p, due to non-determinism and urgent actions certainly reaches a busy-waiting
location from which it can exit when p, at the end of its CS, finally changes some
shared communication variables. Since exiting from a busy-waiting location normally
modifies shared variables, a cascade effect can occur on other processes in busy
waiting and so forth.

(c) Also, the timing in the NCS location complies with the correct behavior of the algo-
rithm. If ∆ov is the bounded overtaking (time duration) of the algorithm, two cases
can be considered. The process in NCS exits at a time instant lower than ∆ov. In this
case, the process actively participates in the current competition and contributes to
the definition of ∆ov. If the process leaves NCS after ∆ov, it will then attend the next
competition.

(d) The above points (b) and (c) shed some light on the importance of using a time-
sensitive framework in the proposed Uppaal-based modeling approach. For example,
after having assessed (as expected) that the termination of a process in the NCS does
not alter the correct behavior of the mutual exclusion model, a next analysis phase
can be conducted by making NCS urgent, thus forcing a process that exits its CS to
immediately re-enter the system and start competing. Making NCS urgent, on the
other hand, can improve the model checker work by simplifying the execution paths
that depend on the time spent in NCS, which, in turn, can make the model more
scalable in the number N of the admitted processes.

3.1.2. Uppaal Model Details

The following reports the global declarations required by the BL model in Figure 1:

const int N = 4; //example
typedef int[1,N] pid; //type of the process IDs
urgent broadcast chan synch;
//shared communication variables
bool X[pid]; //all false initially by default
//process clocks
clock z[pid];

pid tp = 2; //target process example
void reset( const pid i ){

if(i == tp) z[tp] = 0;
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}//reset

The Process automaton admits one single parameter, const pid i, and declares the local
variable j (of type pid), which is used for controlling the two loops in Algorithm 2. Due to
the adopted parameter, the following system declaration

system Process;

automatically creates, at the bootstrap time, N instances of Process, one per each process
ID. The notation Process(1), Process(tp), and so forth, permits one, during model checking,
to refer to a particular Process instance.

As a final remark, it is worth noting that in the graphical form of a model, like Figure 1,
a guard is green-colored, a synchronization is drawn in azure, and an update is shown in
blue. When a non-deterministic selection of the value of a variable is also specified in the
guarded command, it is depicted in yellow (see also Figure 4).

3.2. Verification of Burns and Lamport’s Algorithm

The BL algorithm was first analyzed using the symbolic simulator, by observing, step
by step, particular event sequences where, at each step, it is the modeler, which explicitly
selects the process, which will execute the next action. During this monitoring, the global
shared variables were watched too, and the overall behavior was traced. In addition, the
random evolution, where it is the simulator that randomly chooses the next event to occur,
intuitively confirmed that all the processes can reach their CS, no deadlock happens, and
in no case can two or more processes enter their CS simultaneously. Figure 2 shows a
snapshot for the case N = 2, where process 1 is entering its CS and the other is in the BW1
busy-waiting location.

Accurate property assessment rests on the exhaustive verification ensured by model
checking. Table 1 collects the TCTL queries [18] used for checking the properties of BL (see
also Section 2.2), their meaning, and the achieved result. It is important to note that exactly
the same results emerged when using NCS as a normal location (default) and when NCS
is changed to urgent. The state predicate Process(i).CS evaluates to true (numerically 1) if
process i is found in its CS, or f alse otherwise (numerically 0).

Table 1. TCTL queries for property assessment of BL.

# Query Meaning Result

1 A[] (sum(i:pid)Process(i).CS) ≤ 1

Is it always true, i.e., in all the states of the state
graph, that the number of processes
simultaneously found in CS is less than or equal
to 1?

satisfied

2 A[] !deadlock Are all the states of the state graph deadlock
free? satisfied

3 For any process j, 1 ≤ j ≤ N:
E<> Process(j).CS Does the process j eventually enters its CS? satisfied

4 sup{ Process(tp).E}: z[tp] What is the maximal value of z[tp] when process
tp is found in the location E of Figure 1?

N − 1 if tp == 1;
unbounded if tp! = 1

5 E<> Process(tp).NCS &&
exists(j:pid)Process(j).CS

Is there any state where the tp process in its NCS
and other processes can be in the CS? satisfied

Table 1 confirms that the BL algorithm satisfies all the mutual exclusion properties
when the target process is 1. The fourth sup (suprema) query, in particular, checks the
overtaking bound, that is, the maximum time the competing target process tp has to wait
before it gets permission to enter its CS. For N = 4, it results in ov = N − 1 = 3. By changing
the target process to tp = 2 (or higher), all the mutual exclusion properties continue to be
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satisfied, as shown in Figure 3, except that the overtaking factor now becomes unbounded.
The overtaking factor was also investigated by the query

A[] Process(tp).E imply z[tp] <= finite_bound

that for tp! = 1, which always terminates as unsatisfied, whatever is the value of fi-
nite_bound, e.g., 1000 or greater, to mirror the fact that z[tp] is unbounded.
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3.3. The BL Model under Non-Atomic Memory

The BL model in Figure 1 assumes, by default, the atomic memory model, where
read/write operations on the same memory cell are indivisible. Figure 4 shows the same
model adapted for working with the non-atomic memory model. Since the use of only
exterior variables [29], that is, the fact that any shared variable X[j], is only written by the
process j but consulted by all the other processes, as in [16], only the flickering phenomena
has to be considered. Flickering arises when multiple read operations occur during a write
operation on the same variable. Due to flickering, a read concurrent to a write is supposed
to return a non-deterministic value belonging to the type of variable. Flickering can be
modeled in Uppaal by a non-deterministic selection of a value that is temporarily assigned to
the variable. Flickering is then followed by the effective value assigned to the variable. For
non-determinism, a reader process can gain the flickered value instead of the true value.
Of course, flickering augments the non-determinism degree in the model behavior, which
in turn makes the model checking activities more expensive.

The extensive verification of the BL model in Figure 4 confirmed that it is RW-safe [16]
and possesses the same properties of the BL model shown in Figure 1. This includes the
unbounded overtaking factor for any process ID different from 1.

The documented BL model checking work complies with the same properties and
results predicted in [1] (part II). The carried work was intended as a preliminary step to
motivate and illustrate the practical use of the Uppaal-based approach. In addition, the
experience has furnished a clear argument about its semantic correctness.

The next step will be devoted to formal modeling and correctness verification of the
more complex solution by Lycklama and Hadzilacos [24] that embodies the BL algorithm
as one of its components.
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4. Modelling and Verification of Lycklama and Hadzilacos’s Solution

Lycklama and Hadzilacos’s (LH) mutual exclusion algorithm was proposed in [24] as a
solution that tries to ensure a First-Come-First-Served (FCFS) order to compering processes
for entering their critical section. The algorithm is characterized by its small number (5N)
of bits in the shared data space.

The LH algorithm, adapted from [27], is reported in Algorithm 3 and consists of an
outer part and an inner part. The inner part coincides with the BL algorithm. The outer
part is devoted to FCFS behavior. In terms of Uppaal modeling, the shared variables of LH
can be represented as follows, with the process IDs which range from 1 to N:
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const int N =. . .;
typedef int[1,N] pid;
typedef int[0,k] value; //k = 3 in the original proposal in [24]
typedef int[0,1] bit;
//shared communication variables
bit X[pid], V[pid], D[pid]; //all initialized to 0
value T[pid] //initialized to 0

Each process introduces the local variables S[] of the same type as the global T[], and j,
which is used as the control variable of the for-loops.

Instructions from 1 to 5 define the so-called doorway [1,27], which is a sequence of
actions executed by a competing process before entering busy waiting. The for-loop at line
6 serves to resolve the FCFS order of the arrival processes. Instructions from 7 to 9 are easily
recognized as the BL algorithm studied in the previous section of this study. D[i] is used
to signal the start point (D[i] = 1) and the endpoint (D[i] = 0) of the doorway. V[i] = 1
mirrors that the process i has started engaging in the FCFS strategy toward the entering of
its CS. After the CS, V[i] is reset to 0. X[i] is used according to the BL algorithm. The role
played by the array T[] is subtle and fundamental.

When a process starts its doorway, it first copies the global T[] onto the local S[]. Then,
T[i] is advanced to its next value. In [24], it was conjectured that four values (two bits) for
any T[i] are sufficient for the proper management of FCFS. A possible sequence for the
values of T[i] is then (as in [24]) 00 → 01 → 11 → 10 → 00 , that is 0 → 1 → 3 → 2 → 0 .
In [27], it was observed that it is not the exact sequence of the values of T[i] that matters
but rather the number of possible values available for T[i].

Algorithm 3. The Lycklama and Hadzilacos’s FCFS mutual exclusion algorithm.

Process (i):
local variables: value S[pid]; pid j;
repeat

NCS;
1. D[i] = 1; //doorway entry
2. for (j from 1 to N) S[j] = T[j]; //copy of T onto the local S
3. T[i] = next(T[i]); //next value available for T[i]
4. V[i] = 1;
5. D[i]= 0; //doorway exit
6. for (j from 1 to N) await-until (D[j] == 0 and (V[j] == 0 or S[j]! = T[j]));
7. X[i] = 1; //start of BL algorithm
8. for (j from 1 to i − 1){

if (X[j] == 1){
X[i] = 0; await-until (X[j] == 0); goto 7;

}
}

9. for (j from i+1 to N) await-until( X[j] == 0 ); //end of BL algorithm
CS;

10. X[i] = 0;
11. V[i] = 0;

forever

After having updated T[i], the process i declares its FCFS engagement by assigning
1 to V[i] and by announcing it exited its doorway (D[i] = 0). Then, the for-loop at line 6 of
Algorithm 3 “resolves” the FCFS order. Process i will wait until there are processes j that
have exited their doorway (D[j] = 0) and either they are out of the CS or not interested in
the CS (V[j] = 0), or the value of the local S[j] differs from the corresponding global T[j].
A process j that enters its CS before i, at its exit from the CS, can immediately re-enter its
doorway (by a 0 stay time in the NCS). Then, such a process j should now not be ahead
again of i, which would destroy the FCFS property. Toward this, j copies the global T[] into
its S[] and advances its T[j] value. Now, if process i is still in the for-loop of line 6, surely
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the new competition of T[j] will be forced to wait. In fact, for the process j, the values of
S[i] and T[i] do not differ. In addition, for process i to prosecute before the new arrival of
process j, it is mandatory that the new value of T[j] still differs from the value that process i
has in its S[j]. The key factor is then the length of the distinct values of T[j]. A short length
can imply a deadlock situation, because neither process i nor the new activation of j could
observe the case S[j]! = T[j].

A possibility offered by the Uppaal modeling approach is the easy check of the minimal
number of values for a T[j], that is, the minimal shared data for the processes that would
guarantee the correct behavior for the LH algorithm (see later in this study).

Figure 5 reports the Uppaal model of the LH algorithm in Algorithm 3. As one can see
from Figure 5, since it is not possible to read and write the T[i] variable in the same action,
the existing value of T[i] is first saved in the (at the moment free) j variable. To improve
the readability of the model, locations were mostly named according to the instruction line
numbers of Algorithm 3. Functions next(j) and try() are detailed in Algorithm 4.

As a preliminary investigation, the four values of the T[] variables of [24] were as-
sumed, and the behavior of the model for N = 3 was observed both in the symbolic
simulator and then through the Uppaal model checker. Effectively, the model was found
to be correct (see also the snapshot in Figure 6) according to all the mutual exclusion
properties. In addition, the overtaking bound was found to be N − 1, whatever the chosen
target process. The results in Figure 6 emerged when using NCS either as a normal location
or as an urgent location.

Algorithm 4. The next(j) and try() functions used in the model of Figure 5.

bool try(){
return D[j] == 0 && (V[j] == 0||S[j]! = T[j]);

}//try

value next(const value j){
return j == 0?1:j == 1?3:j == 3?2:0;

}//next
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Figure 5. A Uppaal model for the LH solution in Algorithm 2.
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A further liveness property, which logically precedes the prediction of the overtaking
bound, was assessed by the following query, which uses the leads-to operator [18] (see
Figure 6):

Process(1).DW1 --> Process(1).CS

The query asks if (invariantly) starting from a state where process 1 is at the beginning
of its doorway (the location DW1), it always (inevitably) happens that a state can be
reached where process 1 enters its CS. The property is satisfied and confirms the absence of
starvation, which is a precondition for a bounded overtaking. The sup query, finally, was
used to infer the exact value of the overtaking bound.
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The analysis of the LH model was extended by checking the minimal number of
values for T[i], which can guarantee the algorithm continues to be correct in all of its
properties. Three values were then assumed: from 0 to 2, with a straightforward sequence
0 → 1 → 2 → 0 enforced by a simple adaptation of the next() function in Algorithm 4.
Despite these three values, the model remains fully correct and satisfies all its properties.
Table 2 collects the overtaking factor, for N, which ranges from 2 to 4 (with N = 5 the state
graph explodes), which is confirmed to be N − 1. For completeness, the elapsed time (ET),
in s, required by the sup query to terminate, and the corresponding memory usage (MU),
in MB, are reported too.
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Table 2. Overtaking bound (ov) vs. N for LH with 3 values for T[] variables.

N ov ET (s) MU (MB)

2 1 0 18

3 2 0.6 38

4 3 179.4 3300

Fewer than three values for the T[] variables proved to be insufficient. With two values
(1 bit) and N >= 3, the LH model incurs into deadlocks. Two values are instead ok for the
simple case of N = 2 processes.

The following gives some further arguments about the FCFS order in LH. As observed
by Aravind in [27], in reality, the FCFS property is the effective order of entering the CS only
when the competing processes execute their doorways sequentially. In the more common
case of a concurrent execution of the doorways, the processes do not necessarily enter
their CS in the FCFS order. This property was observed on the LH model animated in
the symbolic simulator. Despite this behavior, LH has the merit of having improved the
underlying BL algorithm by ensuring that the overall model now has a linear, bounded
overtaking factor.

All the execution experiments were performed on a Win11 Pro desktop platform, Dell
(Round Rock, TX, USA) XPS 8940, Intel i7-10700 (8 physical cores), CPU@2.90 GHz, and
32 GB RAM, using version 5 of Uppaal 64 bit.

Adapting LH’s Algorithm to Non-Atomic Memory

LH’s solution was also analyzed in the presence of flickering, that is, when multiple
read operations can occur simultaneously to a write operation on a shared variable. The
new Uppaal model, with three values admitted for the T[] variables, is shown in Figure 7.

Unfortunately, the model in Figure 7 was found to be not deadlock-free. The reason is
because when a process copies the global values of T[], it can copy flickered values, which
can block it in the FOR6 location. This same result was found when using the four values
for T[] assumed in [24]. In the light of the carried-out model checking work, LH’s solution
emerged to be a fully correct mutual exclusion algorithm, but only under atomic memory.

A final solution was then devised and investigated by using LH’s algorithm for
two processes and with two values for the T[] variables, as the arbitration algorithm
is in a state-of-the-art tournament binary tree organization [23,28]. Algorithm 5 shows
a stripped-down version of LH for two processes (LH2), which relies on the following
Uppaal global declarations:

const int N = 2;
typedef int[1,N] pid;
typedef int[0,1] bit;
//shared communication variables
bit X[pid], V[pid], D[pid], T[pid]; //all initialized to 0 (default)
with the next() function, which reduces to:
bit next(const bit j){return j == 0?1:0;}//next



Mathematics 2024, 12, 2443 15 of 19

Mathematics 2024, 12, x FOR PEER REVIEW  15  of  20 
 

 

animated  in  the symbolic simulator. Despite  this behavior, LH has  the merit of having 

improved the underlying BL algorithm by ensuring that the overall model now has a lin-

ear, bounded overtaking factor. 

All the execution experiments were performed on a Win11 Pro desktop platform, Dell 

(Round Rock, TX, USA) XPS 8940, Intel i7-10700 (8 physical cores), CPU@2.90 GHz, and 

32 GB RAM, using version 5 of Uppaal 64 bit. 

Adapting LH’s Algorithm to non-Atomic Memory 

LH’s solution was also analyzed in the presence of flickering, that is, when multiple 

read operations can occur simultaneously to a write operation on a shared variable. The 

new Uppaal model, with three values admitted for the  𝑇ሾሿ  variables, is shown in Figure 

7. 

Unfortunately, the model in Figure 7 was found to be not deadlock-free. The reason 

is because when a process copies  the global values of  𝑇ሾሿ,  it can copy flickered values, 
which can block it in the FOR6 location. This same result was found when using the four 

values for  𝑇ሾሿ  assumed in [24]. In the light of the carried-out model checking work, LH’s 

solution emerged to be a fully correct mutual exclusion algorithm, but only under atomic 

memory. 

A final solution was then devised and investigated by using LH’s algorithm for two 

processes and with two values for the T[] variables, as the arbitration algorithm  is  in a 

state-of-the-art  tournament  binary  tree  organization  [23,28].  Algorithm  5  shows  a 

stripped-down version of LH for two processes (LH2), which relies on the following Up-

paal global declarations: 

const int N = 2; 

typedef int[1,N] pid; 

typedef int[0,1] bit; 

//shared communication variables 

bit X[pid], V[pid], D[pid], T[pid]; //all initialized to 0 (default) 

with the  𝑛𝑒𝑥𝑡ሺሻ  function, which reduces to: 

bit next(const bit j){return j == 0?1:0;}//next 

 

Figure 7. The LH model adapted for working with non-atomic memory. 

j==N j<N

j<N
j<N

j==i&&
i==Nj==N

X[j]==0

X[j]==1

X[j]==0

X[j]!=0

z[i]>=1

j==N

X[j]==0

j==i&&i<N

X[j]==0

j<i

V[j]!=0

S[j]==T[j]

S[j]!=T[j]

V[j]==0

D[j]==0

D[j]!=0

try()

j<N

j==N

V[i]=v X[i]=v

X[i]=v X[i]=v

D[i]=v

V[i]=vT[i]=vD[i]=v

X[i]=0

j++

j++
j++

j++

V[i]=0

z[i]=0

j=i+1

X[i]=0

X[i]=1,
j=1

D[i]=0,
j=1

V[i]=1

T[i]=next(j),
j=1

j++

j=T[i]S[j]=T[j]D[i]=1,
reset(i),
j=1

synch!

synch!

synch!

z[i]<=1

NCS
DW2 DW3 DW4

DW5

FOR6
BL8

AW2

AW3

L CS

LH11

BL9

EFOR6

DW1

LH10

BL7

v:bit v:bit

v:bit v:bit

v:bit

v:bitv:valuev:bit

Figure 7. The LH model adapted for working with non-atomic memory.

In Algorithm 5, for-loops are flattened to the only existing iteration. Constant j denotes
the partner process.

Algorithm 5. LH2: the LH’s algorithm tailored to 2 processes and 2 values for T[].

Process(i):
local variables: bit S[pid]; const int j = 3 − i;
repeat

NCS;
1. S[i] = T[i];
2. S[j] = T[j];
3 T[i] = next (T[i]);
4 V[i] = 1;
5 D[i] = 0;
6 await-until (D[j] == 0 and (V[j] == 0 or S[j]! = T[j]));
7 X[i] = 1;
8 if (j < i){

if (X[j]! = 0){X[i] = 0; await-until (X[j] == 0); X[i] = 1;}
}
else if (X[j] == 1) await-until (X[j] == 0);
CS;

9 X[i] = 0;
10 V[i] = 0;

forever

5. Embedding LH in a Tournament Tree Standard Solution

The tournament binary tree (TT) advocated, e.g., in [28], and implemented in [23] was
tailored to work with LH for two processes (see Algorithm 5). LH2 is used to arbitrate pairs
of processes at the intermediate nodes of the TT, including the root. The overall solution
can handle N ≥ 2 processes.

Processes enter the TT at the leaf nodes of the last, possibly incomplete, level of the
tree. After arbitration, the winner process moves to its ancestor node where it will engage
the next arbitration and so forth. The process that reaches the root node is the one that
has permission to enter its critical section. The concrete implementation of the TT maps
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the tree, level by level, onto a linear array, as usually happens when supporting the heap
sorting algorithm. Slot 1 of the array denotes the root. The j variable in Figure 8 starts with
the index of the leaf node, which becomes occupied by the arriving process i. Then, j is
halved at each iteration where process i is the winner of an arbitration until it becomes 1.

Mathematics 2024, 12, x FOR PEER REVIEW  17  of  20 
 

 

 

Figure 8. TT-LH2: A Uppaal model for the TT’s solution based on LH2. 

During its upward movement along a path toward the root, process  𝑖  becomes rep-

resented by the index  𝑗  of the slot occupied in the array. The two processes of arbitration 

are siblings of the same ancestor node. The sibling, if there is one, of the process in  𝑗  is 
returned by the  𝑠ሺሻ  function. Therefore, the typical arbitration pair of processes is com-

posed of  the processes <𝑗, 𝑠ሺሻ >. The  function  𝑓𝑖𝑟𝑠𝑡ሺ𝑗ሻ   returns  𝑡𝑟𝑢𝑒   if  𝑗 ൏ 𝑠ሺሻ . To better 
characterize the TT organization, it is convenient to illustrate some Uppaal global decla-

rations. 

const int N = 5; //example 

const int lev = fint(ceil(log2(N))); //last level of TT 

const int pow2toLev = fint(pow(2,lev)); //2^lev 

const int L = pow2toLev + N − 1; //number of nodes of TT 

const int I = pow2toLev − 1; //number of intermediate nodes 

typedef int[1,N] pid; //process indexes 

typedef int[1,L] findex; //TT node indexes 

typedef int[0,1] bit; 

//shared communication variables 

bit X[findex], V[findex], D[findex], T[findex]; //all 0 initially 

Leaf nodes are deterministically associated  to  the 𝑁  processes  through  the  𝑙𝑒𝑎𝑓ሺሻ 
function: 

findex leaf(const pid i){ //returns the leaf node index for the process  𝑖 
return pow2toLev + i − 1; 

}//leaf 

The winner of a local arbitration based on LH2 moves to BL’s critical section (BLCS), 

and then it is ready to repeat the main loop by first halving the  𝑗  variable (𝑗 ൌ 𝑗/2). BLCS 
must not be confused with the overall critical section (CS) of the TT solution. In the imple-

mentation, a process in BLCS immediately moves to its next arbitration. The unitary du-

ration is only spent in the CS location of Figure 8. When the sibling process does not exist, 

due to a partially filled last level of the tree, process  𝑗 moves directly to the BLCS. Other-

wise, the BL algorithm is played to determine the winner process. 

D[j]=0

V[j]=1

X[j]=1

X[j]=0

S[j]=T[j]D[j]=1

z[i]<=1

T[j]=next(t)S[s()]=T[s()] t=T[j]

X[s()]==1

X[leaf(i)]=0

j++
V[j]=0

V[leaf(i)]=0

AW3

X[j]=1

z[i]=0

j=leaf(i),
reset(i)

X[j]=0

j=j/2

j=1

clear

first(j)

X[s()]==0

X[s()]==0

X[s()]!=0

X[s()]==0

S[s()]!=T[s()]

V[s()]==0!first(j)

S[s()]==T[s()]

V[s()]!=0

j==I

path(j) z[i]>=1

j==s()

!path(j)

j<I

X[s()]==0

D[s()]!=0

try()

j!=s()

j==1

j!=1

D[s()]==0
BL8 BL7

AW2

BLCS

DW3DW2

F6

DW4

DW5

DW1

synch!

synch!

synch!

CS L

NCS loop

Figure 8. TT-LH2: A Uppaal model for the TT’s solution based on LH2.

During its upward movement along a path toward the root, process i becomes repre-
sented by the index j of the slot occupied in the array. The two processes of arbitration are
siblings of the same ancestor node. The sibling, if there is one, of the process in j is returned
by the s() function. Therefore, the typical arbitration pair of processes is composed of the
processes <j, s()>. The function f irst(j) returns true if j < s(). To better characterize the TT
organization, it is convenient to illustrate some Uppaal global declarations.

const int N = 5; //example
const int lev = fint(ceil(log2(N))); //last level of TT
const int pow2toLev = fint(pow(2,lev)); //2ˆlev
const int L = pow2toLev + N − 1; //number of nodes of TT
const int I = pow2toLev − 1; //number of intermediate nodes
typedef int[1,N] pid; //process indexes
typedef int[1,L] findex; //TT node indexes
typedef int[0,1] bit;
//shared communication variables
bit X[findex], V[findex], D[findex], T[findex]; //all 0 initially

Leaf nodes are deterministically associated to the N processes through the lea f ()
function:

findex leaf(const pid i){ //returns the leaf node index for the process i

return pow2toLev + i − 1;

}//leaf

The winner of a local arbitration based on LH2 moves to BL’s critical section (BLCS),
and then it is ready to repeat the main loop by first halving the j variable (j = j/2). BLCS
must not be confused with the overall critical section (CS) of the TT solution. In the
implementation, a process in BLCS immediately moves to its next arbitration. The unitary
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duration is only spent in the CS location of Figure 8. When the sibling process does not
exist, due to a partially filled last level of the tree, process j moves directly to the BLCS.
Otherwise, the BL algorithm is played to determine the winner process.

In the developed TT, each of the shared variables is associated with every distinct node
of the tree, which can be occupied by a process. Practically, the shared variables represent
the tree structure. The resultant size of the shared space is 4(N + 2⌈log2 N⌉ − 1) bits, which
becomes 4(2N − 1) when N is a power of two.

Purposely, the reset of X[j] and V[j] is delayed until the process j reaches the root node
and enters its CS. Upon exiting from the CS, all the path positions previously occupied
during the upward movement are cleared, exactly in the opposite direction. It is at this
time that the X[j] and V[j] shared variables are reset to 0. These operations can awaken
blocked processes at arbitration nodes, which can resume their advancement.

The algorithm/model in Figure 8 satisfies all the mutual exclusion properties. The
overtaking bound ov vs. N, by using NCS urgent or not, emerged, as shown in Table 3. The
table also reports the elapsed time (ET) (in s) and the memory usage (MU) in MB of the
model checker. For N = 6, the state graph of the TT-LH2 model explodes.

Table 3. The overtaking bound (ov) for the TT-LH2 under atomic memory.

N ov ET (s) MU (MB)

2 1 0 18

3 3 0.2 26

4 3 5.5 153

5 7 671 8329

Table 3 confirms ov is bounded and varies according to ov = 2⌈log2 N⌉ − 1, that is, the
numerosity of the intermediate nodes in the TT. When the last level is completely occupied
(N is a power of 2), the relation becomes ov = N − 1.

The final challenging point was to check TT-LH2’s algorithm under flickering and
non-atomic memory.

Adapting TT-LH2 to Non-Atomic Memory Model

An important point of using LH is that all the shared variables can be affected by
flickering only due to multiple read operations, which can occur during a write operation.
In other terms, no scrambling can occur (which should be fenced by lower-level mecha-
nisms [28]) on the value of a shared variable that could be affected by simultaneous write
operations. The TT-LH2 model of Figure 8, modified by introducing flickering, is shown in
Figure 9.

Model checking the model in Figure 9 confirmed all the mutual exclusion properties
are satisfied exactly as for the model with atomic memory in Figure 8, although the new
model is more difficult to analyze due to the increased degree of non-determinism caused
by the flickering operations. Also, the overtaking bound was confirmed to be identical to
that of the model in Figure 8 (see Table 4). Now, for N = 5, the state graph explodes.

Table 4. The overtaking bound (ov) of the TT-LH2 with flickering.

N ov ET (s) MU (MB)

2 1 0 18

3 3 0.8 26

4 3 34 611
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Figure 9. The TT-LH2 model adapted for working with non-atomic memory.

6. Conclusions

This study describes a modeling and verification approach and applies it for an in-
depth analysis of Lycklama and Hadzilacos’s (LH) [16,24,27] algorithm. The methodology
confirmed how LH, together with its support for an FCFS order of the processes entering
their critical section, improves Burns and Lamport’s (BL) solution, embodied in LH, by
eliminating the unbounded overtaking, of which BL, in general, suffers. However, as this
study demonstrates, LH itself manifests deadlock problems when used in the context of
non-atomic memory. Therefore, a new solution based on LH streamlined to two processes
(LH2) is proposed, where LH2 is used as the arbitration unit in a tournament tree (TT)
state-of-the-art general and standard solution [28]. TT-LH2 emerged to be a fully correct
mutual exclusion algorithm for N >= 2 processes, with a guaranteed bounded, linear
overtaking factor.

The power and flexibility of the adopted methodology for reasoning on concurrency
derive from the use of formal modelling and exhaustive model checking ensured by the
timed automata language and the tools of Uppaal [18].

Prosecution of the research work will address the following points. First, apply the
developed approach to check the correctness of all the variants of LH’s algorithm proposed
in [16,27]. Second, port the approach on a cluster of many cores and high memory size to
permit the verification of complex models. Third, experiment with a simulation framework
in Java based on the Theatre actor system [30] to study mutual exclusion algorithms scalable
in the number N of the involved processes.
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